blob: aece64fd93c1069bbda1eedf7b1f26e306072206 [file] [log] [blame]
// Copyright 2021 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/wgsl/resolver/resolver.h"
#include "gmock/gmock.h"
#include "src/tint/lang/core/fluent_types.h"
#include "src/tint/lang/core/type/reference.h"
#include "src/tint/lang/wgsl/resolver/resolver_helper_test.h"
#include "src/tint/lang/wgsl/sem/index_accessor_expression.h"
using namespace tint::core::fluent_types; // NOLINT
using namespace tint::core::number_suffixes; // NOLINT
namespace tint::resolver {
namespace {
using ResolverIndexAccessorTest = ResolverTest;
TEST_F(ResolverIndexAccessorTest, Matrix_Dynamic_F32) {
GlobalVar("my_var", ty.mat2x3<f32>(), core::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", Expr(Source{{12, 34}}, 1_f));
WrapInFunction(acc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: index must be of type 'i32' or 'u32', found: 'f32'");
}
TEST_F(ResolverIndexAccessorTest, Matrix_Dynamic_Ref) {
GlobalVar("my_var", ty.mat2x3<f32>(), core::AddressSpace::kPrivate);
auto* idx = Var("idx", ty.i32(), Call<i32>());
auto* acc = IndexAccessor("my_var", idx);
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Matrix_BothDimensions_Dynamic_Ref) {
GlobalVar("my_var", ty.mat4x4<f32>(), core::AddressSpace::kPrivate);
auto* idx = Var("idx", ty.u32(), Expr(3_u));
auto* idy = Var("idy", ty.u32(), Expr(2_u));
auto* acc = IndexAccessor(IndexAccessor("my_var", idx), idy);
WrapInFunction(Decl(idx), Decl(idy), acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Matrix_Dynamic) {
GlobalConst("my_const", ty.mat2x3<f32>(), Call<mat2x3<f32>>());
auto* idx = Var("idx", ty.i32(), Call<i32>());
auto* acc = IndexAccessor("my_const", Expr(Source{{12, 34}}, idx));
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "");
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Matrix_XDimension_Dynamic) {
GlobalConst("my_const", ty.mat4x4<f32>(), Call<mat4x4<f32>>());
auto* idx = Var("idx", ty.u32(), Expr(3_u));
auto* acc = IndexAccessor("my_const", Expr(Source{{12, 34}}, idx));
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "");
}
TEST_F(ResolverIndexAccessorTest, Matrix_BothDimension_Dynamic) {
GlobalConst("my_const", ty.mat4x4<f32>(), Call<mat4x4<f32>>());
auto* idx = Var("idy", ty.u32(), Expr(2_u));
auto* acc = IndexAccessor(IndexAccessor("my_const", Expr(Source{{12, 34}}, idx)), 1_i);
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "");
}
TEST_F(ResolverIndexAccessorTest, Matrix) {
GlobalVar("my_var", ty.mat2x3<f32>(), core::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 1_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
ASSERT_TRUE(TypeOf(acc)->Is<core::type::Vector>());
EXPECT_EQ(TypeOf(acc)->As<core::type::Vector>()->Width(), 3u);
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Matrix_BothDimensions) {
GlobalVar("my_var", ty.mat2x3<f32>(), core::AddressSpace::kPrivate);
auto* acc = IndexAccessor(IndexAccessor("my_var", 0_i), 1_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
EXPECT_TRUE(TypeOf(acc)->Is<core::type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Vector_F32) {
GlobalVar("my_var", ty.vec3<f32>(), core::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", Expr(Source{{12, 34}}, 2_f));
WrapInFunction(acc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: index must be of type 'i32' or 'u32', found: 'f32'");
}
TEST_F(ResolverIndexAccessorTest, Vector_Dynamic_Ref) {
GlobalVar("my_var", ty.vec3<f32>(), core::AddressSpace::kPrivate);
auto* idx = Var("idx", ty.i32(), Expr(2_i));
auto* acc = IndexAccessor("my_var", idx);
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Vector_Dynamic) {
GlobalConst("my_const", ty.vec3<f32>(), Call<vec3<f32>>());
auto* idx = Var("idx", ty.i32(), Expr(2_i));
auto* acc = IndexAccessor("my_const", Expr(Source{{12, 34}}, idx));
WrapInFunction(Decl(idx), acc);
EXPECT_TRUE(r()->Resolve());
}
TEST_F(ResolverIndexAccessorTest, Vector) {
GlobalVar("my_var", ty.vec3<f32>(), core::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 2_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
EXPECT_TRUE(TypeOf(acc)->Is<core::type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Array_Literal_i32) {
GlobalVar("my_var", ty.array<f32, 3>(), core::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 2_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_TRUE(TypeOf(acc)->Is<core::type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Array_Literal_u32) {
GlobalVar("my_var", ty.array<f32, 3>(), core::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 2_u);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_TRUE(TypeOf(acc)->Is<core::type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Array_Literal_AInt) {
GlobalVar("my_var", ty.array<f32, 3>(), core::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 2_a);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
EXPECT_TRUE(TypeOf(acc)->Is<core::type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Alias_Array) {
auto* aary = Alias("myarrty", ty.array<f32, 3>());
GlobalVar("my_var", ty.Of(aary), core::AddressSpace::kPrivate);
auto* acc = IndexAccessor("my_var", 2_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
EXPECT_TRUE(TypeOf(acc)->Is<core::type::F32>());
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Array_Constant) {
GlobalConst("my_const", ty.array<f32, 3>(), Call<array<f32, 3>>());
auto* acc = IndexAccessor("my_const", 2_i);
WrapInFunction(acc);
EXPECT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(acc), nullptr);
EXPECT_TRUE(TypeOf(acc)->Is<core::type::F32>());
}
TEST_F(ResolverIndexAccessorTest, Array_Dynamic_I32) {
// let a : array<f32, 3> = 0;
// var idx : i32 = 0;
// var f : f32 = a[idx];
auto* a = Let("a", ty.array<f32, 3>(), Call<array<f32, 3>>());
auto* idx = Var("idx", ty.i32(), Call<i32>());
auto* acc = IndexAccessor("a", Expr(Source{{12, 34}}, idx));
auto* f = Var("f", ty.f32(), acc);
Func("my_func", tint::Empty, ty.void_(),
Vector{
Decl(a),
Decl(idx),
Decl(f),
});
EXPECT_TRUE(r()->Resolve());
EXPECT_EQ(r()->error(), "");
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Array_Literal_F32) {
// let a : array<f32, 3>;
// var f : f32 = a[2.0f];
auto* a = Let("a", ty.array<f32, 3>(), Call<array<f32, 3>>());
auto* f = Var("a_2", ty.f32(), IndexAccessor("a", Expr(Source{{12, 34}}, 2_f)));
Func("my_func", tint::Empty, ty.void_(),
Vector{
Decl(a),
Decl(f),
});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: index must be of type 'i32' or 'u32', found: 'f32'");
}
TEST_F(ResolverIndexAccessorTest, Array_Literal_I32) {
// let a : array<f32, 3>;
// var f : f32 = a[2i];
auto* a = Let("a", ty.array<f32, 3>(), Call<array<f32, 3>>());
auto* acc = IndexAccessor("a", 2_i);
auto* f = Var("a_2", ty.f32(), acc);
Func("my_func", tint::Empty, ty.void_(),
Vector{
Decl(a),
Decl(f),
});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Expr_Deref_FuncGoodParent) {
// fn func(p: ptr<function, vec4<f32>>) -> f32 {
// let idx: u32 = u32();
// let x: f32 = (*p)[idx];
// return x;
// }
auto* p = Param("p", ty.ptr<function, vec4<f32>>());
auto* idx = Let("idx", ty.u32(), Call<u32>());
auto* star_p = Deref(p);
auto* acc = IndexAccessor(Source{{12, 34}}, star_p, idx);
auto* x = Var("x", ty.f32(), acc);
Func("func", Vector{p}, ty.f32(), Vector{Decl(idx), Decl(x), Return(x)});
EXPECT_TRUE(r()->Resolve()) << r()->error();
auto idx_sem = Sem().Get(acc)->UnwrapLoad()->As<sem::IndexAccessorExpression>();
ASSERT_NE(idx_sem, nullptr);
EXPECT_EQ(idx_sem->Index()->Declaration(), acc->index);
EXPECT_EQ(idx_sem->Object()->Declaration(), acc->object);
}
TEST_F(ResolverIndexAccessorTest, Expr_Deref_FuncBadParent) {
// fn func(p: ptr<function, vec4<f32>>) -> f32 {
// let idx: u32 = u32();
// let x: f32 = *p[idx];
// return x;
// }
auto* p = Param("p", ty.ptr<function, vec4<f32>>());
auto* idx = Let("idx", ty.u32(), Call<u32>());
auto* accessor_expr = IndexAccessor(Source{{12, 34}}, p, idx);
auto* star_p = Deref(accessor_expr);
auto* x = Var("x", ty.f32(), star_p);
Func("func", Vector{p}, ty.f32(), Vector{Decl(idx), Decl(x), Return(x)});
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: cannot index type 'ptr<function, vec4<f32>, read_write>'");
}
TEST_F(ResolverIndexAccessorTest, Exr_Deref_BadParent) {
// var param: vec4<f32>
// let x: f32 = *(&param)[0];
auto* param = Var("param", ty.vec4<f32>());
auto* idx = Var("idx", ty.u32(), Call<u32>());
auto* addressOf_expr = AddressOf(param);
auto* accessor_expr = IndexAccessor(Source{{12, 34}}, addressOf_expr, idx);
auto* star_p = Deref(accessor_expr);
auto* x = Var("x", ty.f32(), star_p);
WrapInFunction(param, idx, x);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: cannot index type 'ptr<function, vec4<f32>, read_write>'");
}
} // namespace
} // namespace tint::resolver