blob: e945cc65872ff2cb9401d7d0c83d94cd99936cc0 [file] [log] [blame]
// Copyright 2023 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/core/ir/validator.h"
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
#include "src/tint/lang/core/intrinsic/table.h"
#include "src/tint/lang/core/ir/access.h"
#include "src/tint/lang/core/ir/binary.h"
#include "src/tint/lang/core/ir/bitcast.h"
#include "src/tint/lang/core/ir/block_param.h"
#include "src/tint/lang/core/ir/break_if.h"
#include "src/tint/lang/core/ir/constant.h"
#include "src/tint/lang/core/ir/construct.h"
#include "src/tint/lang/core/ir/continue.h"
#include "src/tint/lang/core/ir/convert.h"
#include "src/tint/lang/core/ir/core_builtin_call.h"
#include "src/tint/lang/core/ir/disassembly.h"
#include "src/tint/lang/core/ir/discard.h"
#include "src/tint/lang/core/ir/exit_if.h"
#include "src/tint/lang/core/ir/exit_loop.h"
#include "src/tint/lang/core/ir/exit_switch.h"
#include "src/tint/lang/core/ir/function.h"
#include "src/tint/lang/core/ir/function_param.h"
#include "src/tint/lang/core/ir/if.h"
#include "src/tint/lang/core/ir/instruction_result.h"
#include "src/tint/lang/core/ir/let.h"
#include "src/tint/lang/core/ir/load.h"
#include "src/tint/lang/core/ir/load_vector_element.h"
#include "src/tint/lang/core/ir/loop.h"
#include "src/tint/lang/core/ir/multi_in_block.h"
#include "src/tint/lang/core/ir/next_iteration.h"
#include "src/tint/lang/core/ir/return.h"
#include "src/tint/lang/core/ir/store.h"
#include "src/tint/lang/core/ir/store_vector_element.h"
#include "src/tint/lang/core/ir/switch.h"
#include "src/tint/lang/core/ir/swizzle.h"
#include "src/tint/lang/core/ir/terminate_invocation.h"
#include "src/tint/lang/core/ir/unary.h"
#include "src/tint/lang/core/ir/unreachable.h"
#include "src/tint/lang/core/ir/user_call.h"
#include "src/tint/lang/core/ir/var.h"
#include "src/tint/lang/core/type/bool.h"
#include "src/tint/lang/core/type/memory_view.h"
#include "src/tint/lang/core/type/pointer.h"
#include "src/tint/lang/core/type/reference.h"
#include "src/tint/lang/core/type/type.h"
#include "src/tint/lang/core/type/vector.h"
#include "src/tint/lang/core/type/void.h"
#include "src/tint/utils/containers/hashset.h"
#include "src/tint/utils/containers/reverse.h"
#include "src/tint/utils/containers/transform.h"
#include "src/tint/utils/ice/ice.h"
#include "src/tint/utils/macros/defer.h"
#include "src/tint/utils/macros/scoped_assignment.h"
#include "src/tint/utils/rtti/switch.h"
#include "src/tint/utils/text/styled_text.h"
#include "src/tint/utils/text/text_style.h"
/// If set to 1 then the Tint will dump the IR when validating.
#define TINT_DUMP_IR_WHEN_VALIDATING 0
#if TINT_DUMP_IR_WHEN_VALIDATING
#include <iostream>
#include "src/tint/utils/text/styled_text_printer.h"
#endif
using namespace tint::core::fluent_types; // NOLINT
namespace tint::core::ir {
namespace {
/// @returns true if the type @p type is of, or indirectly references a type of type `T`.
template <typename T>
bool HoldsType(const type::Type* type) {
if (!type) {
return false;
}
Vector<const type::Type*, 8> stack{type};
Hashset<const type::Type*, 8> seen{type};
while (!stack.IsEmpty()) {
auto* ty = stack.Pop();
if (ty->Is<T>()) {
return true;
}
if (auto* view = ty->As<type::MemoryView>(); view && seen.Add(view)) {
stack.Push(view);
continue;
}
auto type_count = ty->Elements();
if (type_count.type && seen.Add(type_count.type)) {
stack.Push(type_count.type);
continue;
}
for (uint32_t i = 0; i < type_count.count; i++) {
if (auto* subtype = ty->Element(i); subtype && seen.Add(subtype)) {
stack.Push(subtype);
}
}
}
return false;
}
/// The core IR validator.
class Validator {
public:
/// Create a core validator
/// @param mod the module to be validated
/// @param capabilities the optional capabilities that are allowed
explicit Validator(const Module& mod, Capabilities capabilities);
/// Destructor
~Validator();
/// Runs the validator over the module provided during construction
/// @returns success or failure
Result<SuccessType> Run();
private:
/// @returns the IR disassembly, performing a disassemble if this is the first call.
ir::Disassembly& Disassembly();
/// Adds an error for the @p inst and highlights the instruction in the disassembly
/// @param inst the instruction
/// @returns the diagnostic
diag::Diagnostic& AddError(const Instruction* inst);
/// Adds an error for the @p inst operand at @p idx and highlights the operand in the
/// disassembly
/// @param inst the instruction
/// @param idx the operand index
/// @returns the diagnostic
diag::Diagnostic& AddError(const Instruction* inst, size_t idx);
/// Adds an error for the @p inst result at @p idx and highlgihts the result in the disassembly
/// @param inst the instruction
/// @param idx the result index
/// @returns the diagnostic
diag::Diagnostic& AddResultError(const Instruction* inst, size_t idx);
/// Adds an error for the @p block and highlights the block header in the disassembly
/// @param blk the block
/// @returns the diagnostic
diag::Diagnostic& AddError(const Block* blk);
/// Adds an error for the @p param and highlights the parameter in the disassembly
/// @param param the parameter
/// @returns the diagnostic
diag::Diagnostic& AddError(const BlockParam* param);
/// Adds an error for the @p func and highlights the function in the disassembly
/// @param func the function
/// @returns the diagnostic
diag::Diagnostic& AddError(const Function* func);
/// Adds an error for the @p param and highlights the parameter in the disassembly
/// @param param the parameter
/// @returns the diagnostic
diag::Diagnostic& AddError(const FunctionParam* param);
/// Adds an error the @p block and highlights the block header in the disassembly
/// @param src the source lines to highlight
/// @returns the diagnostic
diag::Diagnostic& AddError(Source src);
/// Adds a note to @p inst and highlights the instruction in the disassembly
/// @param inst the instruction
diag::Diagnostic& AddNote(const Instruction* inst);
/// Adds a note to @p func and highlights the function in the disassembly
/// @param func the function
diag::Diagnostic& AddNote(const Function* func);
/// Adds a note to @p inst for operand @p idx and highlights the operand in the disassembly
/// @param inst the instruction
/// @param idx the operand index
diag::Diagnostic& AddOperandNote(const Instruction* inst, size_t idx);
/// Adds a note to @p inst for result @p idx and highlights the result in the disassembly
/// @param inst the instruction
/// @param idx the result index
diag::Diagnostic& AddResultNote(const Instruction* inst, size_t idx);
/// Adds a note to @p blk and highlights the block in the disassembly
/// @param blk the block
diag::Diagnostic& AddNote(const Block* blk);
/// Adds a note to the diagnostics
/// @param src the source lines to highlight
diag::Diagnostic& AddNote(Source src = {});
/// Adds a note to the diagnostics highlighting where the value was declared, if it has a source
/// location.
/// @param value the value
void AddDeclarationNote(const Value* value);
/// @param v the value to get the name for
/// @returns the name for the given value
StyledText NameOf(const Value* v);
/// Checks the given operand is not null
/// @param inst the instruction
/// @param operand the operand
/// @param idx the operand index
void CheckOperandNotNull(const ir::Instruction* inst, const ir::Value* operand, size_t idx);
/// Checks all operands in the given range (inclusive) for @p inst are not null
/// @param inst the instruction
/// @param start_operand the first operand to check
/// @param end_operand the last operand to check
void CheckOperandsNotNull(const ir::Instruction* inst,
size_t start_operand,
size_t end_operand);
/// Validates the root block
/// @param blk the block
void CheckRootBlock(const Block* blk);
/// Validates the given function
/// @param func the function validate
void CheckFunction(const Function* func);
/// Validates the given instruction
/// @param inst the instruction to validate
void CheckInstruction(const Instruction* inst);
/// Validates the given var
/// @param var the var to validate
void CheckVar(const Var* var);
/// Validates the given let
/// @param let the let to validate
void CheckLet(const Let* let);
/// Validates the given call
/// @param call the call to validate
void CheckCall(const Call* call);
/// Validates the given builtin call
/// @param call the call to validate
void CheckBuiltinCall(const BuiltinCall* call);
/// Validates the given user call
/// @param call the call to validate
void CheckUserCall(const UserCall* call);
/// Validates the given access
/// @param a the access to validate
void CheckAccess(const Access* a);
/// Validates the given binary
/// @param b the binary to validate
void CheckBinary(const Binary* b);
/// Validates the given unary
/// @param u the unary to validate
void CheckUnary(const Unary* u);
/// Validates the given if
/// @param if_ the if to validate
void CheckIf(const If* if_);
/// Validates the given loop
/// @param l the loop to validate
void CheckLoop(const Loop* l);
/// Validates the given switch
/// @param s the switch to validate
void CheckSwitch(const Switch* s);
/// Validates the given terminator
/// @param b the terminator to validate
void CheckTerminator(const Terminator* b);
/// Validates the given exit
/// @param e the exit to validate
void CheckExit(const Exit* e);
/// Validates the given exit if
/// @param e the exit if to validate
void CheckExitIf(const ExitIf* e);
/// Validates the given return
/// @param r the return to validate
void CheckReturn(const Return* r);
/// Validates the @p exit targets a valid @p control instruction where the instruction may jump
/// over if control instructions.
/// @param exit the exit to validate
/// @param control the control instruction targeted
void CheckControlsAllowingIf(const Exit* exit, const Instruction* control);
/// Validates the given exit switch
/// @param s the exit switch to validate
void CheckExitSwitch(const ExitSwitch* s);
/// Validates the given exit loop
/// @param l the exit loop to validate
void CheckExitLoop(const ExitLoop* l);
/// Validates the given load
/// @param l the load to validate
void CheckLoad(const Load* l);
/// Validates the given store
/// @param s the store to validate
void CheckStore(const Store* s);
/// Validates the given load vector element
/// @param l the load vector element to validate
void CheckLoadVectorElement(const LoadVectorElement* l);
/// Validates the given store vector element
/// @param s the store vector element to validate
void CheckStoreVectorElement(const StoreVectorElement* s);
/// @param inst the instruction
/// @param idx the operand index
/// @returns the vector pointer type for the given instruction operand
const core::type::Type* GetVectorPtrElementType(const Instruction* inst, size_t idx);
/// Executes all the pending tasks
void ProcessTasks();
/// Queues the block to be validated with ProcessTasks()
/// @param blk the block to validate
void QueueBlock(const Block* blk);
/// Queues the list of instructions starting with @p inst to be validated
/// @param inst the first instruction
void QueueInstructions(const Instruction* inst);
/// Begins validation of the block @p blk, and its instructions.
/// BeginBlock() pushes a new scope for values.
/// Must be paired with a call to EndBlock().
void BeginBlock(const Block* blk);
/// Ends validation of the block opened with BeginBlock() and closes the block's scope for
/// values.
void EndBlock();
/// ScopeStack holds a stack of values that are currently in scope
struct ScopeStack {
void Push() { stack_.Push({}); }
void Pop() { stack_.Pop(); }
void Add(const Value* value) { stack_.Back().Add(value); }
bool Contains(const Value* value) {
return stack_.Any([&](auto& v) { return v.Contains(value); });
}
bool IsEmpty() const { return stack_.IsEmpty(); }
private:
Vector<Hashset<const Value*, 8>, 4> stack_;
};
const Module& mod_;
Capabilities capabilities_;
std::optional<ir::Disassembly> disassembly_; // Use Disassembly()
diag::List diagnostics_;
Hashset<const Function*, 4> all_functions_;
Hashset<const Instruction*, 4> visited_instructions_;
Vector<const ControlInstruction*, 8> control_stack_;
Vector<const Block*, 8> block_stack_;
ScopeStack scope_stack_;
Vector<std::function<void()>, 16> tasks_;
};
Validator::Validator(const Module& mod, Capabilities capabilities)
: mod_(mod), capabilities_(capabilities) {}
Validator::~Validator() = default;
Disassembly& Validator::Disassembly() {
if (!disassembly_) {
disassembly_.emplace(Disassemble(mod_));
}
return *disassembly_;
}
Result<SuccessType> Validator::Run() {
scope_stack_.Push();
TINT_DEFER({
scope_stack_.Pop();
TINT_ASSERT(scope_stack_.IsEmpty());
TINT_ASSERT(tasks_.IsEmpty());
TINT_ASSERT(control_stack_.IsEmpty());
TINT_ASSERT(block_stack_.IsEmpty());
});
CheckRootBlock(mod_.root_block);
for (auto& func : mod_.functions) {
if (!all_functions_.Add(func.Get())) {
AddError(func) << "function " << NameOf(func.Get())
<< " added to module multiple times";
}
scope_stack_.Add(func);
}
for (auto& func : mod_.functions) {
CheckFunction(func);
}
if (!diagnostics_.ContainsErrors()) {
// Check for orphaned instructions.
for (auto* inst : mod_.Instructions()) {
if (!visited_instructions_.Contains(inst)) {
AddError(inst) << "orphaned instruction: " << inst->FriendlyName();
}
}
}
if (diagnostics_.ContainsErrors()) {
diagnostics_.AddNote(Source{}) << "# Disassembly\n" << Disassembly().Text();
return Failure{std::move(diagnostics_)};
}
return Success;
}
diag::Diagnostic& Validator::AddError(const Instruction* inst) {
auto src = Disassembly().InstructionSource(inst);
auto& diag = AddError(src) << inst->FriendlyName() << ": ";
if (!block_stack_.IsEmpty()) {
AddNote(block_stack_.Back()) << "in block";
}
return diag;
}
diag::Diagnostic& Validator::AddError(const Instruction* inst, size_t idx) {
auto src =
Disassembly().OperandSource(Disassembly::IndexedValue{inst, static_cast<uint32_t>(idx)});
auto& diag = AddError(src) << inst->FriendlyName() << ": ";
if (!block_stack_.IsEmpty()) {
AddNote(block_stack_.Back()) << "in block";
}
return diag;
}
diag::Diagnostic& Validator::AddResultError(const Instruction* inst, size_t idx) {
auto src =
Disassembly().ResultSource(Disassembly::IndexedValue{inst, static_cast<uint32_t>(idx)});
auto& diag = AddError(src) << inst->FriendlyName() << ": ";
if (!block_stack_.IsEmpty()) {
AddNote(block_stack_.Back()) << "in block";
}
return diag;
}
diag::Diagnostic& Validator::AddError(const Block* blk) {
auto src = Disassembly().BlockSource(blk);
return AddError(src);
}
diag::Diagnostic& Validator::AddError(const BlockParam* param) {
auto src = Disassembly().BlockParamSource(param);
return AddError(src);
}
diag::Diagnostic& Validator::AddError(const Function* func) {
auto src = Disassembly().FunctionSource(func);
return AddError(src);
}
diag::Diagnostic& Validator::AddError(const FunctionParam* param) {
auto src = Disassembly().FunctionParamSource(param);
return AddError(src);
}
diag::Diagnostic& Validator::AddNote(const Instruction* inst) {
auto src = Disassembly().InstructionSource(inst);
return AddNote(src);
}
diag::Diagnostic& Validator::AddNote(const Function* func) {
auto src = Disassembly().FunctionSource(func);
return AddNote(src);
}
diag::Diagnostic& Validator::AddOperandNote(const Instruction* inst, size_t idx) {
auto src =
Disassembly().OperandSource(Disassembly::IndexedValue{inst, static_cast<uint32_t>(idx)});
return AddNote(src);
}
diag::Diagnostic& Validator::AddResultNote(const Instruction* inst, size_t idx) {
auto src =
Disassembly().ResultSource(Disassembly::IndexedValue{inst, static_cast<uint32_t>(idx)});
return AddNote(src);
}
diag::Diagnostic& Validator::AddNote(const Block* blk) {
auto src = Disassembly().BlockSource(blk);
return AddNote(src);
}
diag::Diagnostic& Validator::AddError(Source src) {
auto& diag = diagnostics_.AddError(src);
diag.owned_file = Disassembly().File();
return diag;
}
diag::Diagnostic& Validator::AddNote(Source src) {
auto& diag = diagnostics_.AddNote(src);
diag.owned_file = Disassembly().File();
return diag;
}
void Validator::AddDeclarationNote(const Value* value) {
tint::Switch(
value, //
[&](const InstructionResult* res) {
if (auto* inst = res->Instruction()) {
auto results = inst->Results();
for (size_t i = 0; i < results.Length(); i++) {
if (results[i] == value) {
AddResultNote(res->Instruction(), i) << NameOf(value) << " declared here";
return;
}
}
}
},
[&](const FunctionParam* param) {
auto src = Disassembly().FunctionParamSource(param);
if (src.file) {
AddNote(src) << NameOf(value) << " declared here";
}
},
[&](const BlockParam* param) {
auto src = Disassembly().BlockParamSource(param);
if (src.file) {
AddNote(src) << NameOf(value) << " declared here";
}
},
[&](const Function* fn) { AddNote(fn) << NameOf(value) << " declared here"; });
}
StyledText Validator::NameOf(const Value* value) {
return Disassembly().NameOf(value);
}
void Validator::CheckOperandNotNull(const Instruction* inst, const ir::Value* operand, size_t idx) {
if (operand == nullptr) {
AddError(inst, idx) << "operand is undefined";
}
}
void Validator::CheckOperandsNotNull(const Instruction* inst,
size_t start_operand,
size_t end_operand) {
auto operands = inst->Operands();
for (size_t i = start_operand; i <= end_operand; i++) {
CheckOperandNotNull(inst, operands[i], i);
}
}
void Validator::CheckRootBlock(const Block* blk) {
block_stack_.Push(blk);
TINT_DEFER(block_stack_.Pop());
for (auto* inst : *blk) {
if (inst->Block() != blk) {
AddError(inst) << "instruction in root block does not have root block as parent";
continue;
}
auto* var = inst->As<ir::Var>();
if (!var) {
AddError(inst) << "root block: invalid instruction: " << inst->TypeInfo().name;
continue;
}
CheckInstruction(var);
}
}
void Validator::CheckFunction(const Function* func) {
// Scope holds the parameters and block
scope_stack_.Push();
TINT_DEFER(scope_stack_.Pop());
for (auto* param : func->Params()) {
if (!param->Alive()) {
AddError(param) << "destroyed parameter found in function parameter list";
return;
}
if (!param->Function()) {
AddError(param) << "function parameter has nullptr parent function";
return;
} else if (param->Function() != func) {
AddError(param) << "function parameter has incorrect parent function";
AddNote(param->Function()) << "parent function declared here";
return;
}
// References not allowed on function signatures even with Capability::kAllowRefTypes
if (HoldsType<type::Reference>(param->Type())) {
AddError(param) << "references are not permitted as parameter types";
}
scope_stack_.Add(param);
}
if (HoldsType<type::Reference>(func->ReturnType())) {
AddError(func) << "references are not permitted as return types";
}
QueueBlock(func->Block());
ProcessTasks();
}
void Validator::ProcessTasks() {
while (!tasks_.IsEmpty()) {
tasks_.Pop()();
}
}
void Validator::QueueBlock(const Block* blk) {
tasks_.Push([this] { EndBlock(); });
tasks_.Push([this, blk] { BeginBlock(blk); });
}
void Validator::BeginBlock(const Block* blk) {
scope_stack_.Push();
block_stack_.Push(blk);
if (auto* mb = blk->As<MultiInBlock>()) {
for (auto* param : mb->Params()) {
if (!param->Alive()) {
AddError(param) << "destroyed parameter found in block parameter list";
return;
}
if (!param->Block()) {
AddError(param) << "block parameter has nullptr parent block";
return;
} else if (param->Block() != mb) {
AddError(param) << "block parameter has incorrect parent block";
AddNote(param->Block()) << "parent block declared here";
return;
}
scope_stack_.Add(param);
}
}
if (!blk->Terminator()) {
AddError(blk) << "block does not end in a terminator instruction";
}
// Validate the instructions w.r.t. the parent block
for (auto* inst : *blk) {
if (inst->Block() != blk) {
AddError(inst) << "block instruction does not have same block as parent";
AddNote(blk) << "in block";
continue;
}
if (inst->Is<ir::Terminator>() && inst != blk->Terminator()) {
AddError(inst) << "block terminator which isn't the final instruction";
continue;
}
}
// Enqueue validation of the instructions of the block
if (!blk->IsEmpty()) {
QueueInstructions(blk->Instructions());
}
}
void Validator::EndBlock() {
scope_stack_.Pop();
block_stack_.Pop();
}
void Validator::QueueInstructions(const Instruction* inst) {
tasks_.Push([this, inst] {
CheckInstruction(inst);
if (inst->next) {
QueueInstructions(inst->next);
}
});
}
void Validator::CheckInstruction(const Instruction* inst) {
visited_instructions_.Add(inst);
if (!inst->Alive()) {
AddError(inst) << "destroyed instruction found in instruction list";
return;
}
auto results = inst->Results();
for (size_t i = 0; i < results.Length(); ++i) {
auto* res = results[i];
if (!res) {
AddResultError(inst, i) << "result is undefined";
continue;
}
if (res->Instruction() == nullptr) {
AddResultError(inst, i) << "instruction of result is undefined";
} else if (res->Instruction() != inst) {
AddResultError(inst, i) << "instruction of result is a different instruction";
}
if (!capabilities_.Contains(Capability::kAllowRefTypes)) {
if (HoldsType<type::Reference>(res->Type())) {
AddResultError(inst, i) << "reference type is not permitted";
}
}
}
auto ops = inst->Operands();
for (size_t i = 0; i < ops.Length(); ++i) {
auto* op = ops[i];
if (!op) {
continue;
}
// Note, a `nullptr` is a valid operand in some cases, like `var` so we can't just check
// for `nullptr` here.
if (!op->Alive()) {
AddError(inst, i) << "operand is not alive";
} else if (!op->HasUsage(inst, i)) {
AddError(inst, i) << "operand missing usage";
} else if (auto fn = op->As<Function>(); fn && !all_functions_.Contains(fn)) {
AddError(inst, i) << NameOf(op) << " is not part of the module";
} else if (!op->Is<Constant>() && !scope_stack_.Contains(op)) {
AddError(inst, i) << NameOf(op) << " is not in scope";
AddDeclarationNote(op);
}
if (!capabilities_.Contains(Capability::kAllowRefTypes)) {
if (HoldsType<type::Reference>(op->Type())) {
AddError(inst, i) << "reference type is not permitted";
}
}
}
tint::Switch(
inst, //
[&](const Access* a) { CheckAccess(a); }, //
[&](const Binary* b) { CheckBinary(b); }, //
[&](const Call* c) { CheckCall(c); }, //
[&](const If* if_) { CheckIf(if_); }, //
[&](const Let* let) { CheckLet(let); }, //
[&](const Load* load) { CheckLoad(load); }, //
[&](const LoadVectorElement* l) { CheckLoadVectorElement(l); }, //
[&](const Loop* l) { CheckLoop(l); }, //
[&](const Store* s) { CheckStore(s); }, //
[&](const StoreVectorElement* s) { CheckStoreVectorElement(s); }, //
[&](const Switch* s) { CheckSwitch(s); }, //
[&](const Swizzle*) {}, //
[&](const Terminator* b) { CheckTerminator(b); }, //
[&](const Unary* u) { CheckUnary(u); }, //
[&](const Var* var) { CheckVar(var); }, //
[&](const Default) { AddError(inst) << "missing validation"; });
for (auto* result : results) {
scope_stack_.Add(result);
}
}
void Validator::CheckVar(const Var* var) {
if (var->Result(0) && var->Initializer()) {
if (var->Initializer()->Type() != var->Result(0)->Type()->UnwrapPtrOrRef()) {
AddError(var) << "initializer has incorrect type";
}
}
}
void Validator::CheckLet(const Let* let) {
CheckOperandNotNull(let, let->Value(), Let::kValueOperandOffset);
if (let->Result(0) && let->Value()) {
if (let->Result(0)->Type() != let->Value()->Type()) {
AddError(let) << "result type does not match value type";
}
}
}
void Validator::CheckCall(const Call* call) {
tint::Switch(
call, //
[&](const Bitcast*) {}, //
[&](const BuiltinCall* c) { CheckBuiltinCall(c); }, //
[&](const Construct*) {}, //
[&](const Convert*) {}, //
[&](const Discard*) {}, //
[&](const UserCall* c) { CheckUserCall(c); }, //
[&](Default) {
// Validation of custom IR instructions
});
}
void Validator::CheckBuiltinCall(const BuiltinCall* call) {
auto symbols = SymbolTable::Wrap(mod_.symbols);
auto type_mgr = type::Manager::Wrap(mod_.Types());
auto args = Transform<8>(call->Args(), [&](const ir::Value* v) { return v->Type(); });
intrinsic::Context context{
call->TableData(),
type_mgr,
symbols,
};
auto result = core::intrinsic::LookupFn(context, call->FriendlyName().c_str(), call->FuncId(),
Empty, args, core::EvaluationStage::kRuntime);
if (result != Success) {
AddError(call) << result.Failure();
return;
}
if (result->return_type != call->Result(0)->Type()) {
AddError(call) << "call result type does not match builtin return type";
}
}
void Validator::CheckUserCall(const UserCall* call) {
if (call->Target()->Stage() != Function::PipelineStage::kUndefined) {
AddError(call, UserCall::kFunctionOperandOffset)
<< "call target must not have a pipeline stage";
}
auto args = call->Args();
auto params = call->Target()->Params();
if (args.Length() != params.Length()) {
AddError(call, UserCall::kFunctionOperandOffset)
<< "function has " << params.Length() << " parameters, but call provides "
<< args.Length() << " arguments";
return;
}
for (size_t i = 0; i < args.Length(); i++) {
if (args[i]->Type() != params[i]->Type()) {
AddError(call, UserCall::kArgsOperandOffset + i)
<< "function parameter " << i << " is of type " << params[i]->Type()->FriendlyName()
<< ", but argument is of type " << args[i]->Type()->FriendlyName();
}
}
}
void Validator::CheckAccess(const Access* a) {
auto* obj_view = a->Object()->Type()->As<core::type::MemoryView>();
auto* ty = obj_view ? obj_view->StoreType() : a->Object()->Type();
enum Kind { kPtr, kRef, kValue };
auto kind_of = [&](const core::type::Type* type) {
return tint::Switch(
type, //
[&](const core::type::Pointer*) { return kPtr; }, //
[&](const core::type::Reference*) { return kRef; }, //
[&](Default) { return kValue; });
};
const Kind in_kind = kind_of(a->Object()->Type());
auto desc_of = [&](Kind kind, const core::type::Type* type) {
switch (kind) {
case kPtr:
return StyledText{} << "ptr<" << obj_view->AddressSpace() << ", "
<< type->FriendlyName() << ", " << obj_view->Access() << ">";
case kRef:
return StyledText{} << "ref<" << obj_view->AddressSpace() << ", "
<< type->FriendlyName() << ", " << obj_view->Access() << ">";
default:
return StyledText{} << type->FriendlyName();
}
};
for (size_t i = 0; i < a->Indices().Length(); i++) {
auto err = [&]() -> diag::Diagnostic& {
return AddError(a, i + Access::kIndicesOperandOffset);
};
auto note = [&]() -> diag::Diagnostic& {
return AddOperandNote(a, i + Access::kIndicesOperandOffset);
};
auto* index = a->Indices()[i];
if (TINT_UNLIKELY(!index->Type()->is_integer_scalar())) {
err() << "index must be integer, got " << index->Type()->FriendlyName();
return;
}
if (!capabilities_.Contains(Capability::kAllowVectorElementPointer)) {
if (in_kind != kValue && ty->Is<core::type::Vector>()) {
err() << "cannot obtain address of vector element";
return;
}
}
if (auto* const_index = index->As<ir::Constant>()) {
auto* value = const_index->Value();
if (value->Type()->is_signed_integer_scalar()) {
// index is a signed integer scalar. Check that the index isn't negative.
// If the index is unsigned, we can skip this.
auto idx = value->ValueAs<AInt>();
if (TINT_UNLIKELY(idx < 0)) {
err() << "constant index must be positive, got " << idx;
return;
}
}
auto idx = value->ValueAs<uint32_t>();
auto* el = ty->Element(idx);
if (TINT_UNLIKELY(!el)) {
// Is index in bounds?
if (auto el_count = ty->Elements().count; el_count != 0 && idx >= el_count) {
err() << "index out of bounds for type " << desc_of(in_kind, ty);
note() << "acceptable range: [0.." << (el_count - 1) << "]";
return;
}
err() << "type " << desc_of(in_kind, ty) << " cannot be indexed";
return;
}
ty = el;
} else {
auto* el = ty->Elements().type;
if (TINT_UNLIKELY(!el)) {
err() << "type " << desc_of(in_kind, ty) << " cannot be dynamically indexed";
return;
}
ty = el;
}
}
auto* want = a->Result(0)->Type();
auto* want_view = want->As<type::MemoryView>();
bool ok = ty == want->UnwrapPtrOrRef() && (obj_view == nullptr) == (want_view == nullptr);
if (ok && obj_view) {
ok = obj_view->Is<type::Pointer>() == want_view->Is<type::Pointer>() &&
obj_view->AddressSpace() == want_view->AddressSpace() &&
obj_view->Access() == want_view->Access();
}
if (TINT_UNLIKELY(!ok)) {
AddError(a) << "result of access chain is type " << desc_of(in_kind, ty)
<< " but instruction type is " << want->FriendlyName();
}
}
void Validator::CheckBinary(const Binary* b) {
CheckOperandsNotNull(b, Binary::kLhsOperandOffset, Binary::kRhsOperandOffset);
if (b->LHS() && b->RHS()) {
auto symbols = SymbolTable::Wrap(mod_.symbols);
auto type_mgr = type::Manager::Wrap(mod_.Types());
intrinsic::Context context{
b->TableData(),
type_mgr,
symbols,
};
auto overload =
core::intrinsic::LookupBinary(context, b->Op(), b->LHS()->Type(), b->RHS()->Type(),
core::EvaluationStage::kRuntime, /* is_compound */ false);
if (overload != Success) {
AddError(b) << overload.Failure();
return;
}
if (auto* result = b->Result(0)) {
if (overload->return_type != result->Type()) {
StringStream err;
err << "binary instruction result type (" << result->Type()->FriendlyName()
<< ") does not match overload result type ("
<< overload->return_type->FriendlyName() << ")";
AddError(b) << err.str();
}
}
}
}
void Validator::CheckUnary(const Unary* u) {
CheckOperandNotNull(u, u->Val(), Unary::kValueOperandOffset);
if (u->Val()) {
auto symbols = SymbolTable::Wrap(mod_.symbols);
auto type_mgr = type::Manager::Wrap(mod_.Types());
intrinsic::Context context{
u->TableData(),
type_mgr,
symbols,
};
auto overload = core::intrinsic::LookupUnary(context, u->Op(), u->Val()->Type(),
core::EvaluationStage::kRuntime);
if (overload != Success) {
AddError(u) << overload.Failure();
return;
}
if (auto* result = u->Result(0)) {
if (overload->return_type != result->Type()) {
StringStream err;
err << "unary instruction result type (" << result->Type()->FriendlyName()
<< ") does not match overload result type ("
<< overload->return_type->FriendlyName() << ")";
AddError(u) << err.str();
}
}
}
}
void Validator::CheckIf(const If* if_) {
CheckOperandNotNull(if_, if_->Condition(), If::kConditionOperandOffset);
if (if_->Condition() && !if_->Condition()->Type()->Is<core::type::Bool>()) {
AddError(if_, If::kConditionOperandOffset) << "condition must be a `bool` type";
}
tasks_.Push([this] { control_stack_.Pop(); });
if (!if_->False()->IsEmpty()) {
QueueBlock(if_->False());
}
QueueBlock(if_->True());
tasks_.Push([this, if_] { control_stack_.Push(if_); });
}
void Validator::CheckLoop(const Loop* l) {
// Note: Tasks are queued in reverse order of their execution
tasks_.Push([this] { control_stack_.Pop(); });
if (!l->Initializer()->IsEmpty()) {
tasks_.Push([this] { EndBlock(); });
}
tasks_.Push([this] { EndBlock(); });
if (!l->Continuing()->IsEmpty()) {
tasks_.Push([this] { EndBlock(); });
}
// ⎡Initializer ⎤
// ⎢ ⎡Body ⎤⎥
// ⎣ ⎣ [Continuing ] ⎦⎦
if (!l->Continuing()->IsEmpty()) {
tasks_.Push([this, l] { BeginBlock(l->Continuing()); });
}
tasks_.Push([this, l] { BeginBlock(l->Body()); });
if (!l->Initializer()->IsEmpty()) {
tasks_.Push([this, l] { BeginBlock(l->Initializer()); });
}
tasks_.Push([this, l] { control_stack_.Push(l); });
}
void Validator::CheckSwitch(const Switch* s) {
tasks_.Push([this] { control_stack_.Pop(); });
for (auto& cse : s->Cases()) {
QueueBlock(cse.block);
}
tasks_.Push([this, s] { control_stack_.Push(s); });
}
void Validator::CheckTerminator(const Terminator* b) {
// Note, transforms create `undef` terminator arguments (this is done in MergeReturn and
// DemoteToHelper) so we can't add validation.
tint::Switch(
b, //
[&](const ir::BreakIf*) {}, //
[&](const ir::Continue*) {}, //
[&](const ir::Exit* e) { CheckExit(e); }, //
[&](const ir::NextIteration*) {}, //
[&](const ir::Return* ret) { CheckReturn(ret); }, //
[&](const ir::TerminateInvocation*) {}, //
[&](const ir::Unreachable*) {}, //
[&](Default) { AddError(b) << "missing validation"; });
}
void Validator::CheckExit(const Exit* e) {
if (e->ControlInstruction() == nullptr) {
AddError(e) << "has no parent control instruction";
return;
}
if (control_stack_.IsEmpty()) {
AddError(e) << "found outside all control instructions";
return;
}
auto results = e->ControlInstruction()->Results();
auto args = e->Args();
if (results.Length() != args.Length()) {
AddError(e) << ("args count (") << args.Length()
<< ") does not match control instruction result count (" << results.Length()
<< ")";
AddNote(e->ControlInstruction()) << "control instruction";
return;
}
for (size_t i = 0; i < results.Length(); ++i) {
if (results[i] && args[i] && results[i]->Type() != args[i]->Type()) {
AddError(e, i) << "argument type (" << results[i]->Type()->FriendlyName()
<< ") does not match control instruction type ("
<< args[i]->Type()->FriendlyName() << ")";
AddNote(e->ControlInstruction()) << "control instruction";
}
}
tint::Switch(
e, //
[&](const ir::ExitIf* i) { CheckExitIf(i); }, //
[&](const ir::ExitLoop* l) { CheckExitLoop(l); }, //
[&](const ir::ExitSwitch* s) { CheckExitSwitch(s); }, //
[&](Default) { AddError(e) << "missing validation"; });
}
void Validator::CheckExitIf(const ExitIf* e) {
if (control_stack_.Back() != e->If()) {
AddError(e) << "if target jumps over other control instructions";
AddNote(control_stack_.Back()) << "first control instruction jumped";
}
}
void Validator::CheckReturn(const Return* ret) {
auto* func = ret->Func();
if (func == nullptr) {
AddError(ret) << "undefined function";
return;
}
if (func->ReturnType()->Is<core::type::Void>()) {
if (ret->Value()) {
AddError(ret) << "unexpected return value";
}
} else {
if (!ret->Value()) {
AddError(ret) << "expected return value";
} else if (ret->Value()->Type() != func->ReturnType()) {
AddError(ret) << "return value type does not match function return type";
}
}
}
void Validator::CheckControlsAllowingIf(const Exit* exit, const Instruction* control) {
bool found = false;
for (auto ctrl : tint::Reverse(control_stack_)) {
if (ctrl == control) {
found = true;
break;
}
// A exit switch can step over if instructions, but no others.
if (!ctrl->Is<ir::If>()) {
AddError(exit) << control->FriendlyName()
<< " target jumps over other control instructions";
AddNote(ctrl) << "first control instruction jumped";
return;
}
}
if (!found) {
AddError(exit) << control->FriendlyName() << " not found in parent control instructions";
}
}
void Validator::CheckExitSwitch(const ExitSwitch* s) {
CheckControlsAllowingIf(s, s->ControlInstruction());
}
void Validator::CheckExitLoop(const ExitLoop* l) {
CheckControlsAllowingIf(l, l->ControlInstruction());
const Instruction* inst = l;
const Loop* control = l->Loop();
while (inst) {
// Found parent loop
if (inst->Block()->Parent() == control) {
if (inst->Block() == control->Continuing()) {
AddError(l) << "loop exit jumps out of continuing block";
if (control->Continuing() != l->Block()) {
AddNote(control->Continuing()) << "in continuing block";
}
} else if (inst->Block() == control->Initializer()) {
AddError(l) << "loop exit not permitted in loop initializer";
if (control->Initializer() != l->Block()) {
AddNote(control->Initializer()) << "in initializer block";
}
}
break;
}
inst = inst->Block()->Parent();
}
}
void Validator::CheckLoad(const Load* l) {
CheckOperandNotNull(l, l->From(), Load::kFromOperandOffset);
if (auto* from = l->From()) {
auto* mv = from->Type()->As<core::type::MemoryView>();
if (!mv) {
AddError(l, Load::kFromOperandOffset) << "load source operand is not a memory view";
return;
}
if (l->Result(0)->Type() != mv->StoreType()) {
AddError(l, Load::kFromOperandOffset) << "result type does not match source store type";
}
}
}
void Validator::CheckStore(const Store* s) {
CheckOperandsNotNull(s, Store::kToOperandOffset, Store::kFromOperandOffset);
if (auto* from = s->From()) {
if (auto* to = s->To()) {
auto* mv = to->Type()->As<core::type::MemoryView>();
if (!mv) {
AddError(s, Store::kFromOperandOffset)
<< "store target operand is not a memory view";
return;
}
if (from->Type() != mv->StoreType()) {
AddError(s, Store::kFromOperandOffset) << "value type does not match store type";
}
}
}
}
void Validator::CheckLoadVectorElement(const LoadVectorElement* l) {
CheckOperandsNotNull(l, //
LoadVectorElement::kFromOperandOffset,
LoadVectorElement::kIndexOperandOffset);
if (auto* res = l->Result(0)) {
if (auto* el_ty = GetVectorPtrElementType(l, LoadVectorElement::kFromOperandOffset)) {
if (res->Type() != el_ty) {
AddResultError(l, 0) << "result type does not match vector pointer element type";
}
}
}
}
void Validator::CheckStoreVectorElement(const StoreVectorElement* s) {
CheckOperandsNotNull(s, //
StoreVectorElement::kToOperandOffset,
StoreVectorElement::kValueOperandOffset);
if (auto* value = s->Value()) {
if (auto* el_ty = GetVectorPtrElementType(s, StoreVectorElement::kToOperandOffset)) {
if (value->Type() != el_ty) {
AddError(s, StoreVectorElement::kValueOperandOffset)
<< "value type does not match vector pointer element type";
}
}
}
}
const core::type::Type* Validator::GetVectorPtrElementType(const Instruction* inst, size_t idx) {
auto* operand = inst->Operands()[idx];
if (TINT_UNLIKELY(!operand)) {
return nullptr;
}
auto* type = operand->Type();
if (TINT_UNLIKELY(!type)) {
return nullptr;
}
auto* memory_view_ty = type->As<core::type::MemoryView>();
if (TINT_LIKELY(memory_view_ty)) {
auto* vec_ty = memory_view_ty->StoreType()->As<core::type::Vector>();
if (TINT_LIKELY(vec_ty)) {
return vec_ty->type();
}
}
AddError(inst, idx) << "operand must be a pointer to vector, got " << type->FriendlyName();
return nullptr;
}
} // namespace
Result<SuccessType> Validate(const Module& mod, Capabilities capabilities) {
Validator v(mod, capabilities);
return v.Run();
}
Result<SuccessType> ValidateAndDumpIfNeeded([[maybe_unused]] const Module& ir,
[[maybe_unused]] const char* msg,
[[maybe_unused]] Capabilities capabilities) {
#if TINT_DUMP_IR_WHEN_VALIDATING
auto printer = StyledTextPrinter::Create(stdout);
std::cout << "=========================================================" << std::endl;
std::cout << "== IR dump before " << msg << ":" << std::endl;
std::cout << "=========================================================" << std::endl;
printer->Print(Disassemble(ir).Text());
#endif
#ifndef NDEBUG
auto result = Validate(ir, capabilities);
if (result != Success) {
return result.Failure();
}
#endif
return Success;
}
} // namespace tint::core::ir