blob: 1bcceba96100dc3a9d2ff2a0f8c96791a6d8f6b0 [file] [log] [blame]
// Copyright 2025 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/spirv/reader/lower/atomics.h"
#include <utility>
#include "src/tint/lang/core/ir/builder.h"
#include "src/tint/lang/core/ir/clone_context.h"
#include "src/tint/lang/core/ir/module.h"
#include "src/tint/lang/core/ir/validator.h"
#include "src/tint/lang/core/type/builtin_structs.h"
#include "src/tint/lang/spirv/ir/builtin_call.h"
#include "src/tint/utils/containers/hashmap.h"
#include "src/tint/utils/containers/hashset.h"
namespace tint::spirv::reader::lower {
namespace {
using namespace tint::core::fluent_types; // NOLINT
using namespace tint::core::number_suffixes; // NOLINT
/// PIMPL state for the transform.
struct State {
/// The IR module.
core::ir::Module& ir;
/// The IR builder.
core::ir::Builder b{ir};
/// The type manager.
core::type::Manager& ty{ir.Types()};
/// The `ir::Value`s to be converted to atomics
Vector<core::ir::Value*, 8> values_to_convert_{};
/// The `ir::Values`s which have had their types changed, they then need to have their
/// loads/stores updated to match. This maps to the root FunctionParam or Var for each atomic.
Vector<core::ir::Value*, 8> values_to_fix_usages_{};
/// Any `ir::UserCall` instructions which have atomic params which need to
/// be updated.
Hashset<core::ir::UserCall*, 2> user_calls_to_convert_{};
/// The `ir::Value`s which have been converted
Hashset<core::ir::Value*, 8> converted_{};
/// Function to atomic replacements, this is done by hashcode since the
/// function pointer is combined with the parameters which are converted to
/// atomics.
Hashmap<size_t, core::ir::Function*, 4> func_hash_to_func_{};
struct ForkedStruct {
const core::type::Struct* src_struct = nullptr;
const core::type::Struct* dst_struct = nullptr;
Hashset<size_t, 4> atomic_members;
};
/// Map of original structure to forked structure information
Hashmap<const core::type::Struct*, ForkedStruct, 4> forked_structs_{};
/// List of value objects to update with new struct types
Hashset<core::ir::InstructionResult*, 4> values_needing_struct_update_{};
/// Process the module.
void Process() {
Vector<spirv::ir::BuiltinCall*, 4> builtin_worklist;
for (auto* inst : ir.Instructions()) {
if (auto* builtin = inst->As<spirv::ir::BuiltinCall>()) {
switch (builtin->Func()) {
case spirv::BuiltinFn::kAtomicLoad:
case spirv::BuiltinFn::kAtomicStore:
case spirv::BuiltinFn::kAtomicExchange:
case spirv::BuiltinFn::kAtomicCompareExchange:
case spirv::BuiltinFn::kAtomicIAdd:
case spirv::BuiltinFn::kAtomicISub:
case spirv::BuiltinFn::kAtomicSMax:
case spirv::BuiltinFn::kAtomicSMin:
case spirv::BuiltinFn::kAtomicUMax:
case spirv::BuiltinFn::kAtomicUMin:
case spirv::BuiltinFn::kAtomicAnd:
case spirv::BuiltinFn::kAtomicOr:
case spirv::BuiltinFn::kAtomicXor:
case spirv::BuiltinFn::kAtomicIIncrement:
case spirv::BuiltinFn::kAtomicIDecrement:
builtin_worklist.Push(builtin);
break;
default:
// Ignore any unknown instruction. The `Texture` transform runs after this
// one which will catch any unknown instructions.
break;
}
}
}
for (auto* builtin : builtin_worklist) {
values_to_convert_.Push(builtin->Args()[0]);
switch (builtin->Func()) {
case spirv::BuiltinFn::kAtomicLoad:
AtomicOpNoArgs(builtin, core::BuiltinFn::kAtomicLoad);
break;
case spirv::BuiltinFn::kAtomicStore:
AtomicOp(builtin, core::BuiltinFn::kAtomicStore);
break;
case spirv::BuiltinFn::kAtomicExchange:
AtomicOp(builtin, core::BuiltinFn::kAtomicExchange);
break;
case spirv::BuiltinFn::kAtomicCompareExchange:
AtomicCompareExchange(builtin);
break;
case spirv::BuiltinFn::kAtomicIAdd:
AtomicOp(builtin, core::BuiltinFn::kAtomicAdd);
break;
case spirv::BuiltinFn::kAtomicISub:
AtomicOp(builtin, core::BuiltinFn::kAtomicSub);
break;
case spirv::BuiltinFn::kAtomicSMax:
AtomicOp(builtin, core::BuiltinFn::kAtomicMax);
break;
case spirv::BuiltinFn::kAtomicSMin:
AtomicOp(builtin, core::BuiltinFn::kAtomicMin);
break;
case spirv::BuiltinFn::kAtomicUMax:
AtomicOp(builtin, core::BuiltinFn::kAtomicMax);
break;
case spirv::BuiltinFn::kAtomicUMin:
AtomicOp(builtin, core::BuiltinFn::kAtomicMin);
break;
case spirv::BuiltinFn::kAtomicAnd:
AtomicOp(builtin, core::BuiltinFn::kAtomicAnd);
break;
case spirv::BuiltinFn::kAtomicOr:
AtomicOp(builtin, core::BuiltinFn::kAtomicOr);
break;
case spirv::BuiltinFn::kAtomicXor:
AtomicOp(builtin, core::BuiltinFn::kAtomicXor);
break;
case spirv::BuiltinFn::kAtomicIIncrement:
AtomicChangeByOne(builtin, core::BuiltinFn::kAtomicAdd);
break;
case spirv::BuiltinFn::kAtomicIDecrement:
AtomicChangeByOne(builtin, core::BuiltinFn::kAtomicSub);
break;
default:
TINT_UNREACHABLE() << "unknown spirv builtin: " << builtin->Func();
}
}
// Propagate up the instruction list until we get to the root identifier
while (!values_to_convert_.IsEmpty()) {
auto* val = values_to_convert_.Pop();
if (converted_.Add(val)) {
ConvertAtomicValue(val);
}
}
ProcessForkedStructs();
ReplaceStructTypes();
// The double loop happens because when we convert user calls, that will
// add more values to convert, but those values can find user calls to
// convert, so we have to work until we stabilize
while (!values_to_fix_usages_.IsEmpty()) {
while (!values_to_fix_usages_.IsEmpty()) {
auto* val = values_to_fix_usages_.Pop();
ConvertUsagesToAtomic(val);
}
auto user_calls = user_calls_to_convert_.Vector();
// Sort for deterministic output
user_calls.Sort();
for (auto& call : user_calls) {
ConvertUserCall(call);
}
user_calls_to_convert_.Clear();
}
}
core::ir::Value* One(const core::type::Type* const_ty) {
return tint::Switch(
const_ty, //
[&](const core::type::I32*) { return b.Constant(1_i); },
[&](const core::type::U32*) { return b.Constant(1_u); }, //
TINT_ICE_ON_NO_MATCH);
}
void AtomicCompareExchange(spirv::ir::BuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* var = args[0];
auto* val = args[4];
auto* comp = args[5];
auto* strct =
core::type::CreateAtomicCompareExchangeResult(ty, ir.symbols, val->Type());
auto* bi = b.Call(strct, core::BuiltinFn::kAtomicCompareExchangeWeak, var, val, comp);
b.AccessWithResult(call->DetachResult(), bi, 0_u);
});
call->Destroy();
}
void AtomicChangeByOne(spirv::ir::BuiltinCall* call, core::BuiltinFn fn) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* var = args[0];
auto* one = One(call->Result()->Type());
b.CallWithResult(call->DetachResult(), fn, var, one);
});
call->Destroy();
}
void AtomicOpNoArgs(spirv::ir::BuiltinCall* call, core::BuiltinFn fn) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* var = args[0];
b.CallWithResult(call->DetachResult(), fn, var);
});
call->Destroy();
}
void AtomicOp(spirv::ir::BuiltinCall* call, core::BuiltinFn fn) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* var = args[0];
auto* val = args[3];
b.CallWithResult(call->DetachResult(), fn, var, val);
});
call->Destroy();
}
void ProcessForkedStructs() {
for (auto iter : forked_structs_) {
auto& forked = iter.value;
CreateForkIfNeeded(forked.src_struct);
}
}
const core::type::Struct* CreateForkIfNeeded(const core::type::Struct* src_struct) {
if (!forked_structs_.Contains(src_struct)) {
return src_struct;
}
auto forked = forked_structs_.Get(src_struct);
if (forked->dst_struct != nullptr) {
return forked->dst_struct;
}
auto members = forked->src_struct->Members();
Vector<const core::type::StructMember*, 8> new_members;
for (size_t i = 0; i < members.Length(); ++i) {
auto* member = members[i];
const core::type::Type* new_member_type = nullptr;
if (forked->atomic_members.Contains(i)) {
new_member_type = AtomicTypeFor(nullptr, member->Type());
} else {
new_member_type = member->Type();
}
auto index = static_cast<uint32_t>(i);
new_members.Push(ty.Get<core::type::StructMember>(
member->Name(), new_member_type, index, member->Offset(), member->Align(),
member->Size(), core::IOAttributes{}));
}
// Create a new struct with the rewritten members.
auto name = ir.symbols.New(forked->src_struct->Name().Name() + "_atomic");
forked->dst_struct = ty.Struct(name, std::move(new_members));
return forked->dst_struct;
}
void ReplaceStructTypes() {
for (auto iter : values_needing_struct_update_) {
auto* orig_ty = iter->Type();
iter->SetType(AtomicTypeFor(nullptr, orig_ty));
}
}
void ConvertAtomicValue(core::ir::Value* val) {
tint::Switch( //
val, //
[&](core::ir::InstructionResult* res) {
auto* orig_ty = res->Type();
auto* atomic_ty = AtomicTypeFor(val, orig_ty);
res->SetType(atomic_ty);
tint::Switch(
res->Instruction(),
[&](core::ir::Access* a) {
CheckForStructForking(a);
values_to_convert_.Push(a->Object());
},
[&](core::ir::Let* l) {
values_to_convert_.Push(l->Value());
values_to_fix_usages_.Push(l->Result());
},
[&](core::ir::Var* v) {
auto* var_res = v->Result();
values_to_fix_usages_.Push(var_res);
},
TINT_ICE_ON_NO_MATCH);
},
[&](core::ir::FunctionParam* param) {
auto* orig_ty = param->Type();
auto* atomic_ty = AtomicTypeFor(val, orig_ty);
param->SetType(atomic_ty);
values_to_fix_usages_.Push(param);
for (auto& usage : param->Function()->UsagesUnsorted()) {
if (usage->instruction->Is<core::ir::Return>()) {
continue;
}
auto* call = usage->instruction->As<core::ir::Call>();
TINT_ASSERT(call);
values_to_convert_.Push(call->Args()[param->Index()]);
}
},
TINT_ICE_ON_NO_MATCH);
}
void ConvertUsagesToAtomic(core::ir::Value* val) {
val->ForEachUseUnsorted([&](const core::ir::Usage& usage) {
auto* inst = usage.instruction;
tint::Switch( //
inst,
[&](core::ir::Load* ld) {
TINT_ASSERT(ld->From()->Type()->UnwrapPtr()->Is<core::type::Atomic>());
b.InsertBefore(ld, [&] {
b.CallWithResult(ld->DetachResult(), core::BuiltinFn::kAtomicLoad,
ld->From());
});
ld->Destroy();
},
[&](core::ir::Store* st) {
TINT_ASSERT(st->To()->Type()->UnwrapPtr()->Is<core::type::Atomic>());
b.InsertBefore(st, [&] {
b.Call(ty.void_(), core::BuiltinFn::kAtomicStore, st->To(), st->From());
});
st->Destroy();
},
[&](core::ir::Access* access) {
auto* res = access->Result();
auto* new_ty = TypeForAccess(access);
if (new_ty == res->Type()) {
return;
}
res->SetType(new_ty);
if (converted_.Add(res)) {
values_to_fix_usages_.Push(res);
}
},
[&](core::ir::Let* l) {
auto* res = l->Result();
auto* orig_ty = res->Type();
auto* new_ty = AtomicTypeFor(nullptr, orig_ty);
if (new_ty == orig_ty) {
return;
}
res->SetType(new_ty);
if (converted_.Add(res)) {
values_to_fix_usages_.Push(res);
}
},
[&](core::ir::UserCall* uc) { user_calls_to_convert_.Add(uc); },
[&](core::ir::CoreBuiltinCall* bc) {
// This was converted when we switched from a SPIR-V intrinsic to core
TINT_ASSERT(core::IsAtomic(bc->Func()));
TINT_ASSERT(bc->Args()[0]->Type()->UnwrapPtr()->Is<core::type::Atomic>());
},
TINT_ICE_ON_NO_MATCH);
});
}
// The user calls need to check all of the parameters which were converted
// to atomics and create a forked function call for that combination of
// parameters.
void ConvertUserCall(core::ir::UserCall* uc) {
auto* target = uc->Target();
auto& params = target->Params();
const auto& args = uc->Args();
Vector<size_t, 2> to_convert;
for (size_t i = 0; i < args.Length(); ++i) {
if (params[i]->Type() != args[i]->Type()) {
to_convert.Push(i);
}
}
// Everything is already converted we're done.
if (to_convert.IsEmpty()) {
return;
}
// Hash based on the original function pointer and the specific
// parameters we're converting.
auto hash = Hash(target);
hash = HashCombine(hash, to_convert);
auto* new_fn = func_hash_to_func_.GetOrAdd(hash, [&] {
core::ir::CloneContext ctx{ir};
auto* fn = uc->Target()->Clone(ctx);
ir.functions.Push(fn);
for (auto idx : to_convert) {
auto* p = fn->Params()[idx];
p->SetType(args[idx]->Type());
values_to_fix_usages_.Push(p);
}
return fn;
});
uc->SetTarget(new_fn);
}
const core::type::Type* TypeForAccess(core::ir::Access* access) {
auto* ptr = access->Object()->Type()->As<core::type::Pointer>();
TINT_ASSERT(ptr);
auto* cur_ty = ptr->UnwrapPtr();
for (auto& idx : access->Indices()) {
tint::Switch( //
cur_ty, //
[&](const core::type::Struct* str) {
if (forked_structs_.Contains(str)) {
str = forked_structs_.Get(str)->dst_struct;
}
auto* const_val = idx->As<core::ir::Constant>();
TINT_ASSERT(const_val);
auto const_idx = const_val->Value()->ValueAs<uint32_t>();
cur_ty = str->Members()[const_idx]->Type();
},
[&](const core::type::Array* arr) { cur_ty = arr->ElemType(); });
}
return ty.ptr(ptr->AddressSpace(), cur_ty, ptr->Access());
}
void CheckForStructForking(core::ir::Access* access) {
auto* cur_ty = access->Object()->Type()->UnwrapPtr();
for (auto* idx : access->Indices()) {
tint::Switch(
cur_ty, //
[&](const core::type::Struct* str) {
auto& forked = Fork(str);
auto* const_val = idx->As<core::ir::Constant>();
TINT_ASSERT(const_val);
auto const_idx = const_val->Value()->ValueAs<uint32_t>();
forked.atomic_members.Add(const_idx);
cur_ty = str->Members()[const_idx]->Type();
}, //
[&](const core::type::Array* ary) { cur_ty = ary->ElemType(); }, //
TINT_ICE_ON_NO_MATCH);
}
}
const core::type::Type* AtomicTypeFor(core::ir::Value* val, const core::type::Type* orig_ty) {
return tint::Switch(
orig_ty, //
[&](const core::type::I32*) { return ty.atomic(orig_ty); },
[&](const core::type::U32*) { return ty.atomic(orig_ty); },
[&](const core::type::Struct* str) {
// If a `val` is provided, then we're getting the atomic type for a value as we walk
// the full instruction list. This means we can't replace structs at this point
// because we may not have all the information about what members are atomics. So,
// we record the type needs to be updated for `val` after we've created the structs.
// (This works through pointers because this method is recursive, so a pointer to a
// struct will record the type needs updating).
//
// In the case `val` is a nullptr then we've gathered all the needed information for
// which members are atomics and can create the forked strut.
if (val) {
auto* res = val->As<core::ir::InstructionResult>();
TINT_ASSERT(res);
values_needing_struct_update_.Add(res);
Fork(str);
return str;
}
return CreateForkIfNeeded(str);
},
[&](const core::type::Array* arr) {
if (arr->Count()->Is<core::type::RuntimeArrayCount>()) {
return ty.runtime_array(AtomicTypeFor(val, arr->ElemType()));
}
auto count = arr->ConstantCount();
TINT_ASSERT(count);
return ty.array(AtomicTypeFor(val, arr->ElemType()), u32(count.value()));
},
[&](const core::type::Pointer* ptr) {
return ty.ptr(ptr->AddressSpace(), AtomicTypeFor(val, ptr->StoreType()),
ptr->Access());
},
[&](const core::type::Atomic* atomic) { return atomic; }, //
TINT_ICE_ON_NO_MATCH);
}
ForkedStruct& Fork(const core::type::Struct* str) {
return forked_structs_.GetOrAdd(str, [&]() {
ForkedStruct forked;
forked.src_struct = str;
return forked;
});
}
};
} // namespace
Result<SuccessType> Atomics(core::ir::Module& ir) {
auto result = ValidateAndDumpIfNeeded(ir, "spirv.Atomics",
core::ir::Capabilities{
core::ir::Capability::kAllowOverrides,
core::ir::Capability::kAllowNonCoreTypes,
});
if (result != Success) {
return result.Failure();
}
State{ir}.Process();
return Success;
}
} // namespace tint::spirv::reader::lower