blob: b7fd7c2d6ec06506e3be66e6ff523391b0882cbc [file] [log] [blame]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/transform/decompose_strided_matrix.h"
#include <unordered_map>
#include <utility>
#include <vector>
#include "src/tint/program_builder.h"
#include "src/tint/sem/expression.h"
#include "src/tint/sem/member_accessor_expression.h"
#include "src/tint/transform/simplify_pointers.h"
#include "src/tint/utils/hash.h"
#include "src/tint/utils/map.h"
TINT_INSTANTIATE_TYPEINFO(tint::transform::DecomposeStridedMatrix);
namespace tint::transform {
namespace {
/// MatrixInfo describes a matrix member with a custom stride
struct MatrixInfo {
/// The stride in bytes between columns of the matrix
uint32_t stride = 0;
/// The type of the matrix
const sem::Matrix* matrix = nullptr;
/// @returns a new ast::Array that holds an vector column for each row of the
/// matrix.
const ast::Array* array(ProgramBuilder* b) const {
return b->ty.array(b->ty.vec<f32>(matrix->rows()), u32(matrix->columns()), stride);
}
/// Equality operator
bool operator==(const MatrixInfo& info) const {
return stride == info.stride && matrix == info.matrix;
}
/// Hash function
struct Hasher {
size_t operator()(const MatrixInfo& t) const { return utils::Hash(t.stride, t.matrix); }
};
};
} // namespace
DecomposeStridedMatrix::DecomposeStridedMatrix() = default;
DecomposeStridedMatrix::~DecomposeStridedMatrix() = default;
Transform::ApplyResult DecomposeStridedMatrix::Apply(const Program* src,
const DataMap&,
DataMap&) const {
ProgramBuilder b;
CloneContext ctx{&b, src, /* auto_clone_symbols */ true};
// Scan the program for all storage and uniform structure matrix members with
// a custom stride attribute. Replace these matrices with an equivalent array,
// and populate the `decomposed` map with the members that have been replaced.
utils::Hashmap<const ast::StructMember*, MatrixInfo, 8> decomposed;
for (auto* node : src->ASTNodes().Objects()) {
if (auto* str = node->As<ast::Struct>()) {
auto* str_ty = src->Sem().Get(str);
if (!str_ty->UsedAs(ast::AddressSpace::kUniform) &&
!str_ty->UsedAs(ast::AddressSpace::kStorage)) {
continue;
}
for (auto* member : str_ty->Members()) {
auto* matrix = member->Type()->As<sem::Matrix>();
if (!matrix) {
continue;
}
auto* attr =
ast::GetAttribute<ast::StrideAttribute>(member->Declaration()->attributes);
if (!attr) {
continue;
}
uint32_t stride = attr->stride;
if (matrix->ColumnStride() == stride) {
continue;
}
// We've got ourselves a struct member of a matrix type with a custom
// stride. Replace this with an array of column vectors.
MatrixInfo info{stride, matrix};
auto* replacement =
b.Member(member->Offset(), ctx.Clone(member->Name()), info.array(ctx.dst));
ctx.Replace(member->Declaration(), replacement);
decomposed.Add(member->Declaration(), info);
}
}
}
if (decomposed.IsEmpty()) {
return SkipTransform;
}
// For all expressions where a single matrix column vector was indexed, we can
// preserve these without calling conversion functions.
// Example:
// ssbo.mat[2] -> ssbo.mat[2]
ctx.ReplaceAll(
[&](const ast::IndexAccessorExpression* expr) -> const ast::IndexAccessorExpression* {
if (auto* access = src->Sem().Get<sem::StructMemberAccess>(expr->object)) {
if (decomposed.Contains(access->Member()->Declaration())) {
auto* obj = ctx.CloneWithoutTransform(expr->object);
auto* idx = ctx.Clone(expr->index);
return b.IndexAccessor(obj, idx);
}
}
return nullptr;
});
// For all struct member accesses to the matrix on the LHS of an assignment,
// we need to convert the matrix to the array before assigning to the
// structure.
// Example:
// ssbo.mat = mat_to_arr(m)
std::unordered_map<MatrixInfo, Symbol, MatrixInfo::Hasher> mat_to_arr;
ctx.ReplaceAll([&](const ast::AssignmentStatement* stmt) -> const ast::Statement* {
if (auto* access = src->Sem().Get<sem::StructMemberAccess>(stmt->lhs)) {
if (auto info = decomposed.Find(access->Member()->Declaration())) {
auto fn = utils::GetOrCreate(mat_to_arr, *info, [&] {
auto name =
b.Symbols().New("mat" + std::to_string(info->matrix->columns()) + "x" +
std::to_string(info->matrix->rows()) + "_stride_" +
std::to_string(info->stride) + "_to_arr");
auto matrix = [&] { return CreateASTTypeFor(ctx, info->matrix); };
auto array = [&] { return info->array(ctx.dst); };
auto mat = b.Sym("m");
utils::Vector<const ast::Expression*, 4> columns;
for (uint32_t i = 0; i < static_cast<uint32_t>(info->matrix->columns()); i++) {
columns.Push(b.IndexAccessor(mat, u32(i)));
}
b.Func(name,
utils::Vector{
b.Param(mat, matrix()),
},
array(),
utils::Vector{
b.Return(b.Construct(array(), columns)),
});
return name;
});
auto* lhs = ctx.CloneWithoutTransform(stmt->lhs);
auto* rhs = b.Call(fn, ctx.Clone(stmt->rhs));
return b.Assign(lhs, rhs);
}
}
return nullptr;
});
// For all other struct member accesses, we need to convert the array to the
// matrix type. Example:
// m = arr_to_mat(ssbo.mat)
std::unordered_map<MatrixInfo, Symbol, MatrixInfo::Hasher> arr_to_mat;
ctx.ReplaceAll([&](const ast::MemberAccessorExpression* expr) -> const ast::Expression* {
if (auto* access = src->Sem().Get<sem::StructMemberAccess>(expr)) {
if (auto info = decomposed.Find(access->Member()->Declaration())) {
auto fn = utils::GetOrCreate(arr_to_mat, *info, [&] {
auto name =
b.Symbols().New("arr_to_mat" + std::to_string(info->matrix->columns()) +
"x" + std::to_string(info->matrix->rows()) + "_stride_" +
std::to_string(info->stride));
auto matrix = [&] { return CreateASTTypeFor(ctx, info->matrix); };
auto array = [&] { return info->array(ctx.dst); };
auto arr = b.Sym("arr");
utils::Vector<const ast::Expression*, 4> columns;
for (uint32_t i = 0; i < static_cast<uint32_t>(info->matrix->columns()); i++) {
columns.Push(b.IndexAccessor(arr, u32(i)));
}
b.Func(name,
utils::Vector{
b.Param(arr, array()),
},
matrix(),
utils::Vector{
b.Return(b.Construct(matrix(), columns)),
});
return name;
});
return b.Call(fn, ctx.CloneWithoutTransform(expr));
}
}
return nullptr;
});
ctx.Clone();
return Program(std::move(b));
}
} // namespace tint::transform