blob: 63fe3b1734162497202275418123ee5d5a26b4c1 [file] [log] [blame]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gmock/gmock.h"
#include "src/tint/lang/core/type/reference.h"
#include "src/tint/lang/wgsl/resolver/resolver_helper_test.h"
#include "src/tint/lang/wgsl/sem/value_constructor.h"
#include "src/tint/lang/wgsl/sem/value_conversion.h"
#include "src/tint/utils/text/string_stream.h"
namespace tint::resolver {
namespace {
using namespace tint::core::fluent_types; // NOLINT
using namespace tint::core::number_suffixes; // NOLINT
using ::testing::HasSubstr;
// Helpers and typedefs
using builder::alias;
using builder::alias1;
using builder::alias2;
using builder::alias3;
using builder::CreatePtrs;
using builder::CreatePtrsFor;
using builder::DataType;
class ResolverValueConstructorValidationTest : public resolver::TestHelper, public testing::Test {};
namespace InferTypeTest {
struct Params {
builder::ast_type_func_ptr create_rhs_ast_type;
builder::ast_expr_from_double_func_ptr create_rhs_ast_value;
builder::sem_type_func_ptr create_rhs_sem_type;
};
template <typename T>
constexpr Params ParamsFor() {
return Params{DataType<T>::AST, DataType<T>::ExprFromDouble, DataType<T>::Sem};
}
TEST_F(ResolverValueConstructorValidationTest, InferTypeTest_Simple) {
// var a = 1i;
// var b = a;
auto* a = Var("a", Expr(1_i));
auto* b = Var("b", Expr("a"));
auto* a_ident = Expr("a");
auto* b_ident = Expr("b");
WrapInFunction(a, b, Assign(a_ident, "a"), Assign(b_ident, "b"));
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(a_ident)->Is<core::type::Reference>());
EXPECT_TRUE(TypeOf(a_ident)->As<core::type::Reference>()->StoreType()->Is<core::type::I32>());
EXPECT_EQ(TypeOf(a_ident)->As<core::type::Reference>()->AddressSpace(),
core::AddressSpace::kFunction);
ASSERT_TRUE(TypeOf(b_ident)->Is<core::type::Reference>());
EXPECT_TRUE(TypeOf(b_ident)->As<core::type::Reference>()->StoreType()->Is<core::type::I32>());
EXPECT_EQ(TypeOf(b_ident)->As<core::type::Reference>()->AddressSpace(),
core::AddressSpace::kFunction);
}
using InferTypeTest_FromConstructorExpression = ResolverTestWithParam<Params>;
TEST_P(InferTypeTest_FromConstructorExpression, All) {
// e.g. for vec3<f32>
// {
// var a = vec3<f32>(0.0, 0.0, 0.0)
// }
auto& params = GetParam();
Enable(core::Extension::kF16);
auto* initializer_expr = params.create_rhs_ast_value(*this, 0);
auto* a = Var("a", initializer_expr);
// Self-assign 'a' to force the expression to be resolved so we can test its
// type below
auto* a_ident = Expr("a");
WrapInFunction(Decl(a), Assign(a_ident, "a"));
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* got = TypeOf(a_ident);
auto* expected = create<core::type::Reference>(
core::AddressSpace::kFunction, params.create_rhs_sem_type(*this), core::Access::kReadWrite);
ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n"
<< "expected: " << FriendlyName(expected) << "\n";
}
static constexpr Params from_constructor_expression_cases[] = {
ParamsFor<bool>(),
ParamsFor<i32>(),
ParamsFor<u32>(),
ParamsFor<f32>(),
ParamsFor<f16>(),
ParamsFor<vec3<i32>>(),
ParamsFor<vec3<u32>>(),
ParamsFor<vec3<f32>>(),
ParamsFor<vec3<f16>>(),
ParamsFor<mat3x3<f32>>(),
ParamsFor<mat3x3<f16>>(),
ParamsFor<alias<bool>>(),
ParamsFor<alias<i32>>(),
ParamsFor<alias<u32>>(),
ParamsFor<alias<f32>>(),
ParamsFor<alias<f16>>(),
ParamsFor<alias<vec3<i32>>>(),
ParamsFor<alias<vec3<u32>>>(),
ParamsFor<alias<vec3<f32>>>(),
ParamsFor<alias<vec3<f16>>>(),
ParamsFor<alias<mat3x3<f32>>>(),
ParamsFor<alias<mat3x3<f16>>>(),
};
INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest,
InferTypeTest_FromConstructorExpression,
testing::ValuesIn(from_constructor_expression_cases));
using InferTypeTest_FromArithmeticExpression = ResolverTestWithParam<Params>;
TEST_P(InferTypeTest_FromArithmeticExpression, All) {
// e.g. for vec3<f32>
// {
// var a = vec3<f32>(2.0, 2.0, 2.0) * 3.0;
// }
auto& params = GetParam();
auto* arith_lhs_expr = params.create_rhs_ast_value(*this, 2);
auto* arith_rhs_expr = params.create_rhs_ast_value(*this, 3);
auto* initializer_expr = Mul(arith_lhs_expr, arith_rhs_expr);
auto* a = Var("a", initializer_expr);
// Self-assign 'a' to force the expression to be resolved so we can test its
// type below
auto* a_ident = Expr("a");
WrapInFunction(Decl(a), Assign(a_ident, "a"));
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* got = TypeOf(a_ident);
auto* expected = create<core::type::Reference>(
core::AddressSpace::kFunction, params.create_rhs_sem_type(*this), core::Access::kReadWrite);
ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n"
<< "expected: " << FriendlyName(expected) << "\n";
}
static constexpr Params from_arithmetic_expression_cases[] = {
ParamsFor<i32>(),
ParamsFor<u32>(),
ParamsFor<f32>(),
ParamsFor<vec3<f32>>(),
ParamsFor<mat3x3<f32>>(),
ParamsFor<alias<i32>>(),
ParamsFor<alias<u32>>(),
ParamsFor<alias<f32>>(),
ParamsFor<alias<vec3<f32>>>(),
ParamsFor<alias<mat3x3<f32>>>(),
};
INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest,
InferTypeTest_FromArithmeticExpression,
testing::ValuesIn(from_arithmetic_expression_cases));
using InferTypeTest_FromCallExpression = ResolverTestWithParam<Params>;
TEST_P(InferTypeTest_FromCallExpression, All) {
// e.g. for vec3<f32>
//
// fn foo() -> vec3<f32> {
// return vec3<f32>();
// }
//
// fn bar()
// {
// var a = foo();
// }
auto& params = GetParam();
Enable(core::Extension::kF16);
Func("foo", tint::Empty, params.create_rhs_ast_type(*this),
Vector{Return(Call(params.create_rhs_ast_type(*this)))}, {});
auto* a = Var("a", Call("foo"));
// Self-assign 'a' to force the expression to be resolved so we can test its
// type below
auto* a_ident = Expr("a");
WrapInFunction(Decl(a), Assign(a_ident, "a"));
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* got = TypeOf(a_ident);
auto* expected = create<core::type::Reference>(
core::AddressSpace::kFunction, params.create_rhs_sem_type(*this), core::Access::kReadWrite);
ASSERT_EQ(got, expected) << "got: " << FriendlyName(got) << "\n"
<< "expected: " << FriendlyName(expected) << "\n";
}
static constexpr Params from_call_expression_cases[] = {
ParamsFor<bool>(),
ParamsFor<i32>(),
ParamsFor<u32>(),
ParamsFor<f32>(),
ParamsFor<f16>(),
ParamsFor<vec3<i32>>(),
ParamsFor<vec3<u32>>(),
ParamsFor<vec3<f32>>(),
ParamsFor<vec3<f16>>(),
ParamsFor<mat3x3<f32>>(),
ParamsFor<mat3x3<f16>>(),
ParamsFor<alias<bool>>(),
ParamsFor<alias<i32>>(),
ParamsFor<alias<u32>>(),
ParamsFor<alias<f32>>(),
ParamsFor<alias<f16>>(),
ParamsFor<alias<vec3<i32>>>(),
ParamsFor<alias<vec3<u32>>>(),
ParamsFor<alias<vec3<f32>>>(),
ParamsFor<alias<vec3<f16>>>(),
ParamsFor<alias<mat3x3<f32>>>(),
ParamsFor<alias<mat3x3<f16>>>(),
};
INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest,
InferTypeTest_FromCallExpression,
testing::ValuesIn(from_call_expression_cases));
} // namespace InferTypeTest
namespace ConversionConstructTest {
enum class Kind {
Construct,
Conversion,
};
struct Params {
Kind kind;
builder::ast_type_func_ptr lhs_type;
builder::ast_type_func_ptr rhs_type;
builder::ast_expr_from_double_func_ptr rhs_value_expr;
};
template <typename LhsType, typename RhsType>
constexpr Params ParamsFor(Kind kind) {
return Params{kind, DataType<LhsType>::AST, DataType<RhsType>::AST,
DataType<RhsType>::ExprFromDouble};
}
static constexpr Params valid_cases[] = {
// Identity
ParamsFor<bool, bool>(Kind::Construct), //
ParamsFor<i32, i32>(Kind::Construct), //
ParamsFor<u32, u32>(Kind::Construct), //
ParamsFor<f32, f32>(Kind::Construct), //
ParamsFor<f16, f16>(Kind::Construct), //
ParamsFor<vec3<bool>, vec3<bool>>(Kind::Construct), //
ParamsFor<vec3<i32>, vec3<i32>>(Kind::Construct), //
ParamsFor<vec3<u32>, vec3<u32>>(Kind::Construct), //
ParamsFor<vec3<f32>, vec3<f32>>(Kind::Construct), //
ParamsFor<vec3<f16>, vec3<f16>>(Kind::Construct), //
ParamsFor<mat3x3<f32>, mat3x3<f32>>(Kind::Construct), //
ParamsFor<mat2x3<f32>, mat2x3<f32>>(Kind::Construct), //
ParamsFor<mat3x2<f32>, mat3x2<f32>>(Kind::Construct), //
ParamsFor<mat3x3<f16>, mat3x3<f16>>(Kind::Construct), //
ParamsFor<mat2x3<f16>, mat2x3<f16>>(Kind::Construct), //
ParamsFor<mat3x2<f16>, mat3x2<f16>>(Kind::Construct), //
// Splat
ParamsFor<vec3<bool>, bool>(Kind::Construct), //
ParamsFor<vec3<i32>, i32>(Kind::Construct), //
ParamsFor<vec3<u32>, u32>(Kind::Construct), //
ParamsFor<vec3<f32>, f32>(Kind::Construct), //
ParamsFor<vec3<f16>, f16>(Kind::Construct), //
// Conversion
ParamsFor<bool, u32>(Kind::Conversion), //
ParamsFor<bool, i32>(Kind::Conversion), //
ParamsFor<bool, f32>(Kind::Conversion), //
ParamsFor<bool, f16>(Kind::Conversion), //
ParamsFor<i32, bool>(Kind::Conversion), //
ParamsFor<i32, u32>(Kind::Conversion), //
ParamsFor<i32, f32>(Kind::Conversion), //
ParamsFor<i32, f16>(Kind::Conversion), //
ParamsFor<u32, bool>(Kind::Conversion), //
ParamsFor<u32, i32>(Kind::Conversion), //
ParamsFor<u32, f32>(Kind::Conversion), //
ParamsFor<u32, f16>(Kind::Conversion), //
ParamsFor<f32, bool>(Kind::Conversion), //
ParamsFor<f32, u32>(Kind::Conversion), //
ParamsFor<f32, i32>(Kind::Conversion), //
ParamsFor<f32, f16>(Kind::Conversion), //
ParamsFor<f16, bool>(Kind::Conversion), //
ParamsFor<f16, u32>(Kind::Conversion), //
ParamsFor<f16, i32>(Kind::Conversion), //
ParamsFor<f16, f32>(Kind::Conversion), //
ParamsFor<vec3<bool>, vec3<u32>>(Kind::Conversion), //
ParamsFor<vec3<bool>, vec3<i32>>(Kind::Conversion), //
ParamsFor<vec3<bool>, vec3<f32>>(Kind::Conversion), //
ParamsFor<vec3<bool>, vec3<f16>>(Kind::Conversion), //
ParamsFor<vec3<i32>, vec3<bool>>(Kind::Conversion), //
ParamsFor<vec3<i32>, vec3<u32>>(Kind::Conversion), //
ParamsFor<vec3<i32>, vec3<f32>>(Kind::Conversion), //
ParamsFor<vec3<i32>, vec3<f16>>(Kind::Conversion), //
ParamsFor<vec3<u32>, vec3<bool>>(Kind::Conversion), //
ParamsFor<vec3<u32>, vec3<i32>>(Kind::Conversion), //
ParamsFor<vec3<u32>, vec3<f32>>(Kind::Conversion), //
ParamsFor<vec3<u32>, vec3<f16>>(Kind::Conversion), //
ParamsFor<vec3<f32>, vec3<bool>>(Kind::Conversion), //
ParamsFor<vec3<f32>, vec3<u32>>(Kind::Conversion), //
ParamsFor<vec3<f32>, vec3<i32>>(Kind::Conversion), //
ParamsFor<vec3<f32>, vec3<f16>>(Kind::Conversion), //
ParamsFor<vec3<f16>, vec3<bool>>(Kind::Conversion), //
ParamsFor<vec3<f16>, vec3<u32>>(Kind::Conversion), //
ParamsFor<vec3<f16>, vec3<i32>>(Kind::Conversion), //
ParamsFor<vec3<f16>, vec3<f32>>(Kind::Conversion), //
ParamsFor<mat3x3<f16>, mat3x3<f32>>(Kind::Conversion), //
ParamsFor<mat2x3<f16>, mat2x3<f32>>(Kind::Conversion), //
ParamsFor<mat3x2<f16>, mat3x2<f32>>(Kind::Conversion), //
ParamsFor<mat3x3<f32>, mat3x3<f16>>(Kind::Conversion), //
ParamsFor<mat2x3<f32>, mat2x3<f16>>(Kind::Conversion), //
ParamsFor<mat3x2<f32>, mat3x2<f16>>(Kind::Conversion), //
};
using ConversionConstructorValidTest = ResolverTestWithParam<Params>;
TEST_P(ConversionConstructorValidTest, All) {
auto& params = GetParam();
Enable(core::Extension::kF16);
// var a : <lhs_type1> = <lhs_type2>(<rhs_type>(<rhs_value_expr>));
auto lhs_type1 = params.lhs_type(*this);
auto lhs_type2 = params.lhs_type(*this);
auto rhs_type = params.rhs_type(*this);
auto* rhs_value_expr = params.rhs_value_expr(*this, 0);
StringStream ss;
ss << FriendlyName(lhs_type1) << " = " << FriendlyName(lhs_type2) << "("
<< FriendlyName(rhs_type) << "(<rhs value expr>))";
SCOPED_TRACE(ss.str());
auto* arg = Call(rhs_type, rhs_value_expr);
auto* tc = Call(lhs_type2, arg);
auto* a = Var("a", lhs_type1, tc);
// Self-assign 'a' to force the expression to be resolved so we can test its
// type below
auto* a_ident = Expr("a");
WrapInFunction(Decl(a), Assign(a_ident, "a"));
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
switch (params.kind) {
case Kind::Construct: {
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_EQ(ctor->Parameters()[0]->Type(), TypeOf(arg));
break;
}
case Kind::Conversion: {
auto* conv = call->Target()->As<sem::ValueConversion>();
ASSERT_NE(conv, nullptr);
EXPECT_EQ(call->Type(), conv->ReturnType());
ASSERT_EQ(conv->Parameters().Length(), 1u);
EXPECT_EQ(conv->Parameters()[0]->Type(), TypeOf(arg));
break;
}
}
}
INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest,
ConversionConstructorValidTest,
testing::ValuesIn(valid_cases));
constexpr CreatePtrs all_types[] = {
CreatePtrsFor<bool>(), //
CreatePtrsFor<u32>(), //
CreatePtrsFor<i32>(), //
CreatePtrsFor<f32>(), //
CreatePtrsFor<f16>(), //
CreatePtrsFor<vec3<bool>>(), //
CreatePtrsFor<vec3<i32>>(), //
CreatePtrsFor<vec3<u32>>(), //
CreatePtrsFor<vec3<f32>>(), //
CreatePtrsFor<vec3<f16>>(), //
CreatePtrsFor<mat3x3<i32>>(), //
CreatePtrsFor<mat3x3<u32>>(), //
CreatePtrsFor<mat3x3<f32>>(), //
CreatePtrsFor<mat3x3<f16>>(), //
CreatePtrsFor<mat2x3<i32>>(), //
CreatePtrsFor<mat2x3<u32>>(), //
CreatePtrsFor<mat2x3<f32>>(), //
CreatePtrsFor<mat2x3<f16>>(), //
CreatePtrsFor<mat3x2<i32>>(), //
CreatePtrsFor<mat3x2<u32>>(), //
CreatePtrsFor<mat3x2<f32>>(), //
CreatePtrsFor<mat3x2<f16>>(), //
};
using ConversionConstructorInvalidTest = ResolverTestWithParam<std::tuple<CreatePtrs, // lhs
CreatePtrs // rhs
>>;
TEST_P(ConversionConstructorInvalidTest, All) {
auto& params = GetParam();
auto& lhs_params = std::get<0>(params);
auto& rhs_params = std::get<1>(params);
// Skip test for valid cases
for (auto& v : valid_cases) {
if (v.lhs_type == lhs_params.ast && v.rhs_type == rhs_params.ast &&
v.rhs_value_expr == rhs_params.expr_from_double) {
return;
}
}
// Skip non-conversions
if (lhs_params.ast == rhs_params.ast) {
return;
}
// var a : <lhs_type1> = <lhs_type2>(<rhs_type>(<rhs_value_expr>));
auto lhs_type1 = lhs_params.ast(*this);
auto lhs_type2 = lhs_params.ast(*this);
auto rhs_type = rhs_params.ast(*this);
auto* rhs_value_expr = rhs_params.expr_from_double(*this, 0);
StringStream ss;
ss << FriendlyName(lhs_type1) << " = " << FriendlyName(lhs_type2) << "("
<< FriendlyName(rhs_type) << "(<rhs value expr>))";
SCOPED_TRACE(ss.str());
Enable(core::Extension::kF16);
auto* a = Var("a", lhs_type1, Call(lhs_type2, Call(rhs_type, rhs_value_expr)));
// Self-assign 'a' to force the expression to be resolved so we can test its
// type below
auto* a_ident = Expr("a");
WrapInFunction(Decl(a), Assign(a_ident, "a"));
ASSERT_FALSE(r()->Resolve());
}
INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest,
ConversionConstructorInvalidTest,
testing::Combine(testing::ValuesIn(all_types),
testing::ValuesIn(all_types)));
TEST_F(ResolverValueConstructorValidationTest, ConversionConstructorInvalid_TooManyConstructors) {
auto* a = Var("a", ty.f32(), Call(Source{{12, 34}}, ty.f32(), Expr(1_f), Expr(2_f)));
WrapInFunction(a);
ASSERT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for f32(f32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, ConversionConstructorInvalid_InvalidConstructor) {
auto* a = Var("a", ty.f32(), Call(Source{{12, 34}}, ty.f32(), Call<array<f32, 4>>()));
WrapInFunction(a);
ASSERT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for f32(array<f32, 4>)"));
}
} // namespace ConversionConstructTest
namespace ArrayConstructor {
TEST_F(ResolverValueConstructorValidationTest, Array_ZeroValue_Pass) {
// array<u32, 10u>();
auto* tc = Call<array<u32, 10>>();
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
EXPECT_TRUE(call->Type()->Is<core::type::Array>());
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 0u);
}
TEST_F(ResolverValueConstructorValidationTest, Array_U32U32U32) {
// array<u32, 3u>(0u, 10u, 20u);
auto* tc = Call<array<u32, 3>>(0_u, 10_u, 20_u);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
EXPECT_TRUE(call->Type()->Is<core::type::Array>());
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<core::type::U32>());
}
TEST_F(ResolverValueConstructorValidationTest, InferredArray_U32U32U32) {
// array(0u, 10u, 20u);
auto* tc = Call<array<Infer>>(Source{{12, 34}}, 0_u, 10_u, 20_u);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
EXPECT_TRUE(call->Type()->Is<core::type::Array>());
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<core::type::U32>());
}
TEST_F(ResolverValueConstructorValidationTest, Array_U32AIU32) {
// array<u32, 3u>(0u, 10, 20u);
auto* tc = Call<array<u32, 3>>(0_u, 10_a, 20_u);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
EXPECT_TRUE(call->Type()->Is<core::type::Array>());
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<core::type::U32>());
}
TEST_F(ResolverValueConstructorValidationTest, InferredArray_U32AIU32) {
// array(0u, 10u, 20u);
auto* tc = Call<array<Infer>>(Source{{12, 34}}, 0_u, 10_a, 20_u);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
EXPECT_TRUE(call->Type()->Is<core::type::Array>());
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<core::type::U32>());
}
TEST_F(ResolverValueConstructorValidationTest, ArrayU32_AIAIAI) {
// array<u32, 3u>(0, 10, 20);
auto* tc = Call<array<u32, 3>>(0_a, 10_a, 20_a);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
EXPECT_TRUE(call->Type()->Is<core::type::Array>());
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<core::type::U32>());
}
TEST_F(ResolverValueConstructorValidationTest, InferredArray_AIAIAI) {
// const c = array(0, 10, 20);
auto* tc = Call<array<Infer>>(Source{{12, 34}}, 0_a, 10_a, 20_a);
WrapInFunction(Decl(Const("C", tc)));
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
EXPECT_TRUE(call->Type()->Is<core::type::Array>());
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::AbstractInt>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::AbstractInt>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<core::type::AbstractInt>());
}
TEST_F(ResolverValueConstructorValidationTest, InferredArrayU32_VecI32_VecAI) {
// array(vec2(10i), vec2(20));
auto* tc = Call<array<Infer>>(Source{{12, 34}}, //
Call<vec2<Infer>>(20_i), //
Call<vec2<Infer>>(20_a));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
EXPECT_TRUE(call->Type()->Is<core::type::Array>());
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 2u);
ASSERT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::Vector>());
EXPECT_TRUE(
ctor->Parameters()[0]->Type()->As<core::type::Vector>()->type()->Is<core::type::I32>());
ASSERT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::Vector>());
EXPECT_TRUE(
ctor->Parameters()[1]->Type()->As<core::type::Vector>()->type()->Is<core::type::I32>());
}
TEST_F(ResolverValueConstructorValidationTest, InferredArrayU32_VecAI_VecF32) {
// array(vec2(20), vec2(10f));
auto* tc = Call<array<Infer>>(Source{{12, 34}}, //
Call<vec2<Infer>>(20_a), //
Call<vec2<Infer>>(20_f));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
EXPECT_TRUE(call->Type()->Is<core::type::Array>());
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 2u);
ASSERT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::Vector>());
EXPECT_TRUE(
ctor->Parameters()[0]->Type()->As<core::type::Vector>()->type()->Is<core::type::F32>());
ASSERT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::Vector>());
EXPECT_TRUE(
ctor->Parameters()[1]->Type()->As<core::type::Vector>()->type()->Is<core::type::F32>());
}
TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_U32F32) {
// array<u32, 3u>(0u, 1.0f, 20u);
auto* tc = Call<array<u32, 3>>(0_u, Expr(Source{{12, 34}}, 1_f), 20_u);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), R"(12:34 error: 'f32' cannot be used to construct an array of 'u32')");
}
TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_U32F32) {
// array(0u, 1.0f, 20u);
auto* tc = Call<array<Infer>>(Source{{12, 34}}, 0_u, 1_f, 20_u);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(12:34 error: cannot infer common array element type from constructor arguments
note: argument 0 is of type 'u32'
note: argument 1 is of type 'f32')");
}
TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_F32I32) {
// array<f32, 1u>(1i);
auto* tc = Call<array<f32, 1>>(Expr(Source{{12, 34}}, 1_i));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), R"(12:34 error: 'i32' cannot be used to construct an array of 'f32')");
}
TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_F32I32) {
// array(1f, 1i);
auto* tc = Call<array<Infer>>(Source{{12, 34}}, 1_f, 1_i);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(12:34 error: cannot infer common array element type from constructor arguments
note: argument 0 is of type 'f32'
note: argument 1 is of type 'i32')");
}
TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_U32I32) {
// array<u32, 1u>(1i, 0u, 0u, 0u, 0u, 0u);
auto* tc = Call<array<u32, 1>>(Expr(Source{{12, 34}}, 1_i), 0_u, 0_u, 0_u, 0_u);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), R"(12:34 error: 'i32' cannot be used to construct an array of 'u32')");
}
TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_U32I32) {
// array(1i, 0u, 0u, 0u, 0u, 0u);
auto* tc = Call<array<Infer>>(Source{{12, 34}}, 1_i, 0_u, 0_u, 0_u, 0_u);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(12:34 error: cannot infer common array element type from constructor arguments
note: argument 0 is of type 'i32'
note: argument 1 is of type 'u32')");
}
TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_I32Vec2) {
// array<i32, 3u>(1i, vec2<i32>());
auto* tc = Call<array<i32, 3>>(1_i, Call<vec2<i32>>(Source{{12, 34}}));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(12:34 error: 'vec2<i32>' cannot be used to construct an array of 'i32')");
}
TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_I32Vec2) {
// array(1i, vec2<i32>());
auto* tc = Call<array<Infer>>(Source{{12, 34}}, 1_i, Call<vec2<i32>>());
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(12:34 error: cannot infer common array element type from constructor arguments
note: argument 0 is of type 'i32'
note: argument 1 is of type 'vec2<i32>')");
}
TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_Vec3i32_Vec3u32) {
// array<vec3<i32>, 2u>(vec3<u32>(), vec3<u32>());
auto* t = Call<array<vec3<i32>, 2>>(Call<vec3<u32>>(Source{{12, 34}}), Call<vec3<u32>>());
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(12:34 error: 'vec3<u32>' cannot be used to construct an array of 'vec3<i32>')");
}
TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_Vec3i32_Vec3u32) {
// array(vec3<i32>(), vec3<u32>());
auto* t = Call<array<Infer>>(Source{{12, 34}}, Call<vec3<i32>>(), Call<vec3<u32>>());
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(12:34 error: cannot infer common array element type from constructor arguments
note: argument 0 is of type 'vec3<i32>'
note: argument 1 is of type 'vec3<u32>')");
}
TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_Vec3i32_Vec3AF) {
// array(vec3<i32>(), vec3(1.0));
auto* t = Call<array<Infer>>(Source{{12, 34}}, Call<vec3<i32>>(), Call("vec3", 1._a));
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(12:34 error: cannot infer common array element type from constructor arguments
note: argument 0 is of type 'vec3<i32>'
note: argument 1 is of type 'vec3<abstract-float>')");
}
TEST_F(ResolverValueConstructorValidationTest, ArrayArgumentTypeMismatch_Vec3i32_Vec3bool) {
// array<vec3<i32>, 2u>(vec3<i32>(), vec3<bool>());
auto* t = Call<array<vec3<i32>, 2>>(Call<vec3<i32>>(), Call<vec3<bool>>());
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(error: 'vec3<bool>' cannot be used to construct an array of 'vec3<i32>')");
}
TEST_F(ResolverValueConstructorValidationTest, InferredArrayArgumentTypeMismatch_Vec3i32_Vec3bool) {
// array(vec3<i32>(), vec3<bool>());
auto* t = Call<array<Infer>>(Source{{12, 34}}, Call<vec3<i32>>(), Call<vec3<bool>>());
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(12:34 error: cannot infer common array element type from constructor arguments
note: argument 0 is of type 'vec3<i32>'
note: argument 1 is of type 'vec3<bool>')");
}
TEST_F(ResolverValueConstructorValidationTest, ArrayOfArray_SubElemSizeMismatch) {
// array<array<i32, 2u>, 2u>(array<i32, 3u>(), array<i32, 2u>());
auto* t = Call<array<array<i32, 2>, 2>>(Source{{12, 34}}, Call<array<i32, 3>>(),
Call<array<i32, 2>>());
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(error: 'array<i32, 3>' cannot be used to construct an array of 'array<i32, 2>')");
}
TEST_F(ResolverValueConstructorValidationTest, InferredArrayOfArray_SubElemSizeMismatch) {
// array<array<i32, 2u>, 2u>(array<i32, 3u>(), array<i32, 2u>());
auto* t = Call<array<Infer>>(Source{{12, 34}}, Call<array<i32, 3>>(), Call<array<i32, 2>>());
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(12:34 error: cannot infer common array element type from constructor arguments
note: argument 0 is of type 'array<i32, 3>'
note: argument 1 is of type 'array<i32, 2>')");
}
TEST_F(ResolverValueConstructorValidationTest, ArrayOfArray_SubElemTypeMismatch) {
// array<array<i32, 2u>, 2u>(array<i32, 2u>(), array<u32, 2u>());
auto* t = Call<array<array<i32, 2>, 2>>(Source{{12, 34}}, Call<array<i32, 2>>(),
Call<array<u32, 2>>());
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(error: 'array<u32, 2>' cannot be used to construct an array of 'array<i32, 2>')");
}
TEST_F(ResolverValueConstructorValidationTest, InferredArrayOfArray_SubElemTypeMismatch) {
// array<array<i32, 2u>, 2u>(array<i32, 2u>(), array<u32, 2u>());
auto* t = Call<array<Infer>>(Source{{12, 34}}, Call<array<i32, 2>>(), Call<array<u32, 2>>());
WrapInFunction(t);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
R"(12:34 error: cannot infer common array element type from constructor arguments
note: argument 0 is of type 'array<i32, 2>'
note: argument 1 is of type 'array<u32, 2>')");
}
TEST_F(ResolverValueConstructorValidationTest, Array_TooFewElements) {
// array<i32, 4u>(1i, 2i, 3i);
SetSource(Source::Location({12, 34}));
auto* tc = Call<array<i32, 4>>(Expr(1_i), Expr(2_i), Expr(3_i));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: array constructor has too few elements: expected 4, found 3");
}
TEST_F(ResolverValueConstructorValidationTest, Array_TooManyElements) {
// array<i32, 4u>(1i, 2i, 3i, 4i, 5i);
SetSource(Source::Location({12, 34}));
auto* tc = Call<array<i32, 4>>(Expr(1_i), Expr(2_i), Expr(3_i), Expr(4_i), Expr(5_i));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"12:34 error: array constructor has too many "
"elements: expected 4, "
"found 5");
}
TEST_F(ResolverValueConstructorValidationTest, Array_Runtime) {
// array<i32>(1i);
auto* tc = Call<array<i32>>(Source{{12, 34}}, Expr(1_i));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: cannot construct a runtime-sized array");
}
TEST_F(ResolverValueConstructorValidationTest, Array_RuntimeZeroValue) {
// array<i32>();
auto* tc = Call<array<i32>>(Source{{12, 34}});
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: cannot construct a runtime-sized array");
}
} // namespace ArrayConstructor
namespace ScalarConstructor {
TEST_F(ResolverValueConstructorValidationTest, I32_Success) {
auto* expr = Call<i32>(Expr(123_i));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<core::type::I32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::I32>());
}
TEST_F(ResolverValueConstructorValidationTest, U32_Success) {
auto* expr = Call<u32>(Expr(123_u));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<core::type::U32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::U32>());
}
TEST_F(ResolverValueConstructorValidationTest, F32_Success) {
auto* expr = Call<f32>(Expr(1.23_f));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<core::type::F32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::F32>());
}
TEST_F(ResolverValueConstructorValidationTest, F16_Success) {
Enable(core::Extension::kF16);
auto* expr = Call<f16>(Expr(1.5_h));
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<core::type::F16>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::F16>());
}
TEST_F(ResolverValueConstructorValidationTest, Convert_f32_to_i32_Success) {
auto* expr = Call<i32>(1.23_f);
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<core::type::I32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::F32>());
}
TEST_F(ResolverValueConstructorValidationTest, Convert_i32_to_u32_Success) {
auto* expr = Call<u32>(123_i);
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<core::type::U32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::I32>());
}
TEST_F(ResolverValueConstructorValidationTest, Convert_u32_to_f16_Success) {
Enable(core::Extension::kF16);
auto* expr = Call<f16>(123_u);
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<core::type::F16>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::U32>());
}
TEST_F(ResolverValueConstructorValidationTest, Convert_f16_to_f32_Success) {
Enable(core::Extension::kF16);
auto* expr = Call<f32>(123_h);
WrapInFunction(expr);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(expr), nullptr);
ASSERT_TRUE(TypeOf(expr)->Is<core::type::F32>());
auto* call = Sem().Get<sem::Call>(expr);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::F16>());
}
} // namespace ScalarConstructor
namespace VectorConstructor {
TEST_F(ResolverValueConstructorValidationTest, Vec2F32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec2<f32>>(Source{{12, 34}}, 1_i, 2_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(i32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec2F16_Error_ScalarArgumentTypeMismatch) {
Enable(core::Extension::kF16);
WrapInFunction(Call<vec2<f16>>(Source{{12, 34}}, 1_h, 2_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f16>(f16, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec2U32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec2<u32>>(Source{{12, 34}}, 1_u, 2_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<u32>(u32, i32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec2I32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec2<i32>>(Source{{12, 34}}, 1_u, 2_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<i32>(u32, i32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec2Bool_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec2<bool>>(Source{{12, 34}}, true, 1_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<bool>(bool, i32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_Vec3ArgumentCardinalityTooLarge) {
WrapInFunction(Call<vec2<f32>>(Source{{12, 34}}, Call<vec3<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(vec3<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_Vec4ArgumentCardinalityTooLarge) {
WrapInFunction(Call<vec2<f32>>(Source{{12, 34}}, Call<vec4<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(vec4<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_TooManyArgumentsScalar) {
WrapInFunction(Call<vec2<f32>>(Source{{12, 34}}, 1_f, 2_f, 3_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(f32, f32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_TooManyArgumentsVector) {
WrapInFunction(Call<vec2<f32>>(Source{{12, 34}}, Call<vec2<f32>>(), Call<vec2<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(vec2<f32>, vec2<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_TooManyArgumentsVectorAndScalar) {
WrapInFunction(Call<vec2<f32>>(Source{{12, 34}}, Call<vec2<f32>>(), 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(vec2<f32>, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec2_Error_InvalidArgumentType) {
WrapInFunction(Call<vec2<f32>>(Source{{12, 34}}, Call<mat2x2<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(mat2x2<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec2_Success_ZeroValue) {
auto* tc = Call<vec2<f32>>();
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 0u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec2F32_Success_Scalar) {
auto* tc = Call<vec2<f32>>(1_f, 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::F32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::F32>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec2F16_Success_Scalar) {
Enable(core::Extension::kF16);
auto* tc = Call<vec2<f16>>(1_h, 1_h);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::F16>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::F16>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec2U32_Success_Scalar) {
auto* tc = Call<vec2<u32>>(1_u, 1_u);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::U32>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec2I32_Success_Scalar) {
auto* tc = Call<vec2<i32>>(1_i, 1_i);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::I32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::I32>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec2Bool_Success_Scalar) {
auto* tc = Call<vec2<bool>>(true, false);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::Bool>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::Bool>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec2_Success_Identity) {
auto* tc = Call<vec2<f32>>(Call<vec2<f32>>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::Vector>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec2_Success_Vec2TypeConversion) {
auto* tc = Call<vec2<f32>>(Call<vec2<i32>>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 2u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::Vector>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec3F32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec3<f32>>(Source{{12, 34}}, 1_f, 2_f, 3_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(f32, f32, i32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3F16_Error_ScalarArgumentTypeMismatch) {
Enable(core::Extension::kF16);
WrapInFunction(Call<vec3<f16>>(Source{{12, 34}}, 1_h, 2_h, 3_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f16>(f16, f16, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3U32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec3<u32>>(Source{{12, 34}}, 1_u, 2_i, 3_u));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<u32>(u32, i32, u32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3I32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec3<i32>>(Source{{12, 34}}, 1_i, 2_u, 3_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<i32>(i32, u32, i32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3Bool_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec3<bool>>(Source{{12, 34}}, false, 1_i, true));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<bool>(bool, i32, bool)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_Vec4ArgumentCardinalityTooLarge) {
WrapInFunction(Call<vec3<f32>>(Source{{12, 34}}, Call<vec4<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(vec4<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooFewArgumentsScalar) {
WrapInFunction(Call<vec3<f32>>(Source{{12, 34}}, 1_f, 2_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(f32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooManyArgumentsScalar) {
WrapInFunction(Call<vec3<f32>>(Source{{12, 34}}, 1_f, 2_f, 3_f, 4_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(f32, f32, f32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooFewArgumentsVec2) {
WrapInFunction(Call<vec3<f32>>(Source{{12, 34}}, Call<vec2<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(vec2<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooManyArgumentsVec2) {
WrapInFunction(Call<vec3<f32>>(Source{{12, 34}}, Call<vec2<f32>>(), Call<vec2<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(vec2<f32>, vec2<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooManyArgumentsVec2AndScalar) {
WrapInFunction(Call<vec3<f32>>(Source{{12, 34}}, Call<vec2<f32>>(), 1_f, 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(vec2<f32>, f32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_TooManyArgumentsVec3) {
WrapInFunction(Call<vec3<f32>>(Source{{12, 34}}, Call<vec3<f32>>(), 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(vec3<f32>, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Error_InvalidArgumentType) {
WrapInFunction(Call<vec3<f32>>(Source{{12, 34}}, Call<mat2x2<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(mat2x2<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Success_ZeroValue) {
auto* tc = Call<vec3<f32>>();
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 0u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec3F32_Success_Scalar) {
auto* tc = Call<vec3<f32>>(1_f, 1_f, 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::F32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::F32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<core::type::F32>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec3F16_Success_Scalar) {
Enable(core::Extension::kF16);
auto* tc = Call<vec3<f16>>(1_h, 1_h, 1_h);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::F16>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::F16>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<core::type::F16>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec3U32_Success_Scalar) {
auto* tc = Call<vec3<u32>>(1_u, 1_u, 1_u);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::U32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<core::type::U32>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec3I32_Success_Scalar) {
auto* tc = Call<vec3<i32>>(1_i, 1_i, 1_i);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::I32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::I32>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<core::type::I32>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec3Bool_Success_Scalar) {
auto* tc = Call<vec3<bool>>(true, false, true);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 3u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::Bool>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::Bool>());
EXPECT_TRUE(ctor->Parameters()[2]->Type()->Is<core::type::Bool>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Success_Vec2AndScalar) {
auto* tc = Call<vec3<f32>>(Call<vec2<f32>>(), 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::Vector>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::F32>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Success_ScalarAndVec2) {
auto* tc = Call<vec3<f32>>(1_f, Call<vec2<f32>>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 2u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::F32>());
EXPECT_TRUE(ctor->Parameters()[1]->Type()->Is<core::type::Vector>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Success_Identity) {
auto* tc = Call<vec3<f32>>(Call<vec3<f32>>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConstructor>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::Vector>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec3_Success_Vec3TypeConversion) {
auto* tc = Call<vec3<f32>>(Call<vec3<i32>>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u);
auto* call = Sem().Get<sem::Call>(tc);
ASSERT_NE(call, nullptr);
auto* ctor = call->Target()->As<sem::ValueConversion>();
ASSERT_NE(ctor, nullptr);
EXPECT_EQ(call->Type(), ctor->ReturnType());
ASSERT_EQ(ctor->Parameters().Length(), 1u);
EXPECT_TRUE(ctor->Parameters()[0]->Type()->Is<core::type::Vector>());
}
TEST_F(ResolverValueConstructorValidationTest, Vec4F32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, 1_f, 1_f, 1_i, 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(f32, f32, i32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4F16_Error_ScalarArgumentTypeMismatch) {
Enable(core::Extension::kF16);
WrapInFunction(Call<vec4<f16>>(Source{{12, 34}}, 1_h, 1_h, 1_f, 1_h));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f16>(f16, f16, f32, f16)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4U32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec4<u32>>(Source{{12, 34}}, 1_u, 1_u, 1_i, 1_u));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<u32>(u32, u32, i32, u32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4I32_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec4<i32>>(Source{{12, 34}}, 1_i, 1_i, 1_u, 1_i));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<i32>(i32, i32, u32, i32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4Bool_Error_ScalarArgumentTypeMismatch) {
WrapInFunction(Call<vec4<bool>>(Source{{12, 34}}, true, false, 1_i, true));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<bool>(bool, bool, i32, bool)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooFewArgumentsScalar) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, 1_f, 2_f, 3_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(f32, f32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsScalar) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, 1_f, 2_f, 3_f, 4_f, 5_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(f32, f32, f32, f32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooFewArgumentsVec2AndScalar) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, Call<vec2<f32>>(), 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec2<f32>, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec2AndScalars) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, Call<vec2<f32>>(), 1_f, 2_f, 3_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec2<f32>, f32, f32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec2Vec2Scalar) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, Call<vec2<f32>>(), Call<vec2<f32>>(), 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec2<f32>, vec2<f32>, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec2Vec2Vec2) {
WrapInFunction(
Call<vec4<f32>>(Source{{12, 34}}, Call<vec2<f32>>(), Call<vec2<f32>>(), Call<vec2<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr(
"12:34 error: no matching constructor for vec4<f32>(vec2<f32>, vec2<f32>, vec2<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooFewArgumentsVec3) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, Call<vec3<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec3<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec3AndScalars) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, Call<vec3<f32>>(), 1_f, 2_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec3<f32>, f32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec3AndVec2) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, Call<vec3<f32>>(), Call<vec2<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec3<f32>, vec2<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec2AndVec3) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, Call<vec2<f32>>(), Call<vec3<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec2<f32>, vec3<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_TooManyArgumentsVec3AndVec3) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, Call<vec3<f32>>(), Call<vec3<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(vec3<f32>, vec3<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Error_InvalidArgumentType) {
WrapInFunction(Call<vec4<f32>>(Source{{12, 34}}, Call<mat2x2<f32>>()));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec4<f32>(mat2x2<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_ZeroValue) {
auto* tc = Call<vec4<f32>>();
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4F32_Success_Scalar) {
auto* tc = Call<vec4<f32>>(1_f, 1_f, 1_f, 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4F16_Success_Scalar) {
Enable(core::Extension::kF16);
auto* tc = Call<vec4<f16>>(1_h, 1_h, 1_h, 1_h);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4U32_Success_Scalar) {
auto* tc = Call<vec4<u32>>(1_u, 1_u, 1_u, 1_u);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4I32_Success_Scalar) {
auto* tc = Call<vec4<i32>>(1_i, 1_i, 1_i, 1_i);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4Bool_Success_Scalar) {
auto* tc = Call<vec4<bool>>(true, false, true, false);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_Vec2ScalarScalar) {
auto* tc = Call<vec4<f32>>(Call<vec2<f32>>(), 1_f, 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_ScalarVec2Scalar) {
auto* tc = Call<vec4<f32>>(1_f, Call<vec2<f32>>(), 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_ScalarScalarVec2) {
auto* tc = Call<vec4<f32>>(1_f, 1_f, Call<vec2<f32>>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_Vec2AndVec2) {
auto* tc = Call<vec4<f32>>(Call<vec2<f32>>(), Call<vec2<f32>>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_Vec3AndScalar) {
auto* tc = Call<vec4<f32>>(Call<vec3<f32>>(), 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_ScalarAndVec3) {
auto* tc = Call<vec4<f32>>(1_f, Call<vec3<f32>>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_Identity) {
auto* tc = Call<vec4<f32>>(Call<vec4<f32>>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vec4_Success_Vec4TypeConversion) {
auto* tc = Call<vec4<f32>>(Call<vec4<i32>>());
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, NestedVectorConstructors_InnerError) {
WrapInFunction(Call<vec4<f32>>(Call<vec4<f32>>(1_f, 1_f, //
Call<vec3<f32>>(Source{{12, 34}}, 1_f, 1_f)),
1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<f32>(f32, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, NestedVectorConstructors_Success) {
auto* tc = Call<vec4<f32>>(Call<vec3<f32>>(Call<vec2<f32>>(1_f, 1_f), 1_f), 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_NE(TypeOf(tc), nullptr);
ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, Vector_Alias_Argument_Error) {
auto* alias = Alias("UnsignedInt", ty.u32());
GlobalVar("uint_var", ty.Of(alias), core::AddressSpace::kPrivate);
auto* tc = Call<vec2<f32>>(Source{{12, 34}}, "uint_var");
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for vec2<f32>(u32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vector_Alias_Argument_Success) {
auto* f32_alias = Alias("Float32", ty.f32());
auto* vec2_alias = Alias("VectorFloat2", ty.vec2<f32>());
GlobalVar("my_f32", ty.Of(f32_alias), core::AddressSpace::kPrivate);
GlobalVar("my_vec2", ty.Of(vec2_alias), core::AddressSpace::kPrivate);
auto* tc = Call<vec3<f32>>("my_vec2", "my_f32");
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverValueConstructorValidationTest, Vector_ElementTypeAlias_Error) {
auto* f32_alias = Alias("Float32", ty.f32());
// vec2<Float32>(1.0f, 1u)
auto vec_type = ty.vec(ty.Of(f32_alias), 2);
WrapInFunction(Call(Source{{12, 34}}, vec_type, 1_f, 1_u));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec2<f32>(f32, u32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vector_ElementTypeAlias_Success) {
auto* f32_alias = Alias("Float32", ty.f32());
// vec2<Float32>(1.0f, 1.0f)
auto vec_type = ty.vec(ty.Of(f32_alias), 2);
auto* tc = Call(Source{{12, 34}}, vec_type, 1_f, 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverValueConstructorValidationTest, Vector_ArgumentElementTypeAlias_Error) {
auto* f32_alias = Alias("Float32", ty.f32());
// vec3<u32>(vec<Float32>(), 1.0f)
auto vec_type = ty.vec(ty.Of(f32_alias), 2);
WrapInFunction(Call<vec3<u32>>(Source{{12, 34}}, Call(vec_type), 1_f));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("12:34 error: no matching constructor for vec3<u32>(vec2<f32>, f32)"));
}
TEST_F(ResolverValueConstructorValidationTest, Vector_ArgumentElementTypeAlias_Success) {
auto* f32_alias = Alias("Float32", ty.f32());
// vec3<f32>(vec<Float32>(), 1.0f)
auto vec_type = ty.vec(ty.Of(f32_alias), 2);
auto* tc = Call<vec3<f32>>(Call(Source{{12, 34}}, vec_type), 1_f);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverValueConstructorValidationTest, InferVec2ElementTypeFromScalars) {
Enable(core::Extension::kF16);
auto* vec2_bool = Call<vec2<Infer>>(true, false);
auto* vec2_i32 = Call<vec2<Infer>>(1_i, 2_i);
auto* vec2_u32 = Call<vec2<Infer>>(1_u, 2_u);
auto* vec2_f32 = Call<vec2<Infer>>(1_f, 2_f);
auto* vec2_f16 = Call<vec2<Infer>>(1_h, 2_h);
WrapInFunction(vec2_bool, vec2_i32, vec2_u32, vec2_f32, vec2_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec2_bool)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec2_i32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec2_u32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec2_f32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec2_f16)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(vec2_bool)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_TRUE(TypeOf(vec2_i32)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_TRUE(TypeOf(vec2_u32)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_TRUE(TypeOf(vec2_f32)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(vec2_f16)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(vec2_bool)->As<core::type::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_i32)->As<core::type::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_u32)->As<core::type::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_f32)->As<core::type::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_f16)->As<core::type::Vector>()->Width(), 2u);
}
TEST_F(ResolverValueConstructorValidationTest, InferVec2ElementTypeFromVec2) {
Enable(core::Extension::kF16);
auto* vec2_bool = Call<vec2<Infer>>(Call<vec2<bool>>(true, false));
auto* vec2_i32 = Call<vec2<Infer>>(Call<vec2<i32>>(1_i, 2_i));
auto* vec2_u32 = Call<vec2<Infer>>(Call<vec2<u32>>(1_u, 2_u));
auto* vec2_f32 = Call<vec2<Infer>>(Call<vec2<f32>>(1_f, 2_f));
auto* vec2_f16 = Call<vec2<Infer>>(Call<vec2<f16>>(1_h, 2_h));
WrapInFunction(vec2_bool, vec2_i32, vec2_u32, vec2_f32, vec2_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec2_bool)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec2_i32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec2_u32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec2_f32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec2_f16)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(vec2_bool)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_TRUE(TypeOf(vec2_i32)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_TRUE(TypeOf(vec2_u32)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_TRUE(TypeOf(vec2_f32)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(vec2_f16)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(vec2_bool)->As<core::type::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_i32)->As<core::type::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_u32)->As<core::type::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_f32)->As<core::type::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(vec2_f16)->As<core::type::Vector>()->Width(), 2u);
}
TEST_F(ResolverValueConstructorValidationTest, InferVec3ElementTypeFromScalars) {
Enable(core::Extension::kF16);
auto* vec3_bool = Call<vec3<Infer>>(true, false, true);
auto* vec3_i32 = Call<vec3<Infer>>(1_i, 2_i, 3_i);
auto* vec3_u32 = Call<vec3<Infer>>(1_u, 2_u, 3_u);
auto* vec3_f32 = Call<vec3<Infer>>(1_f, 2_f, 3_f);
auto* vec3_f16 = Call<vec3<Infer>>(1_h, 2_h, 3_h);
WrapInFunction(vec3_bool, vec3_i32, vec3_u32, vec3_f32, vec3_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec3_bool)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_i32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_u32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_f32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_f16)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(vec3_bool)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_TRUE(TypeOf(vec3_i32)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_TRUE(TypeOf(vec3_u32)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_TRUE(TypeOf(vec3_f32)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(vec3_f16)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(vec3_bool)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_i32)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_u32)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f32)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f16)->As<core::type::Vector>()->Width(), 3u);
}
TEST_F(ResolverValueConstructorValidationTest, InferVec3ElementTypeFromVec3) {
Enable(core::Extension::kF16);
auto* vec3_bool = Call<vec3<Infer>>(Call<vec3<bool>>(true, false, true));
auto* vec3_i32 = Call<vec3<Infer>>(Call<vec3<i32>>(1_i, 2_i, 3_i));
auto* vec3_u32 = Call<vec3<Infer>>(Call<vec3<u32>>(1_u, 2_u, 3_u));
auto* vec3_f32 = Call<vec3<Infer>>(Call<vec3<f32>>(1_f, 2_f, 3_f));
auto* vec3_f16 = Call<vec3<Infer>>(Call<vec3<f16>>(1_h, 2_h, 3_h));
WrapInFunction(vec3_bool, vec3_i32, vec3_u32, vec3_f32, vec3_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec3_bool)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_i32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_u32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_f32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_f16)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(vec3_bool)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_TRUE(TypeOf(vec3_i32)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_TRUE(TypeOf(vec3_u32)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_TRUE(TypeOf(vec3_f32)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(vec3_f16)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(vec3_bool)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_i32)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_u32)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f32)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f16)->As<core::type::Vector>()->Width(), 3u);
}
TEST_F(ResolverValueConstructorValidationTest, InferVec3ElementTypeFromScalarAndVec2) {
Enable(core::Extension::kF16);
auto* vec3_bool = Call<vec3<Infer>>(true, Call<vec2<bool>>(false, true));
auto* vec3_i32 = Call<vec3<Infer>>(1_i, Call<vec2<i32>>(2_i, 3_i));
auto* vec3_u32 = Call<vec3<Infer>>(1_u, Call<vec2<u32>>(2_u, 3_u));
auto* vec3_f32 = Call<vec3<Infer>>(1_f, Call<vec2<f32>>(2_f, 3_f));
auto* vec3_f16 = Call<vec3<Infer>>(1_h, Call<vec2<f16>>(2_h, 3_h));
WrapInFunction(vec3_bool, vec3_i32, vec3_u32, vec3_f32, vec3_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec3_bool)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_i32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_u32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_f32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec3_f16)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(vec3_bool)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_TRUE(TypeOf(vec3_i32)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_TRUE(TypeOf(vec3_u32)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_TRUE(TypeOf(vec3_f32)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(vec3_f16)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(vec3_bool)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_i32)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_u32)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f32)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(vec3_f16)->As<core::type::Vector>()->Width(), 3u);
}
TEST_F(ResolverValueConstructorValidationTest, InferVec4ElementTypeFromScalars) {
Enable(core::Extension::kF16);
auto* vec4_bool = Call<vec4<Infer>>(true, false, true, false);
auto* vec4_i32 = Call<vec4<Infer>>(1_i, 2_i, 3_i, 4_i);
auto* vec4_u32 = Call<vec4<Infer>>(1_u, 2_u, 3_u, 4_u);
auto* vec4_f32 = Call<vec4<Infer>>(1_f, 2_f, 3_f, 4_f);
auto* vec4_f16 = Call<vec4<Infer>>(1_h, 2_h, 3_h, 4_h);
WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec4_bool)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_i32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_u32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_f32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_f16)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(vec4_bool)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_TRUE(TypeOf(vec4_i32)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_TRUE(TypeOf(vec4_u32)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_TRUE(TypeOf(vec4_f32)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(vec4_f16)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(vec4_bool)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_i32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_u32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f16)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, InferVec4ElementTypeFromVec4) {
Enable(core::Extension::kF16);
auto* vec4_bool = Call<vec4<Infer>>(Call<vec4<bool>>(true, false, true, false));
auto* vec4_i32 = Call<vec4<Infer>>(Call<vec4<i32>>(1_i, 2_i, 3_i, 4_i));
auto* vec4_u32 = Call<vec4<Infer>>(Call<vec4<u32>>(1_u, 2_u, 3_u, 4_u));
auto* vec4_f32 = Call<vec4<Infer>>(Call<vec4<f32>>(1_f, 2_f, 3_f, 4_f));
auto* vec4_f16 = Call<vec4<Infer>>(Call<vec4<f16>>(1_h, 2_h, 3_h, 4_h));
WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec4_bool)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_i32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_u32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_f32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_f16)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(vec4_bool)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_TRUE(TypeOf(vec4_i32)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_TRUE(TypeOf(vec4_u32)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_TRUE(TypeOf(vec4_f32)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(vec4_f16)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(vec4_bool)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_i32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_u32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f16)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, InferVec4ElementTypeFromScalarAndVec3) {
Enable(core::Extension::kF16);
auto* vec4_bool = Call<vec4<Infer>>(true, Call<vec3<bool>>(false, true, false));
auto* vec4_i32 = Call<vec4<Infer>>(1_i, Call<vec3<i32>>(2_i, 3_i, 4_i));
auto* vec4_u32 = Call<vec4<Infer>>(1_u, Call<vec3<u32>>(2_u, 3_u, 4_u));
auto* vec4_f32 = Call<vec4<Infer>>(1_f, Call<vec3<f32>>(2_f, 3_f, 4_f));
auto* vec4_f16 = Call<vec4<Infer>>(1_h, Call<vec3<f16>>(2_h, 3_h, 4_h));
WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec4_bool)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_i32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_u32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_f32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_f16)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(vec4_bool)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_TRUE(TypeOf(vec4_i32)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_TRUE(TypeOf(vec4_u32)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_TRUE(TypeOf(vec4_f32)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(vec4_f16)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(vec4_bool)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_i32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_u32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f16)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, InferVec4ElementTypeFromVec2AndVec2) {
Enable(core::Extension::kF16);
auto* vec4_bool =
Call<vec4<Infer>>(Call<vec2<bool>>(true, false), Call<vec2<bool>>(true, false));
auto* vec4_i32 = Call<vec4<Infer>>(Call<vec2<i32>>(1_i, 2_i), Call<vec2<i32>>(3_i, 4_i));
auto* vec4_u32 = Call<vec4<Infer>>(Call<vec2<u32>>(1_u, 2_u), Call<vec2<u32>>(3_u, 4_u));
auto* vec4_f32 = Call<vec4<Infer>>(Call<vec2<f32>>(1_f, 2_f), Call<vec2<f32>>(3_f, 4_f));
auto* vec4_f16 = Call<vec4<Infer>>(Call<vec2<f16>>(1_h, 2_h), Call<vec2<f16>>(3_h, 4_h));
WrapInFunction(vec4_bool, vec4_i32, vec4_u32, vec4_f32, vec4_f16);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(vec4_bool)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_i32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_u32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_f32)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(vec4_f16)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(vec4_bool)->As<core::type::Vector>()->type()->Is<core::type::Bool>());
EXPECT_TRUE(TypeOf(vec4_i32)->As<core::type::Vector>()->type()->Is<core::type::I32>());
EXPECT_TRUE(TypeOf(vec4_u32)->As<core::type::Vector>()->type()->Is<core::type::U32>());
EXPECT_TRUE(TypeOf(vec4_f32)->As<core::type::Vector>()->type()->Is<core::type::F32>());
EXPECT_TRUE(TypeOf(vec4_f16)->As<core::type::Vector>()->type()->Is<core::type::F16>());
EXPECT_EQ(TypeOf(vec4_bool)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_i32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_u32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f32)->As<core::type::Vector>()->Width(), 4u);
EXPECT_EQ(TypeOf(vec4_f16)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, InferVecNoArgs) {
auto* v2 = Call<vec2<Infer>>();
auto* v3 = Call<vec3<Infer>>();
auto* v4 = Call<vec4<Infer>>();
GlobalConst("v2", v2);
GlobalConst("v3", v3);
GlobalConst("v4", v4);
ASSERT_TRUE(r()->Resolve()) << r()->error();
ASSERT_TRUE(TypeOf(v2)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(v3)->Is<core::type::Vector>());
ASSERT_TRUE(TypeOf(v4)->Is<core::type::Vector>());
EXPECT_TRUE(TypeOf(v2)->As<core::type::Vector>()->type()->Is<core::type::AbstractInt>());
EXPECT_TRUE(TypeOf(v3)->As<core::type::Vector>()->type()->Is<core::type::AbstractInt>());
EXPECT_TRUE(TypeOf(v4)->As<core::type::Vector>()->type()->Is<core::type::AbstractInt>());
EXPECT_EQ(TypeOf(v2)->As<core::type::Vector>()->Width(), 2u);
EXPECT_EQ(TypeOf(v3)->As<core::type::Vector>()->Width(), 3u);
EXPECT_EQ(TypeOf(v4)->As<core::type::Vector>()->Width(), 4u);
}
TEST_F(ResolverValueConstructorValidationTest, CannotInferVec2ElementTypeFromScalarsMismatch) {
WrapInFunction(Call(Source{{1, 1}}, "vec2", //
Expr(Source{{1, 2}}, 1_i), //
Expr(Source{{1, 3}}, 2_u)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("1:1 error: no matching constructor for vec2(i32, u32)"));
}
TEST_F(ResolverValueConstructorValidationTest, CannotInferVec3ElementTypeFromScalarsMismatch) {
WrapInFunction(Call(Source{{1, 1}}, "vec3", //
Expr(Source{{1, 2}}, 1_i), //
Expr(Source{{1, 3}}, 2_u), //
Expr(Source{{1, 4}}, 3_i)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("1:1 error: no matching constructor for vec3(i32, u32, i32)"));
}
TEST_F(ResolverValueConstructorValidationTest,
CannotInferVec3ElementTypeFromScalarAndVec2Mismatch) {
WrapInFunction(Call(Source{{1, 1}}, "vec3", //
Expr(Source{{1, 2}}, 1_i), //
Call(Source{{1, 3}}, ty.vec2<f32>(), 2_f, 3_f)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("1:1 error: no matching constructor for vec3(i32, vec2<f32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, CannotInferVec4ElementTypeFromScalarsMismatch) {
WrapInFunction(Call(Source{{1, 1}}, "vec4", //
Expr(Source{{1, 2}}, 1_i), //
Expr(Source{{1, 3}}, 2_i), //
Expr(Source{{1, 4}}, 3_f), //
Expr(Source{{1, 5}}, 4_i)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("1:1 error: no matching constructor for vec4(i32, i32, f32, i32)"));
}
TEST_F(ResolverValueConstructorValidationTest,
CannotInferVec4ElementTypeFromScalarAndVec3Mismatch) {
WrapInFunction(Call(Source{{1, 1}}, "vec4", //
Expr(Source{{1, 2}}, 1_i), //
Call(Source{{1, 3}}, ty.vec3<u32>(), 2_u, 3_u, 4_u)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("1:1 error: no matching constructor for vec4(i32, vec3<u32>)"));
}
TEST_F(ResolverValueConstructorValidationTest, CannotInferVec4ElementTypeFromVec2AndVec2Mismatch) {
WrapInFunction(Call(Source{{1, 1}}, "vec4", //
Call(Source{{1, 2}}, ty.vec2<i32>(), 3_i, 4_i), //
Call(Source{{1, 3}}, ty.vec2<u32>(), 3_u, 4_u)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(),
HasSubstr("1:1 error: no matching constructor for vec4(vec2<i32>, vec2<u32>)"));
}
} // namespace VectorConstructor
namespace MatrixConstructor {
struct MatrixParams {
using name_func_ptr = std::string (*)();
uint32_t rows;
uint32_t columns;
name_func_ptr get_element_type_name;
builder::ast_type_func_ptr create_element_ast_type;
builder::ast_expr_from_double_func_ptr create_element_ast_value;
builder::ast_type_func_ptr create_column_ast_type;
builder::ast_type_func_ptr create_mat_ast_type;
};
template <typename T, uint32_t R, uint32_t C>
constexpr MatrixParams MatrixParamsFor() {
return MatrixParams{
R,
C,
DataType<T>::Name,
DataType<T>::AST,
DataType<T>::ExprFromDouble,
DataType<vec<R, T>>::AST,
DataType<mat<C, R, T>>::AST,
};
}
static std::string MatrixStr(const MatrixParams& param) {
return "mat" + std::to_string(param.columns) + "x" + std::to_string(param.rows) + "<" +
param.get_element_type_name() + ">";
}
using MatrixConstructorTest = ResolverTestWithParam<MatrixParams>;
TEST_P(MatrixConstructorTest, ColumnConstructor_Error_TooFewArguments) {
// matNxM<f32>(vecM<f32>(), ...); with N - 1 arguments
// matNxM<f16>(vecM<f16>(), ...); with N - 1 arguments
const auto param = GetParam();
Enable(core::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
StringStream args_tys;
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.columns - 1; i++) {
ast::Type vec_type = param.create_column_ast_type(*this);
args.Push(Call(vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<" + element_type_name + ">";
}
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, ElementConstructor_Error_TooFewArguments) {
// matNxM<f32>(f32,...,f32); with N*M - 1 arguments
// matNxM<f16>(f16,...,f16); with N*M - 1 arguments
const auto param = GetParam();
Enable(core::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
StringStream args_tys;
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.columns * param.rows - 1; i++) {
args.Push(Call(param.create_element_ast_type(*this)));
if (i > 0) {
args_tys << ", ";
}
args_tys << element_type_name;
}
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, ColumnConstructor_Error_TooManyArguments) {
// matNxM<f32>(vecM<f32>(), ...); with N + 1 arguments
// matNxM<f16>(vecM<f16>(), ...); with N + 1 arguments
const auto param = GetParam();
Enable(core::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
StringStream args_tys;
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.columns + 1; i++) {
ast::Type vec_type = param.create_column_ast_type(*this);
args.Push(Call(vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<" + element_type_name + ">";
}
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, ElementConstructor_Error_TooManyArguments) {
// matNxM<f32>(f32,...,f32); with N*M + 1 arguments
// matNxM<f16>(f16,...,f16); with N*M + 1 arguments
const auto param = GetParam();
Enable(core::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
StringStream args_tys;
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.columns * param.rows + 1; i++) {
args.Push(Call(param.create_element_ast_type(*this)));
if (i > 0) {
args_tys << ", ";
}
args_tys << element_type_name;
}
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, ColumnConstructor_Error_InvalidArgumentType) {
// matNxM<f32>(vec<u32>, vec<u32>, ...); N arguments
// matNxM<f16>(vec<u32>, vec<u32>, ...); N arguments
const auto param = GetParam();
Enable(core::Extension::kF16);
StringStream args_tys;
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.columns; i++) {
auto vec_type = ty.vec<u32>(param.rows);
args.Push(Call(vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<u32>";
}
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, ElementConstructor_Error_InvalidArgumentType) {
// matNxM<f32>(u32, u32, ...); N*M arguments
// matNxM<f16>(u32, u32, ...); N*M arguments
const auto param = GetParam();
Enable(core::Extension::kF16);
StringStream args_tys;
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.columns; i++) {
args.Push(Expr(1_u));
if (i > 0) {
args_tys << ", ";
}
args_tys << "u32";
}
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, ColumnConstructor_Error_TooFewRowsInVectorArgument) {
// matNxM<f32>(vecM<f32>(),...,vecM-1<f32>());
// matNxM<f16>(vecM<f16>(),...,vecM-1<f32>());
const auto param = GetParam();
// Skip the test if parameters would have resulted in an invalid vec1 type.
if (param.rows == 2) {
return;
}
Enable(core::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
StringStream args_tys;
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.columns; i++) {
ast::Type valid_vec_type = param.create_column_ast_type(*this);
args.Push(Call(valid_vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<" + element_type_name + ">";
}
const size_t kInvalidLoc = 2 * (param.columns - 1);
auto invalid_vec_type = ty.vec(param.create_element_ast_type(*this), param.rows - 1);
args.Push(Call(Source{{12, kInvalidLoc}}, invalid_vec_type));
args_tys << ", vec" << (param.rows - 1) << "<" + element_type_name + ">";
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, ColumnConstructor_Error_TooManyRowsInVectorArgument) {
// matNxM<f32>(vecM<f32>(),...,vecM+1<f32>());
// matNxM<f16>(vecM<f16>(),...,vecM+1<f16>());
const auto param = GetParam();
// Skip the test if parameters would have resulted in an invalid vec5 type.
if (param.rows == 4) {
return;
}
Enable(core::Extension::kF16);
const std::string element_type_name = param.get_element_type_name();
StringStream args_tys;
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.columns; i++) {
ast::Type valid_vec_type = param.create_column_ast_type(*this);
args.Push(Call(valid_vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<" + element_type_name + ">";
}
auto invalid_vec_type = ty.vec(param.create_element_ast_type(*this), param.rows + 1);
args.Push(Call(invalid_vec_type));
args_tys << ", vec" << (param.rows + 1) << "<" + element_type_name + ">";
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, ZeroValue_Success) {
// matNxM<f32>();
// matNxM<f16>();
const auto param = GetParam();
Enable(core::Extension::kF16);
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(Source{{12, 40}}, matrix_type);
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, WithColumns_Success) {
// matNxM<f32>(vecM<f32>(), ...); with N arguments
// matNxM<f16>(vecM<f16>(), ...); with N arguments
const auto param = GetParam();
Enable(core::Extension::kF16);
Vector<const ast::Expression*, 4> args;
for (uint32_t i = 0; i < param.columns; i++) {
ast::Type vec_type = param.create_column_ast_type(*this);
args.Push(Call(vec_type));
}
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, WithElements_Success) {
// matNxM<f32>(f32,...,f32); with N*M arguments
// matNxM<f16>(f16,...,f16); with N*M arguments
const auto param = GetParam();
Enable(core::Extension::kF16);
Vector<const ast::Expression*, 16> args;
for (uint32_t i = 0; i < param.columns * param.rows; i++) {
args.Push(Call(param.create_element_ast_type(*this)));
}
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, ElementTypeAlias_Error) {
// matNxM<Float32>(vecM<u32>(), ...); with N arguments
// matNxM<Float16>(vecM<u32>(), ...); with N arguments
const auto param = GetParam();
Enable(core::Extension::kF16);
auto* elem_type_alias = Alias("ElemType", param.create_element_ast_type(*this));
StringStream args_tys;
Vector<const ast::Expression*, 4> args;
for (uint32_t i = 0; i < param.columns; i++) {
auto vec_type = ty.vec(ty.u32(), param.rows);
args.Push(Call(vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<u32>";
}
auto matrix_type = ty.mat(ty.Of(elem_type_alias), param.columns, param.rows);
auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, ElementTypeAlias_Success) {
// matNxM<Float32>(vecM<f32>(), ...); with N arguments
// matNxM<Float16>(vecM<f16>(), ...); with N arguments
const auto param = GetParam();
Enable(core::Extension::kF16);
auto* elem_type_alias = Alias("ElemType", param.create_element_ast_type(*this));
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.columns; i++) {
ast::Type vec_type = param.create_column_ast_type(*this);
args.Push(Call(vec_type));
}
auto matrix_type = ty.mat(ty.Of(elem_type_alias), param.columns, param.rows);
auto* tc = Call(Source{}, matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverValueConstructorValidationTest, MatrixConstructor_ArgumentTypeAlias_Error) {
auto* alias = Alias("VectorUnsigned2", ty.vec2<u32>());
auto* tc = Call(Source{{12, 34}}, ty.mat2x2<f32>(), Call(ty.Of(alias)), Call<vec2<f32>>());
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(
r()->error(),
HasSubstr("12:34 error: no matching constructor for mat2x2<f32>(vec2<u32>, vec2<f32>)"));
}
TEST_P(MatrixConstructorTest, ArgumentTypeAlias_Success) {
const auto param = GetParam();
Enable(core::Extension::kF16);
ast::Type matrix_type = param.create_mat_ast_type(*this);
ast::Type vec_type = param.create_column_ast_type(*this);
auto* vec_alias = Alias("ColVectorAlias", vec_type);
Vector<const ast::Expression*, 4> args;
for (uint32_t i = 0; i < param.columns; i++) {
args.Push(Call(ty.Of(vec_alias)));
}
auto* tc = Call(Source{}, matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, ArgumentElementTypeAlias_Error) {
const auto param = GetParam();
Enable(core::Extension::kF16);
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* u32_type_alias = Alias("UnsignedInt", ty.u32());
StringStream args_tys;
Vector<const ast::Expression*, 4> args;
for (uint32_t i = 0; i < param.columns; i++) {
auto vec_type = ty.vec(ty.Of(u32_type_alias), param.rows);
args.Push(Call(vec_type));
if (i > 0) {
args_tys << ", ";
}
args_tys << "vec" << param.rows << "<u32>";
}
auto* tc = Call(Source{{12, 34}}, matrix_type, std::move(args));
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching constructor for " +
MatrixStr(param) + "(" + args_tys.str() + ")"));
}
TEST_P(MatrixConstructorTest, ArgumentElementTypeAlias_Success) {
const auto param = GetParam();
Enable(core::Extension::kF16);
auto* elem_type_alias = Alias("ElemType", param.create_element_ast_type(*this));
Vector<const ast::Expression*, 4> args;
for (uint32_t i = 0; i < param.columns; i++) {
auto vec_type = ty.vec(ty.Of(elem_type_alias), param.rows);
args.Push(Call(vec_type));
}
ast::Type matrix_type = param.create_mat_ast_type(*this);
auto* tc = Call(Source{}, matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, InferElementTypeFromVectors) {
const auto param = GetParam();
Enable(core::Extension::kF16);
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.columns; i++) {
args.Push(Call(param.create_column_ast_type(*this)));
}
auto matrix_type = ty.mat<Infer>(param.columns, param.rows);
auto* tc = Call(Source{}, matrix_type, std::move(args));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, InferElementTypeFromScalars) {
const auto param = GetParam();
Enable(core::Extension::kF16);
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.rows * param.columns; i++) {
args.Push(param.create_element_ast_value(*this, static_cast<double>(i)));
}
auto matrix_type = ty.mat<Infer>(param.columns, param.rows);
WrapInFunction(Call(Source{{12, 34}}, matrix_type, std::move(args)));
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_P(MatrixConstructorTest, CannotInferElementTypeFromVectors_Mismatch) {
const auto param = GetParam();
Enable(core::Extension::kF16);
StringStream err;
err << "12:34 error: no matching constructor for mat" << param.columns << "x" << param.rows
<< "(";
Vector<const ast::Expression*, 8> args;
for (uint32_t i = 0; i < param.columns; i++) {
if (i > 0) {
err << ", ";
}
if (i == 1) {
// Odd one out
args.Push(Call(ty.vec<i32>(param.rows)));
err << "vec" << param.rows << "<i32>";
} else {
args.Push(Call(param.create_column_ast_type(*this)));
err << "vec" << param.rows << "<" + param.get_element_type_name() + ">";
}
}
auto matrix_type = ty.mat<Infer>(param.columns, param.rows);
WrapInFunction(Call(Source{{12, 34}}, matrix_type, std::move(args)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr(err.str()));
}
TEST_P(MatrixConstructorTest, CannotInferElementTypeFromScalars_Mismatch) {
const auto param = GetParam();
Enable(core::Extension::kF16);
StringStream err;
err << "12:34 error: no matching constructor for mat" << param.columns << "x" << param.rows
<< "(";
Vector<const ast::Expression*, 16> args;
for (uint32_t i = 0; i < param.rows * param.columns; i++) {
if (i > 0) {
err << ", ";
}
if (i == 3) {
args.Push(Expr(static_cast<i32>(i))); // The odd one out
err << "i32";
} else {
args.Push(param.create_element_ast_value(*this, static_cast<double>(i)));
err << param.get_element_type_name();
}
}
err << ")";
auto matrix_type = ty.mat<Infer>(param.columns, param.rows);
WrapInFunction(Call(Source{{12, 34}}, matrix_type, std::move(args)));
EXPECT_FALSE(r()->Resolve());
EXPECT_THAT(r()->error(), HasSubstr(err.str()));
}
INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest,
MatrixConstructorTest,
testing::Values(MatrixParamsFor<f32, 2, 2>(),
MatrixParamsFor<f32, 3, 2>(),
MatrixParamsFor<f32, 4, 2>(),
MatrixParamsFor<f32, 2, 3>(),
MatrixParamsFor<f32, 3, 3>(),
MatrixParamsFor<f32, 4, 3>(),
MatrixParamsFor<f32, 2, 4>(),
MatrixParamsFor<f32, 3, 4>(),
MatrixParamsFor<f32, 4, 4>(),
MatrixParamsFor<f16, 2, 2>(),
MatrixParamsFor<f16, 3, 2>(),
MatrixParamsFor<f16, 4, 2>(),
MatrixParamsFor<f16, 2, 3>(),
MatrixParamsFor<f16, 3, 3>(),
MatrixParamsFor<f16, 4, 3>(),
MatrixParamsFor<f16, 2, 4>(),
MatrixParamsFor<f16, 3, 4>(),
MatrixParamsFor<f16, 4, 4>()));
} // namespace MatrixConstructor
namespace StructConstructor {
using builder::CreatePtrs;
using builder::CreatePtrsFor;
constexpr CreatePtrs all_types[] = {
CreatePtrsFor<bool>(), //
CreatePtrsFor<u32>(), //
CreatePtrsFor<i32>(), //
CreatePtrsFor<f32>(), //
CreatePtrsFor<f16>(), //
CreatePtrsFor<vec4<bool>>(), //
CreatePtrsFor<vec2<i32>>(), //
CreatePtrsFor<vec3<u32>>(), //
CreatePtrsFor<vec4<f32>>(), //
CreatePtrsFor<vec4<f16>>(), //
CreatePtrsFor<mat2x2<f32>>(), //
CreatePtrsFor<mat3x3<f32>>(), //
CreatePtrsFor<mat4x4<f32>>(), //
CreatePtrsFor<mat2x2<f16>>(), //
CreatePtrsFor<mat3x3<f16>>(), //
CreatePtrsFor<mat4x4<f16>>() //
};
auto number_of_members = testing::Values(2u, 32u, 64u);
using StructConstructorInputsTest =
ResolverTestWithParam<std::tuple<CreatePtrs, // struct member type
uint32_t>>; // number of struct members
TEST_P(StructConstructorInputsTest, TooFew) {
auto& param = GetParam();
auto& str_params = std::get<0>(param);
uint32_t N = std::get<1>(param);
Enable(core::Extension::kF16);
Vector<const ast::StructMember*, 16> members;
Vector<const ast::Expression*, 16> values;
for (uint32_t i = 0; i < N; i++) {
ast::Type struct_type = str_params.ast(*this);
members.Push(Member("member_" + std::to_string(i), struct_type));
if (i < N - 1) {
auto* ctor_value_expr = str_params.expr_from_double(*this, 0);
values.Push(ctor_value_expr);
}
}
auto* s = Structure("s", members);
auto* tc = Call(Source{{12, 34}}, ty.Of(s), values);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: structure constructor has too few inputs: expected " +
std::to_string(N) + ", found " + std::to_string(N - 1));
}
TEST_P(StructConstructorInputsTest, TooMany) {
auto& param = GetParam();
auto& str_params = std::get<0>(param);
uint32_t N = std::get<1>(param);
Enable(core::Extension::kF16);
Vector<const ast::StructMember*, 16> members;
Vector<const ast::Expression*, 8> values;
for (uint32_t i = 0; i < N + 1; i++) {
if (i < N) {
ast::Type struct_type = str_params.ast(*this);
members.Push(Member("member_" + std::to_string(i), struct_type));
}
auto* ctor_value_expr = str_params.expr_from_double(*this, 0);
values.Push(ctor_value_expr);
}
auto* s = Structure("s", members);
auto* tc = Call(Source{{12, 34}}, ty.Of(s), values);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: structure constructor has too many inputs: expected " +
std::to_string(N) + ", found " + std::to_string(N + 1));
}
INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest,
StructConstructorInputsTest,
testing::Combine(testing::ValuesIn(all_types), number_of_members));
using StructConstructorTypeTest =
ResolverTestWithParam<std::tuple<CreatePtrs, // struct member type
CreatePtrs, // constructor value type
uint32_t>>; // number of struct members
TEST_P(StructConstructorTypeTest, AllTypes) {
auto& param = GetParam();
auto& str_params = std::get<0>(param);
auto& ctor_params = std::get<1>(param);
uint32_t N = std::get<2>(param);
Enable(core::Extension::kF16);
if (str_params.ast == ctor_params.ast) {
return;
}
Vector<const ast::StructMember*, 16> members;
Vector<const ast::Expression*, 8> values;
// make the last value of the constructor to have a different type
uint32_t constructor_value_with_different_type = N - 1;
for (uint32_t i = 0; i < N; i++) {
ast::Type struct_type = str_params.ast(*this);
members.Push(Member("member_" + std::to_string(i), struct_type));
auto* ctor_value_expr = (i == constructor_value_with_different_type)
? ctor_params.expr_from_double(*this, 0)
: str_params.expr_from_double(*this, 0);
values.Push(ctor_value_expr);
}
auto* s = Structure("s", members);
auto* tc = Call(ty.Of(s), values);
WrapInFunction(tc);
StringStream err;
err << "error: type in structure constructor does not match struct member ";
err << "type: expected '" << str_params.name() << "', found '" << ctor_params.name() << "'";
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), err.str());
}
INSTANTIATE_TEST_SUITE_P(ResolverValueConstructorValidationTest,
StructConstructorTypeTest,
testing::Combine(testing::ValuesIn(all_types),
testing::ValuesIn(all_types),
number_of_members));
TEST_F(ResolverValueConstructorValidationTest, Struct_Nested) {
auto* inner_m = Member("m", ty.i32());
auto* inner_s = Structure("inner_s", Vector{inner_m});
auto* m0 = Member("m0", ty.i32());
auto* m1 = Member("m1", ty.Of(inner_s));
auto* m2 = Member("m2", ty.i32());
auto* s = Structure("s", Vector{m0, m1, m2});
auto* tc = Call(Source{{12, 34}}, ty.Of(s), 1_i, 1_i, 1_i);
WrapInFunction(tc);
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(),
"error: type in structure constructor does not match struct member "
"type: expected 'inner_s', found 'i32'");
}
TEST_F(ResolverValueConstructorValidationTest, Struct) {
auto* m = Member("m", ty.i32());
auto* s = Structure("MyInputs", Vector{m});
auto* tc = Call(Source{{12, 34}}, ty.Of(s));
WrapInFunction(tc);
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
TEST_F(ResolverValueConstructorValidationTest, Struct_Empty) {
auto* str = Structure("S", Vector{
Member("a", ty.i32()),
Member("b", ty.f32()),
Member("c", ty.vec3<i32>()),
});
WrapInFunction(Call(ty.Of(str)));
ASSERT_TRUE(r()->Resolve()) << r()->error();
}
} // namespace StructConstructor
TEST_F(ResolverValueConstructorValidationTest, NonConstructibleType_Atomic) {
WrapInFunction(Assign(Phony(), Call(Source{{12, 34}}, ty.atomic(ty.i32()))));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: type is not constructible");
}
TEST_F(ResolverValueConstructorValidationTest, NonConstructibleType_AtomicArray) {
WrapInFunction(Assign(Phony(), Call(Source{{12, 34}}, ty.array(ty.atomic(ty.i32()), 4_i))));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: array constructor has non-constructible element type");
}
TEST_F(ResolverValueConstructorValidationTest, NonConstructibleType_AtomicStructMember) {
auto* str = Structure("S", Vector{Member("a", ty.atomic(ty.i32()))});
WrapInFunction(Assign(Phony(), Call(Source{{12, 34}}, ty.Of(str))));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: structure constructor has non-constructible type");
}
TEST_F(ResolverValueConstructorValidationTest, NonConstructibleType_Sampler) {
WrapInFunction(
Assign(Phony(), Call(Source{{12, 34}}, ty.sampler(core::type::SamplerKind::kSampler))));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: type is not constructible");
}
TEST_F(ResolverValueConstructorValidationTest, BuilinTypeConstructorAsStatement) {
WrapInFunction(CallStmt(Call<vec2<f32>>(Source{{12, 34}}, 1_f, 2_f)));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: value constructor evaluated but not used");
}
TEST_F(ResolverValueConstructorValidationTest, StructConstructorAsStatement) {
Structure("S", Vector{Member("m", ty.i32())});
WrapInFunction(CallStmt(Call(Source{{12, 34}}, "S", 1_a)));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: value constructor evaluated but not used");
}
TEST_F(ResolverValueConstructorValidationTest, AliasConstructorAsStatement) {
Alias("A", ty.i32());
WrapInFunction(CallStmt(Call(Source{{12, 34}}, "A", 1_i)));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: value constructor evaluated but not used");
}
TEST_F(ResolverValueConstructorValidationTest, BuilinTypeConversionAsStatement) {
WrapInFunction(CallStmt(Call(Source{{12, 34}}, ty.f32(), 1_i)));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: value conversion evaluated but not used");
}
TEST_F(ResolverValueConstructorValidationTest, AliasConversionAsStatement) {
Alias("A", ty.i32());
WrapInFunction(CallStmt(Call(Source{{12, 34}}, "A", 1_f)));
EXPECT_FALSE(r()->Resolve());
EXPECT_EQ(r()->error(), "12:34 error: value conversion evaluated but not used");
}
} // namespace
} // namespace tint::resolver