| #include <metal_stdlib> |
| |
| using namespace metal; |
| |
| template<typename T, size_t N> |
| struct tint_array { |
| const constant T& operator[](size_t i) const constant { return elements[i]; } |
| device T& operator[](size_t i) device { return elements[i]; } |
| const device T& operator[](size_t i) const device { return elements[i]; } |
| thread T& operator[](size_t i) thread { return elements[i]; } |
| const thread T& operator[](size_t i) const thread { return elements[i]; } |
| threadgroup T& operator[](size_t i) threadgroup { return elements[i]; } |
| const threadgroup T& operator[](size_t i) const threadgroup { return elements[i]; } |
| T elements[N]; |
| }; |
| |
| #define TINT_ISOLATE_UB(VOLATILE_NAME) \ |
| {volatile bool VOLATILE_NAME = false; if (VOLATILE_NAME) break;} |
| |
| struct tint_symbol_1 { |
| float2 a_particlePos [[attribute(0)]]; |
| float2 a_particleVel [[attribute(1)]]; |
| float2 a_pos [[attribute(2)]]; |
| }; |
| |
| struct tint_symbol_2 { |
| float4 value [[position]]; |
| }; |
| |
| float4 vert_main_inner(float2 a_particlePos, float2 a_particleVel, float2 a_pos) { |
| float angle = -(atan2(a_particleVel[0], a_particleVel[1])); |
| float2 pos = float2(((a_pos[0] * cos(angle)) - (a_pos[1] * sin(angle))), ((a_pos[0] * sin(angle)) + (a_pos[1] * cos(angle)))); |
| return float4((pos + a_particlePos), 0.0f, 1.0f); |
| } |
| |
| vertex tint_symbol_2 vert_main(tint_symbol_1 tint_symbol [[stage_in]]) { |
| float4 const inner_result = vert_main_inner(tint_symbol.a_particlePos, tint_symbol.a_particleVel, tint_symbol.a_pos); |
| tint_symbol_2 wrapper_result = {}; |
| wrapper_result.value = inner_result; |
| return wrapper_result; |
| } |
| |
| struct tint_symbol_3 { |
| float4 value [[color(0)]]; |
| }; |
| |
| float4 frag_main_inner() { |
| return float4(1.0f); |
| } |
| |
| fragment tint_symbol_3 frag_main() { |
| float4 const inner_result_1 = frag_main_inner(); |
| tint_symbol_3 wrapper_result_1 = {}; |
| wrapper_result_1.value = inner_result_1; |
| return wrapper_result_1; |
| } |
| |
| struct Particle { |
| /* 0x0000 */ float2 pos; |
| /* 0x0008 */ float2 vel; |
| }; |
| |
| struct SimParams { |
| /* 0x0000 */ float deltaT; |
| /* 0x0004 */ float rule1Distance; |
| /* 0x0008 */ float rule2Distance; |
| /* 0x000c */ float rule3Distance; |
| /* 0x0010 */ float rule1Scale; |
| /* 0x0014 */ float rule2Scale; |
| /* 0x0018 */ float rule3Scale; |
| }; |
| |
| struct Particles { |
| /* 0x0000 */ tint_array<Particle, 5> particles; |
| }; |
| |
| void comp_main_inner(uint3 gl_GlobalInvocationID, device Particles* const tint_symbol_4, const constant SimParams* const tint_symbol_5, device Particles* const tint_symbol_6) { |
| uint index = gl_GlobalInvocationID[0]; |
| if ((index >= 5u)) { |
| return; |
| } |
| float2 vPos = (*(tint_symbol_4)).particles[index].pos; |
| float2 vVel = (*(tint_symbol_4)).particles[index].vel; |
| float2 cMass = float2(0.0f); |
| float2 cVel = float2(0.0f); |
| float2 colVel = float2(0.0f); |
| int cMassCount = 0; |
| int cVelCount = 0; |
| float2 pos = 0.0f; |
| float2 vel = 0.0f; |
| for(uint i = 0u; (i < 5u); i = (i + 1u)) { |
| TINT_ISOLATE_UB(tint_volatile_false); |
| if ((i == index)) { |
| continue; |
| } |
| pos = (*(tint_symbol_4)).particles[i].pos.xy; |
| vel = (*(tint_symbol_4)).particles[i].vel.xy; |
| if ((distance(pos, vPos) < (*(tint_symbol_5)).rule1Distance)) { |
| cMass = (cMass + pos); |
| cMassCount = as_type<int>((as_type<uint>(cMassCount) + as_type<uint>(1))); |
| } |
| if ((distance(pos, vPos) < (*(tint_symbol_5)).rule2Distance)) { |
| colVel = (colVel - (pos - vPos)); |
| } |
| if ((distance(pos, vPos) < (*(tint_symbol_5)).rule3Distance)) { |
| cVel = (cVel + vel); |
| cVelCount = as_type<int>((as_type<uint>(cVelCount) + as_type<uint>(1))); |
| } |
| } |
| if ((cMassCount > 0)) { |
| cMass = ((cMass / float2(float(cMassCount), float(cMassCount))) - vPos); |
| } |
| if ((cVelCount > 0)) { |
| cVel = (cVel / float2(float(cVelCount), float(cVelCount))); |
| } |
| vVel = (((vVel + (cMass * (*(tint_symbol_5)).rule1Scale)) + (colVel * (*(tint_symbol_5)).rule2Scale)) + (cVel * (*(tint_symbol_5)).rule3Scale)); |
| vVel = (normalize(vVel) * clamp(length(vVel), 0.0f, 0.10000000149011611938f)); |
| vPos = (vPos + (vVel * (*(tint_symbol_5)).deltaT)); |
| if ((vPos[0] < -1.0f)) { |
| vPos[0] = 1.0f; |
| } |
| if ((vPos[0] > 1.0f)) { |
| vPos[0] = -1.0f; |
| } |
| if ((vPos[1] < -1.0f)) { |
| vPos[1] = 1.0f; |
| } |
| if ((vPos[1] > 1.0f)) { |
| vPos[1] = -1.0f; |
| } |
| (*(tint_symbol_6)).particles[index].pos = vPos; |
| (*(tint_symbol_6)).particles[index].vel = vVel; |
| } |
| |
| kernel void comp_main(device Particles* tint_symbol_7 [[buffer(1)]], const constant SimParams* tint_symbol_8 [[buffer(0)]], device Particles* tint_symbol_9 [[buffer(2)]], uint3 gl_GlobalInvocationID [[thread_position_in_grid]]) { |
| comp_main_inner(gl_GlobalInvocationID, tint_symbol_7, tint_symbol_8, tint_symbol_9); |
| return; |
| } |
| |