| // Copyright 2022 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/tint/transform/expand_compound_assignment.h" |
| |
| #include <utility> |
| |
| #include "src/tint/ast/compound_assignment_statement.h" |
| #include "src/tint/ast/increment_decrement_statement.h" |
| #include "src/tint/program_builder.h" |
| #include "src/tint/sem/block_statement.h" |
| #include "src/tint/sem/expression.h" |
| #include "src/tint/sem/for_loop_statement.h" |
| #include "src/tint/sem/statement.h" |
| #include "src/tint/transform/utils/hoist_to_decl_before.h" |
| |
| TINT_INSTANTIATE_TYPEINFO(tint::transform::ExpandCompoundAssignment); |
| |
| using namespace tint::number_suffixes; // NOLINT |
| |
| namespace tint::transform { |
| |
| ExpandCompoundAssignment::ExpandCompoundAssignment() = default; |
| |
| ExpandCompoundAssignment::~ExpandCompoundAssignment() = default; |
| |
| bool ExpandCompoundAssignment::ShouldRun(const Program* program, const DataMap&) const { |
| for (auto* node : program->ASTNodes().Objects()) { |
| if (node->IsAnyOf<ast::CompoundAssignmentStatement, ast::IncrementDecrementStatement>()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Internal class used to collect statement expansions during the transform. |
| class State { |
| private: |
| /// The clone context. |
| CloneContext& ctx; |
| |
| /// The program builder. |
| ProgramBuilder& b; |
| |
| /// The HoistToDeclBefore helper instance. |
| HoistToDeclBefore hoist_to_decl_before; |
| |
| public: |
| /// Constructor |
| /// @param context the clone context |
| explicit State(CloneContext& context) : ctx(context), b(*ctx.dst), hoist_to_decl_before(ctx) {} |
| |
| /// Replace `stmt` with a regular assignment statement of the form: |
| /// lhs = lhs op rhs |
| /// The LHS expression will only be evaluated once, and any side effects will |
| /// be hoisted to `let` declarations above the assignment statement. |
| /// @param stmt the statement to replace |
| /// @param lhs the lhs expression from the source statement |
| /// @param rhs the rhs expression in the destination module |
| /// @param op the binary operator |
| void Expand(const ast::Statement* stmt, |
| const ast::Expression* lhs, |
| const ast::Expression* rhs, |
| ast::BinaryOp op) { |
| // Helper function to create the new LHS expression. This will be called |
| // twice when building the non-compound assignment statement, so must |
| // not produce expressions that cause side effects. |
| std::function<const ast::Expression*()> new_lhs; |
| |
| // Helper function to create a variable that is a pointer to `expr`. |
| auto hoist_pointer_to = [&](const ast::Expression* expr) { |
| auto name = b.Sym(); |
| auto* ptr = b.AddressOf(ctx.Clone(expr)); |
| auto* decl = b.Decl(b.Let(name, nullptr, ptr)); |
| hoist_to_decl_before.InsertBefore(ctx.src->Sem().Get(stmt), decl); |
| return name; |
| }; |
| |
| // Helper function to hoist `expr` to a let declaration. |
| auto hoist_expr_to_let = [&](const ast::Expression* expr) { |
| auto name = b.Sym(); |
| auto* decl = b.Decl(b.Let(name, nullptr, ctx.Clone(expr))); |
| hoist_to_decl_before.InsertBefore(ctx.src->Sem().Get(stmt), decl); |
| return name; |
| }; |
| |
| // Helper function that returns `true` if the type of `expr` is a vector. |
| auto is_vec = [&](const ast::Expression* expr) { |
| return ctx.src->Sem().Get(expr)->Type()->UnwrapRef()->Is<sem::Vector>(); |
| }; |
| |
| // Hoist the LHS expression subtree into local constants to produce a new |
| // LHS that we can evaluate twice. |
| // We need to special case compound assignments to vector components since |
| // we cannot take the address of a vector component. |
| auto* index_accessor = lhs->As<ast::IndexAccessorExpression>(); |
| auto* member_accessor = lhs->As<ast::MemberAccessorExpression>(); |
| if (lhs->Is<ast::IdentifierExpression>() || |
| (member_accessor && member_accessor->structure->Is<ast::IdentifierExpression>())) { |
| // This is the simple case with no side effects, so we can just use the |
| // original LHS expression directly. |
| // Before: |
| // foo.bar += rhs; |
| // After: |
| // foo.bar = foo.bar + rhs; |
| new_lhs = [&]() { return ctx.Clone(lhs); }; |
| } else if (index_accessor && is_vec(index_accessor->object)) { |
| // This is the case for vector component via an array accessor. We need |
| // to capture a pointer to the vector and also the index value. |
| // Before: |
| // v[idx()] += rhs; |
| // After: |
| // let vec_ptr = &v; |
| // let index = idx(); |
| // (*vec_ptr)[index] = (*vec_ptr)[index] + rhs; |
| auto lhs_ptr = hoist_pointer_to(index_accessor->object); |
| auto index = hoist_expr_to_let(index_accessor->index); |
| new_lhs = [&, lhs_ptr, index]() { return b.IndexAccessor(b.Deref(lhs_ptr), index); }; |
| } else if (member_accessor && is_vec(member_accessor->structure)) { |
| // This is the case for vector component via a member accessor. We just |
| // need to capture a pointer to the vector. |
| // Before: |
| // a[idx()].y += rhs; |
| // After: |
| // let vec_ptr = &a[idx()]; |
| // (*vec_ptr).y = (*vec_ptr).y + rhs; |
| auto lhs_ptr = hoist_pointer_to(member_accessor->structure); |
| new_lhs = [&, lhs_ptr]() { |
| return b.MemberAccessor(b.Deref(lhs_ptr), ctx.Clone(member_accessor->member)); |
| }; |
| } else { |
| // For all other statements that may have side-effecting expressions, we |
| // just need to capture a pointer to the whole LHS. |
| // Before: |
| // a[idx()] += rhs; |
| // After: |
| // let lhs_ptr = &a[idx()]; |
| // (*lhs_ptr) = (*lhs_ptr) + rhs; |
| auto lhs_ptr = hoist_pointer_to(lhs); |
| new_lhs = [&, lhs_ptr]() { return b.Deref(lhs_ptr); }; |
| } |
| |
| // Replace the statement with a regular assignment statement. |
| auto* value = b.create<ast::BinaryExpression>(op, new_lhs(), rhs); |
| ctx.Replace(stmt, b.Assign(new_lhs(), value)); |
| } |
| |
| /// Finalize the transformation and clone the module. |
| void Finalize() { |
| hoist_to_decl_before.Apply(); |
| ctx.Clone(); |
| } |
| }; |
| |
| void ExpandCompoundAssignment::Run(CloneContext& ctx, const DataMap&, DataMap&) const { |
| State state(ctx); |
| for (auto* node : ctx.src->ASTNodes().Objects()) { |
| if (auto* assign = node->As<ast::CompoundAssignmentStatement>()) { |
| state.Expand(assign, assign->lhs, ctx.Clone(assign->rhs), assign->op); |
| } else if (auto* inc_dec = node->As<ast::IncrementDecrementStatement>()) { |
| // For increment/decrement statements, `i++` becomes `i = i + 1`. |
| // TODO(jrprice): Simplify this when we have untyped literals. |
| auto* sem_lhs = ctx.src->Sem().Get(inc_dec->lhs); |
| const ast::IntLiteralExpression* one = |
| sem_lhs->Type()->UnwrapRef()->is_signed_integer_scalar() |
| ? ctx.dst->Expr(1_i)->As<ast::IntLiteralExpression>() |
| : ctx.dst->Expr(1_u)->As<ast::IntLiteralExpression>(); |
| auto op = inc_dec->increment ? ast::BinaryOp::kAdd : ast::BinaryOp::kSubtract; |
| state.Expand(inc_dec, inc_dec->lhs, one, op); |
| } |
| } |
| state.Finalize(); |
| } |
| |
| } // namespace tint::transform |