blob: 000a24b38a7abb8072e17ffdb35dd3b25542f2e1 [file] [log] [blame]
// Copyright 2022 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/reader/wgsl/parser_impl_test_helper.h"
#include "src/tint/utils/string_stream.h"
namespace tint::reader::wgsl {
namespace {
TEST_F(ParserImplTest, Expression_InvalidLHS) {
auto p = parser("if (a) {} || true");
auto e = p->expression();
EXPECT_FALSE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
EXPECT_EQ(e.value, nullptr);
}
TEST_F(ParserImplTest, Expression_Or_Parses) {
auto p = parser("a || true");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
EXPECT_EQ(e->source.range.begin.line, 1u);
EXPECT_EQ(e->source.range.begin.column, 3u);
EXPECT_EQ(e->source.range.end.line, 1u);
EXPECT_EQ(e->source.range.end.column, 5u);
ASSERT_TRUE(e->Is<ast::BinaryExpression>());
auto* rel = e->As<ast::BinaryExpression>();
EXPECT_EQ(ast::BinaryOp::kLogicalOr, rel->op);
ASSERT_TRUE(rel->lhs->Is<ast::IdentifierExpression>());
auto* ident_expr = rel->lhs->As<ast::IdentifierExpression>();
EXPECT_EQ(ident_expr->identifier->symbol, p->builder().Symbols().Get("a"));
ASSERT_TRUE(rel->rhs->Is<ast::BoolLiteralExpression>());
ASSERT_TRUE(rel->rhs->As<ast::BoolLiteralExpression>()->value);
}
TEST_F(ParserImplTest, Expression_Or_Parses_Multiple) {
auto p = parser("a || true || b");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::BinaryExpression>());
// lhs: (a || true)
// rhs: b
auto* rel = e->As<ast::BinaryExpression>();
EXPECT_EQ(ast::BinaryOp::kLogicalOr, rel->op);
ASSERT_TRUE(rel->rhs->Is<ast::IdentifierExpression>());
auto* ident_expr = rel->rhs->As<ast::IdentifierExpression>();
EXPECT_EQ(ident_expr->identifier->symbol, p->builder().Symbols().Get("b"));
ASSERT_TRUE(rel->lhs->Is<ast::BinaryExpression>());
// lhs: a
// rhs: true
rel = rel->lhs->As<ast::BinaryExpression>();
EXPECT_EQ(ast::BinaryOp::kLogicalOr, rel->op);
ASSERT_TRUE(rel->lhs->Is<ast::IdentifierExpression>());
ident_expr = rel->lhs->As<ast::IdentifierExpression>();
EXPECT_EQ(ident_expr->identifier->symbol, p->builder().Symbols().Get("a"));
ASSERT_TRUE(rel->rhs->Is<ast::BoolLiteralExpression>());
ASSERT_TRUE(rel->rhs->As<ast::BoolLiteralExpression>()->value);
}
TEST_F(ParserImplTest, Expression_Or_InvalidRHS) {
auto p = parser("true || if (a) {}");
auto e = p->expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
EXPECT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:9: unable to parse right side of || expression");
}
TEST_F(ParserImplTest, Expression_And_Parses) {
auto p = parser("a && true");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
EXPECT_EQ(e->source.range.begin.line, 1u);
EXPECT_EQ(e->source.range.begin.column, 3u);
EXPECT_EQ(e->source.range.end.line, 1u);
EXPECT_EQ(e->source.range.end.column, 5u);
ASSERT_TRUE(e->Is<ast::BinaryExpression>());
auto* rel = e->As<ast::BinaryExpression>();
EXPECT_EQ(ast::BinaryOp::kLogicalAnd, rel->op);
ASSERT_TRUE(rel->lhs->Is<ast::IdentifierExpression>());
auto* ident_expr = rel->lhs->As<ast::IdentifierExpression>();
EXPECT_EQ(ident_expr->identifier->symbol, p->builder().Symbols().Get("a"));
ASSERT_TRUE(rel->rhs->Is<ast::BoolLiteralExpression>());
ASSERT_TRUE(rel->rhs->As<ast::BoolLiteralExpression>()->value);
}
TEST_F(ParserImplTest, Expression_And_Parses_Multple) {
auto p = parser("a && true && b");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::BinaryExpression>());
// lhs: (a && true)
// rhs: b
auto* rel = e->As<ast::BinaryExpression>();
EXPECT_EQ(ast::BinaryOp::kLogicalAnd, rel->op);
ASSERT_TRUE(rel->rhs->Is<ast::IdentifierExpression>());
auto* ident_expr = rel->rhs->As<ast::IdentifierExpression>();
EXPECT_EQ(ident_expr->identifier->symbol, p->builder().Symbols().Get("b"));
ASSERT_TRUE(rel->lhs->Is<ast::BinaryExpression>());
// lhs: a
// rhs: true
rel = rel->lhs->As<ast::BinaryExpression>();
ASSERT_TRUE(rel->lhs->Is<ast::IdentifierExpression>());
ident_expr = rel->lhs->As<ast::IdentifierExpression>();
EXPECT_EQ(ident_expr->identifier->symbol, p->builder().Symbols().Get("a"));
ASSERT_TRUE(rel->rhs->Is<ast::BoolLiteralExpression>());
ASSERT_TRUE(rel->rhs->As<ast::BoolLiteralExpression>()->value);
}
TEST_F(ParserImplTest, Expression_And_InvalidRHS) {
auto p = parser("true && if (a) {}");
auto e = p->expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
EXPECT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:9: unable to parse right side of && expression");
}
TEST_F(ParserImplTest, Expression_Mixing_OrWithAnd) {
auto p = parser("a && true || b");
auto e = p->expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
EXPECT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:3: mixing '&&' and '||' requires parenthesis");
}
TEST_F(ParserImplTest, Expression_Mixing_AndWithOr) {
auto p = parser("a || true && b");
auto e = p->expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
EXPECT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:3: mixing '||' and '&&' requires parenthesis");
}
TEST_F(ParserImplTest, Expression_Bitwise) {
auto p = parser("a & b");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::BinaryExpression>());
auto* rel = e->As<ast::BinaryExpression>();
EXPECT_EQ(ast::BinaryOp::kAnd, rel->op);
ASSERT_TRUE(rel->lhs->Is<ast::IdentifierExpression>());
auto* ident_expr = rel->lhs->As<ast::IdentifierExpression>();
EXPECT_EQ(ident_expr->identifier->symbol, p->builder().Symbols().Get("a"));
ASSERT_TRUE(rel->rhs->Is<ast::IdentifierExpression>());
ident_expr = rel->rhs->As<ast::IdentifierExpression>();
EXPECT_EQ(ident_expr->identifier->symbol, p->builder().Symbols().Get("b"));
}
TEST_F(ParserImplTest, Expression_Relational) {
auto p = parser("a <= b");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::BinaryExpression>());
auto* rel = e->As<ast::BinaryExpression>();
EXPECT_EQ(ast::BinaryOp::kLessThanEqual, rel->op);
ASSERT_TRUE(rel->lhs->Is<ast::IdentifierExpression>());
auto* ident_expr = rel->lhs->As<ast::IdentifierExpression>();
EXPECT_EQ(ident_expr->identifier->symbol, p->builder().Symbols().Get("a"));
ASSERT_TRUE(rel->rhs->Is<ast::IdentifierExpression>());
ident_expr = rel->rhs->As<ast::IdentifierExpression>();
EXPECT_EQ(ident_expr->identifier->symbol, p->builder().Symbols().Get("b"));
}
TEST_F(ParserImplTest, Expression_InvalidUnary) {
auto p = parser("!if || true");
auto e = p->expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
EXPECT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:2: unable to parse right side of ! expression");
}
TEST_F(ParserImplTest, Expression_InvalidBitwise) {
auto p = parser("a & if");
auto e = p->expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
EXPECT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:5: unable to parse right side of & expression");
}
TEST_F(ParserImplTest, Expression_InvalidRelational) {
auto p = parser("a <= if");
auto e = p->expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
EXPECT_TRUE(p->has_error());
EXPECT_EQ(p->error(), "1:6: unable to parse right side of <= expression");
}
TEST_F(ParserImplTest, Expression_Associativity) {
auto p = parser("1 < 2 || 2 < 3");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
}
TEST_F(ParserImplTest, Expression_InvalidAssociativity) {
auto p = parser("1 < 2 && 2 < 3 || 3 < 4");
auto e = p->expression();
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_TRUE(p->has_error());
EXPECT_EQ(e.value, nullptr);
EXPECT_EQ(p->error(), R"(1:7: mixing '&&' and '||' requires parenthesis)");
}
TEST_F(ParserImplTest, Expression_SubtractionNoSpace) {
auto p = parser("(2-1)");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::BinaryExpression>());
auto* b = e->As<ast::BinaryExpression>();
EXPECT_TRUE(b->IsSubtract());
ASSERT_TRUE(b->lhs->Is<ast::IntLiteralExpression>());
ASSERT_TRUE(b->rhs->Is<ast::IntLiteralExpression>());
EXPECT_EQ(b->lhs->As<ast::IntLiteralExpression>()->value, 2);
EXPECT_EQ(b->rhs->As<ast::IntLiteralExpression>()->value, 1);
}
TEST_F(ParserImplTest, Expression_NegatedNumber) {
auto p = parser("-1");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::UnaryOpExpression>());
auto* b = e->As<ast::UnaryOpExpression>();
EXPECT_EQ(b->op, ast::UnaryOp::kNegation);
ASSERT_TRUE(b->expr->Is<ast::IntLiteralExpression>());
EXPECT_EQ(b->expr->As<ast::IntLiteralExpression>()->value, 1);
}
TEST_F(ParserImplTest, Expression_MaxI32) {
auto p = parser("2147483647");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::IntLiteralExpression>());
EXPECT_EQ(e->As<ast::IntLiteralExpression>()->value, 2147483647);
}
TEST_F(ParserImplTest, Expression_MinI32) {
auto p = parser("-2147483648");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::UnaryOpExpression>());
auto* b = e->As<ast::UnaryOpExpression>();
EXPECT_EQ(b->op, ast::UnaryOp::kNegation);
ASSERT_TRUE(b->expr->Is<ast::IntLiteralExpression>());
EXPECT_EQ(b->expr->As<ast::IntLiteralExpression>()->value, 2147483648);
}
TEST_F(ParserImplTest, Expression_MaxU32) {
auto p = parser("4294967295");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::IntLiteralExpression>());
EXPECT_EQ(e->As<ast::IntLiteralExpression>()->value, 4294967295);
}
TEST_F(ParserImplTest, Expression_MaxF32) {
const auto highest = std::numeric_limits<float>::max();
const auto expected_highest = 340282346638528859811704183484516925440.0f;
if (highest < expected_highest || highest > expected_highest) {
GTEST_SKIP() << "std::numeric_limits<float>::max() is not as expected for "
"this target";
}
auto p = parser("340282346638528859811704183484516925440.0f");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::FloatLiteralExpression>());
EXPECT_EQ(e->As<ast::FloatLiteralExpression>()->value,
340282346638528859811704183484516925440.0f);
}
TEST_F(ParserImplTest, Expression_MinF32) {
const auto lowest = std::numeric_limits<float>::lowest();
const auto expected_lowest = -340282346638528859811704183484516925440.0f;
if (lowest < expected_lowest || lowest > expected_lowest) {
GTEST_SKIP() << "std::numeric_limits<float>::lowest() is not as expected for "
"this target";
}
auto p = parser("-340282346638528859811704183484516925440.0f");
auto e = p->expression();
EXPECT_TRUE(e.matched);
EXPECT_FALSE(e.errored);
EXPECT_FALSE(p->has_error()) << p->error();
ASSERT_NE(e.value, nullptr);
ASSERT_TRUE(e->Is<ast::UnaryOpExpression>());
auto* b = e->As<ast::UnaryOpExpression>();
EXPECT_EQ(b->op, ast::UnaryOp::kNegation);
ASSERT_TRUE(b->expr->Is<ast::FloatLiteralExpression>());
EXPECT_EQ(b->expr->As<ast::FloatLiteralExpression>()->value,
340282346638528859811704183484516925440.0f);
}
namespace mixing_binary_ops {
struct BinaryOperatorInfo {
// A uint64_t with a single bit assigned that uniquely identifies the binary-op.
uint64_t bit;
// The WGSL operator symbol. Example: '<='
const char* symbol;
// A bit mask of all operators that can immediately follow the RHS of this operator without
// requiring parentheses. In other words, `can_follow_without_paren` is the full set of
// operators that can substitute `<next-operator>` in the WGSL:
// `expr_a <this-operator> expr_b <next-operator> expr_c`
// without requiring additional parentheses.
uint64_t can_follow_without_paren;
};
// Each binary operator is given a unique bit in a uint64_t
static constexpr uint64_t kOpMul = static_cast<uint64_t>(1) << 0;
static constexpr uint64_t kOpDiv = static_cast<uint64_t>(1) << 1;
static constexpr uint64_t kOpMod = static_cast<uint64_t>(1) << 2;
static constexpr uint64_t kOpAdd = static_cast<uint64_t>(1) << 3;
static constexpr uint64_t kOpSub = static_cast<uint64_t>(1) << 4;
static constexpr uint64_t kOpBAnd = static_cast<uint64_t>(1) << 5;
static constexpr uint64_t kOpBOr = static_cast<uint64_t>(1) << 6;
static constexpr uint64_t kOpBXor = static_cast<uint64_t>(1) << 7;
static constexpr uint64_t kOpShl = static_cast<uint64_t>(1) << 8;
static constexpr uint64_t kOpShr = static_cast<uint64_t>(1) << 9;
static constexpr uint64_t kOpLt = static_cast<uint64_t>(1) << 10;
static constexpr uint64_t kOpGt = static_cast<uint64_t>(1) << 11;
static constexpr uint64_t kOpLe = static_cast<uint64_t>(1) << 12;
static constexpr uint64_t kOpGe = static_cast<uint64_t>(1) << 13;
static constexpr uint64_t kOpEq = static_cast<uint64_t>(1) << 14;
static constexpr uint64_t kOpNe = static_cast<uint64_t>(1) << 15;
static constexpr uint64_t kOpLAnd = static_cast<uint64_t>(1) << 16;
static constexpr uint64_t kOpLOr = static_cast<uint64_t>(1) << 17;
// Bit mask for the binary operator groups
static constexpr uint64_t kMultiplicative = kOpMul | kOpDiv | kOpMod;
static constexpr uint64_t kAdditive = kOpAdd | kOpSub;
static constexpr uint64_t kShift = kOpShl | kOpShr;
static constexpr uint64_t kRelational = kOpLt | kOpGt | kOpLe | kOpGe | kOpEq | kOpNe;
static constexpr uint64_t kLogical = kOpLAnd | kOpLOr;
// The binary operator table
static constexpr const BinaryOperatorInfo kBinaryOperators[] = {
// multiplicative
{kOpMul, "*", kLogical | kRelational | kAdditive | kMultiplicative},
{kOpDiv, "/", kLogical | kRelational | kAdditive | kMultiplicative},
{kOpMod, "%", kLogical | kRelational | kAdditive | kMultiplicative},
// additive
{kOpAdd, "+", kLogical | kRelational | kAdditive | kMultiplicative},
{kOpSub, "-", kLogical | kRelational | kAdditive | kMultiplicative},
// bitwise
{kOpBAnd, "&", kOpBAnd},
{kOpBOr, "|", kOpBOr},
{kOpBXor, "^", kOpBXor},
// shift
{kOpShl, "<<", kLogical | kRelational},
{kOpShr, ">>", kLogical | kRelational},
// relational
{kOpLt, "<", kLogical | kShift | kAdditive | kMultiplicative},
{kOpGt, ">", kLogical | kShift | kAdditive | kMultiplicative},
{kOpLe, "<=", kLogical | kShift | kAdditive | kMultiplicative},
{kOpGe, ">=", kLogical | kShift | kAdditive | kMultiplicative},
{kOpEq, "==", kLogical | kShift | kAdditive | kMultiplicative},
{kOpNe, "!=", kLogical | kShift | kAdditive | kMultiplicative},
// logical
{kOpLAnd, "&&", kOpLAnd | kRelational | kShift | kAdditive | kMultiplicative},
{kOpLOr, "||", kOpLOr | kRelational | kShift | kAdditive | kMultiplicative},
};
struct Case {
BinaryOperatorInfo lhs_op;
BinaryOperatorInfo rhs_op;
bool should_parse;
};
static bool ParsedAsTemplateArgumentList(BinaryOperatorInfo lhs_op, BinaryOperatorInfo rhs_op) {
return lhs_op.bit == kOpLt && rhs_op.bit & (kOpGt | kOpGe | kOpShr);
}
static utils::StringStream& operator<<(utils::StringStream& o, const Case& c) {
return o << "a " << c.lhs_op.symbol << " b " << c.rhs_op.symbol << " c ";
}
static std::vector<Case> Cases() {
std::vector<Case> out;
for (auto& lhs_op : kBinaryOperators) {
for (auto& rhs_op : kBinaryOperators) {
if (!ParsedAsTemplateArgumentList(lhs_op, rhs_op)) {
bool should_parse = lhs_op.can_follow_without_paren & rhs_op.bit;
out.push_back({lhs_op, rhs_op, should_parse});
}
}
}
return out;
}
using ParserImplMixedBinaryOpTest = ParserImplTestWithParam<Case>;
TEST_P(ParserImplMixedBinaryOpTest, Test) {
utils::StringStream wgsl;
wgsl << GetParam();
auto p = parser(wgsl.str());
auto e = p->expression();
if (GetParam().should_parse) {
ASSERT_TRUE(e.matched) << e.errored;
EXPECT_TRUE(e->Is<ast::BinaryExpression>());
} else {
EXPECT_FALSE(e.matched);
EXPECT_TRUE(e.errored);
EXPECT_EQ(e.value, nullptr);
EXPECT_TRUE(p->has_error());
utils::StringStream expected;
expected << "1:3: mixing '" << GetParam().lhs_op.symbol << "' and '"
<< GetParam().rhs_op.symbol << "' requires parenthesis";
EXPECT_EQ(p->error(), expected.str());
}
}
INSTANTIATE_TEST_SUITE_P(ParserImplMixedBinaryOpTest,
ParserImplMixedBinaryOpTest,
testing::ValuesIn(Cases()));
} // namespace mixing_binary_ops
} // namespace
} // namespace tint::reader::wgsl