| // Copyright 2017 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "dawn/native/Device.h" |
| |
| #include <webgpu/webgpu.h> |
| |
| #include <algorithm> |
| #include <array> |
| #include <mutex> |
| #include <utility> |
| |
| #include "absl/container/flat_hash_set.h" |
| #include "absl/strings/str_format.h" |
| #include "dawn/common/Log.h" |
| #include "dawn/common/Ref.h" |
| #include "dawn/common/StringViewUtils.h" |
| #include "dawn/common/SystemUtils.h" |
| #include "dawn/common/Version_autogen.h" |
| #include "dawn/native/AsyncTask.h" |
| #include "dawn/native/AttachmentState.h" |
| #include "dawn/native/BindGroup.h" |
| #include "dawn/native/BindGroupLayout.h" |
| #include "dawn/native/BlitBufferToDepthStencil.h" |
| #include "dawn/native/BlobCache.h" |
| #include "dawn/native/Buffer.h" |
| #include "dawn/native/CacheRequest.h" |
| #include "dawn/native/CacheResult.h" |
| #include "dawn/native/ChainUtils.h" |
| #include "dawn/native/CommandBuffer.h" |
| #include "dawn/native/CommandEncoder.h" |
| #include "dawn/native/CompilationMessages.h" |
| #include "dawn/native/CreatePipelineAsyncEvent.h" |
| #include "dawn/native/DawnNative.h" |
| #include "dawn/native/DynamicUploader.h" |
| #include "dawn/native/Error.h" |
| #include "dawn/native/ErrorData.h" |
| #include "dawn/native/ErrorInjector.h" |
| #include "dawn/native/ErrorScope.h" |
| #include "dawn/native/ExternalTexture.h" |
| #include "dawn/native/Instance.h" |
| #include "dawn/native/InternalPipelineStore.h" |
| #include "dawn/native/ObjectType_autogen.h" |
| #include "dawn/native/PhysicalDevice.h" |
| #include "dawn/native/PipelineCache.h" |
| #include "dawn/native/QuerySet.h" |
| #include "dawn/native/Queue.h" |
| #include "dawn/native/RenderBundleEncoder.h" |
| #include "dawn/native/RenderPipeline.h" |
| #include "dawn/native/Sampler.h" |
| #include "dawn/native/ShaderModuleParseRequest.h" |
| #include "dawn/native/SharedBufferMemory.h" |
| #include "dawn/native/SharedFence.h" |
| #include "dawn/native/SharedTextureMemory.h" |
| #include "dawn/native/Surface.h" |
| #include "dawn/native/SwapChain.h" |
| #include "dawn/native/Texture.h" |
| #include "dawn/native/ValidationUtils_autogen.h" |
| #include "dawn/native/WaitListEvent.h" |
| #include "dawn/native/utils/WGPUHelpers.h" |
| #include "dawn/platform/DawnPlatform.h" |
| #include "dawn/platform/metrics/HistogramMacros.h" |
| #include "dawn/platform/tracing/TraceEvent.h" |
| #include "partition_alloc/pointers/raw_ptr.h" |
| |
| namespace dawn::native { |
| |
| // DeviceBase sub-structures |
| |
| struct DeviceBase::Caches { |
| ContentLessObjectCache<AttachmentState> attachmentStates; |
| ContentLessObjectCache<BindGroupLayoutInternalBase> bindGroupLayouts; |
| ContentLessObjectCache<ComputePipelineBase> computePipelines; |
| ContentLessObjectCache<PipelineLayoutBase> pipelineLayouts; |
| ContentLessObjectCache<RenderPipelineBase> renderPipelines; |
| ContentLessObjectCache<SamplerBase> samplers; |
| ContentLessObjectCache<ShaderModuleBase> shaderModules; |
| }; |
| |
| // Tries to find an object in the cache, creating and inserting into the cache if not found. |
| template <typename RefCountedT, typename CreateFn> |
| auto GetOrCreate(ContentLessObjectCache<RefCountedT>& cache, |
| RefCountedT* blueprint, |
| CreateFn createFn) { |
| using ReturnType = decltype(createFn()); |
| |
| // If we find the blueprint in the cache we can just return it. |
| Ref<RefCountedT> result = cache.Find(blueprint); |
| if (result != nullptr) { |
| return ReturnType(result); |
| } |
| |
| using UnwrappedReturnType = typename detail::UnwrapResultOrError<ReturnType>::type; |
| static_assert(std::is_same_v<UnwrappedReturnType, Ref<RefCountedT>>, |
| "CreateFn should return an unwrapped type that is the same as Ref<RefCountedT>."); |
| |
| // Create the result and try inserting it. Note that inserts can race because the critical |
| // sections here is disjoint, hence the checks to verify whether this thread inserted. |
| if constexpr (!detail::IsResultOrError<ReturnType>::value) { |
| result = createFn(); |
| } else { |
| auto resultOrError = createFn(); |
| if (resultOrError.IsError()) [[unlikely]] { |
| return ReturnType(std::move(resultOrError.AcquireError())); |
| } |
| result = resultOrError.AcquireSuccess(); |
| } |
| DAWN_ASSERT(result.Get() != nullptr); |
| |
| bool inserted = false; |
| std::tie(result, inserted) = cache.Insert(result.Get()); |
| return ReturnType(result); |
| } |
| |
| namespace { |
| |
| static constexpr WGPUUncapturedErrorCallbackInfo kEmptyUncapturedErrorCallbackInfo = { |
| nullptr, nullptr, nullptr, nullptr}; |
| static constexpr WGPULoggingCallbackInfo kEmptyLoggingCallbackInfo = {nullptr, nullptr, nullptr, |
| nullptr}; |
| |
| void TrimErrorScopeStacks( |
| absl::flat_hash_map<ThreadUniqueId, std::unique_ptr<ErrorScopeStack>>& errorScopeStacks) { |
| for (auto it = errorScopeStacks.begin(); it != errorScopeStacks.end();) { |
| if (!IsThreadAlive(it->first)) { |
| errorScopeStacks.erase(it++); |
| } else { |
| it++; |
| } |
| } |
| } |
| |
| } // anonymous namespace |
| |
| DeviceBase::DeviceLostEvent::DeviceLostEvent(const WGPUDeviceLostCallbackInfo& callbackInfo) |
| : TrackedEvent(static_cast<wgpu::CallbackMode>(callbackInfo.mode), |
| TrackedEvent::NonProgressing{}), |
| mCallback(callbackInfo.callback), |
| mUserdata1(callbackInfo.userdata1), |
| mUserdata2(callbackInfo.userdata2) {} |
| |
| DeviceBase::DeviceLostEvent::~DeviceLostEvent() { |
| EnsureComplete(EventCompletionType::Shutdown); |
| } |
| |
| // static |
| Ref<DeviceBase::DeviceLostEvent> DeviceBase::DeviceLostEvent::Create( |
| const DeviceDescriptor* descriptor) { |
| DAWN_ASSERT(descriptor != nullptr); |
| |
| #if defined(DAWN_ENABLE_ASSERTS) |
| static constexpr WGPUDeviceLostCallbackInfo kDefaultDeviceLostCallbackInfo = { |
| nullptr, WGPUCallbackMode_AllowSpontaneous, |
| [](WGPUDevice const*, WGPUDeviceLostReason, WGPUStringView, void*, void*) { |
| static bool calledOnce = false; |
| if (!calledOnce) { |
| calledOnce = true; |
| dawn::WarningLog() << "No Dawn device lost callback was set. This is probably not " |
| "intended. If you really want to ignore device lost and " |
| "suppress this message, set the callback explicitly."; |
| } |
| }, |
| nullptr, nullptr}; |
| #else |
| static constexpr WGPUDeviceLostCallbackInfo kDefaultDeviceLostCallbackInfo = { |
| nullptr, WGPUCallbackMode_AllowProcessEvents, nullptr, nullptr, nullptr}; |
| #endif // DAWN_ENABLE_ASSERTS |
| |
| WGPUDeviceLostCallbackInfo deviceLostCallbackInfo = kDefaultDeviceLostCallbackInfo; |
| if (descriptor->deviceLostCallbackInfo.callback != nullptr) { |
| deviceLostCallbackInfo = descriptor->deviceLostCallbackInfo; |
| } |
| return AcquireRef(new DeviceBase::DeviceLostEvent(deviceLostCallbackInfo)); |
| } |
| |
| void DeviceBase::DeviceLostEvent::SetLost(EventManager* eventManager, |
| wgpu::DeviceLostReason reason, |
| std::string_view message) { |
| mReason = reason; |
| mMessage = message; |
| eventManager->SetFutureReady(this); |
| if (mDevice) { |
| // If the device was already set, then the device must be associated with this event. Since |
| // the event should only be set and triggered once, unset the event in the device now. |
| mDevice->mLostFuture = GetFuture(); |
| mDevice->mLostEvent = nullptr; |
| } |
| } |
| |
| void DeviceBase::DeviceLostEvent::Complete(EventCompletionType completionType) { |
| if (completionType == EventCompletionType::Shutdown) { |
| mReason = wgpu::DeviceLostReason::CallbackCancelled; |
| mMessage = "A valid external Instance reference no longer exists."; |
| } |
| |
| // Some users may use the device lost callback to deallocate resources allocated for the |
| // uncaptured error and logging callbacks, so reset these callbacks before calling the |
| // device lost callback. |
| if (mDevice != nullptr) { |
| mDevice->mUncapturedErrorCallbackInfo = kEmptyUncapturedErrorCallbackInfo; |
| { |
| std::lock_guard<std::shared_mutex> lock(mDevice->mLoggingMutex); |
| mDevice->mLoggingCallbackInfo = kEmptyLoggingCallbackInfo; |
| } |
| } |
| |
| auto device = ToAPI(mDevice.Get()); |
| void* userdata1 = mUserdata1.ExtractAsDangling(); |
| void* userdata2 = mUserdata2.ExtractAsDangling(); |
| |
| if (mReason == wgpu::DeviceLostReason::CallbackCancelled || |
| mReason == wgpu::DeviceLostReason::FailedCreation) { |
| device = nullptr; |
| } |
| if (mCallback) { |
| mCallback(&device, ToAPI(mReason), ToOutputStringView(mMessage), userdata1, userdata2); |
| } |
| |
| // Break the ref cycle between DeviceBase and DeviceLostEvent. |
| mDevice = nullptr; |
| } |
| |
| ResultOrError<Ref<PipelineLayoutBase>> ValidateLayoutAndGetComputePipelineDescriptorWithDefaults( |
| DeviceBase* device, |
| const ComputePipelineDescriptor& descriptor, |
| ComputePipelineDescriptor* outDescriptor) { |
| Ref<PipelineLayoutBase> layoutRef; |
| *outDescriptor = descriptor; |
| |
| if (outDescriptor->layout == nullptr) { |
| DAWN_TRY_ASSIGN(layoutRef, |
| PipelineLayoutBase::CreateDefault(device, |
| {{ |
| SingleShaderStage::Compute, |
| outDescriptor->compute.module, |
| outDescriptor->compute.entryPoint, |
| outDescriptor->compute.constantCount, |
| outDescriptor->compute.constants, |
| }}, |
| /*allowInternalBinding=*/false)); |
| outDescriptor->layout = layoutRef.Get(); |
| } |
| |
| return layoutRef; |
| } |
| |
| ResultOrError<Ref<PipelineLayoutBase>> ValidateLayoutAndGetRenderPipelineDescriptorWithDefaults( |
| DeviceBase* device, |
| const RenderPipelineDescriptor& descriptor, |
| RenderPipelineDescriptor* outDescriptor, |
| bool allowInternalBinding) { |
| Ref<PipelineLayoutBase> layoutRef; |
| *outDescriptor = descriptor; |
| |
| if (descriptor.layout == nullptr) { |
| // Ref will keep the pipeline layout alive until the end of the function where |
| // the pipeline will take another reference. |
| DAWN_TRY_ASSIGN(layoutRef, |
| PipelineLayoutBase::CreateDefault( |
| device, GetRenderStagesAndSetPlaceholderShader(device, &descriptor), |
| allowInternalBinding)); |
| outDescriptor->layout = layoutRef.Get(); |
| } |
| |
| return layoutRef; |
| } |
| |
| // DeviceBase |
| |
| DeviceBase::DeviceBase(AdapterBase* adapter, |
| const UnpackedPtr<DeviceDescriptor>& descriptor, |
| const TogglesState& deviceToggles, |
| Ref<DeviceLostEvent>&& lostEvent) |
| : mLostEvent(std::move(lostEvent)), |
| mAdapter(adapter), |
| mToggles(deviceToggles), |
| mNextPipelineCompatibilityToken(1) { |
| DAWN_ASSERT(descriptor); |
| |
| DAWN_ASSERT(mLostEvent); |
| mLostEvent->mDevice = this; |
| |
| #if defined(DAWN_ENABLE_ASSERTS) |
| static constexpr WGPUUncapturedErrorCallbackInfo kDefaultUncapturedErrorCallbackInfo = { |
| nullptr, |
| [](WGPUDevice const*, WGPUErrorType, WGPUStringView, void*, void*) { |
| static bool calledOnce = false; |
| if (!calledOnce) { |
| calledOnce = true; |
| dawn::WarningLog() << "No Dawn device uncaptured error callback was set. This is " |
| "probably not intended. If you really want to ignore errors " |
| "and suppress this message, set the callback explicitly."; |
| } |
| }, |
| nullptr, nullptr}; |
| #else |
| static constexpr WGPUUncapturedErrorCallbackInfo kDefaultUncapturedErrorCallbackInfo = |
| kEmptyUncapturedErrorCallbackInfo; |
| #endif // DAWN_ENABLE_ASSERTS |
| mUncapturedErrorCallbackInfo = kDefaultUncapturedErrorCallbackInfo; |
| if (descriptor->uncapturedErrorCallbackInfo.callback != nullptr) { |
| mUncapturedErrorCallbackInfo = descriptor->uncapturedErrorCallbackInfo; |
| } |
| |
| AdapterInfo adapterInfo; |
| adapter->APIGetInfo(&adapterInfo); |
| |
| ApplyFeatures(descriptor, adapter->GetFeatureLevel()); |
| |
| auto effectiveFeatureLevel = HasFeature(Feature::CoreFeaturesAndLimits) |
| ? wgpu::FeatureLevel::Core |
| : wgpu::FeatureLevel::Compatibility; |
| |
| DawnCacheDeviceDescriptor cacheDesc = {}; |
| const auto* cacheDescIn = descriptor.Get<DawnCacheDeviceDescriptor>(); |
| if (cacheDescIn != nullptr) { |
| cacheDesc = *cacheDescIn; |
| } |
| |
| if (cacheDesc.loadDataFunction == nullptr && cacheDesc.storeDataFunction == nullptr && |
| cacheDesc.functionUserdata == nullptr && GetPlatform()->GetCachingInterface() != nullptr) { |
| // Populate cache functions and userdata from legacy cachingInterface. |
| cacheDesc.loadDataFunction = [](const void* key, size_t keySize, void* value, |
| size_t valueSize, void* userdata) { |
| auto* cachingInterface = static_cast<dawn::platform::CachingInterface*>(userdata); |
| return cachingInterface->LoadData(key, keySize, value, valueSize); |
| }; |
| cacheDesc.storeDataFunction = [](const void* key, size_t keySize, const void* value, |
| size_t valueSize, void* userdata) { |
| auto* cachingInterface = static_cast<dawn::platform::CachingInterface*>(userdata); |
| return cachingInterface->StoreData(key, keySize, value, valueSize); |
| }; |
| cacheDesc.functionUserdata = GetPlatform()->GetCachingInterface(); |
| } |
| |
| // Disable caching if the DisableBlobCache toggle is enabled. |
| if (IsToggleEnabled(Toggle::DisableBlobCache)) { |
| cacheDesc.loadDataFunction = nullptr; |
| cacheDesc.storeDataFunction = nullptr; |
| cacheDesc.functionUserdata = nullptr; |
| } |
| |
| mBlobCache = std::make_unique<BlobCache>(cacheDesc); |
| |
| if (descriptor->requiredLimits != nullptr) { |
| UnpackLimitsIn(descriptor->requiredLimits, &mLimits); |
| mLimits = ReifyDefaultLimits(mLimits, effectiveFeatureLevel); |
| } else { |
| GetDefaultLimits(&mLimits, effectiveFeatureLevel); |
| } |
| |
| // Get texelCopyBufferRowAlignmentLimits from physical device |
| mLimits.texelCopyBufferRowAlignmentLimits = |
| GetPhysicalDevice()->GetLimits().texelCopyBufferRowAlignmentLimits; |
| |
| // Get hostMappedPointerLimits from physical device |
| mLimits.hostMappedPointerLimits = GetPhysicalDevice()->GetLimits().hostMappedPointerLimits; |
| |
| // Handle maxXXXPerStage/maxXXXInStage. |
| EnforceLimitSpecInvariants(&mLimits, effectiveFeatureLevel); |
| |
| if (mLimits.v1.maxStorageBuffersInFragmentStage < 1) { |
| // If there is no storage buffer in fragment stage, UseBlitForB2T is not possible. |
| mToggles.ForceSet(Toggle::UseBlitForB2T, false); |
| } |
| |
| mFormatTable = BuildFormatTable(this); |
| |
| if (!descriptor->label.IsUndefined()) { |
| mLabel = std::string(descriptor->label); |
| } |
| |
| mIsImmediateErrorHandlingEnabled = IsToggleEnabled(Toggle::EnableImmediateErrorHandling); |
| |
| // Generate entry point name from isolation key if provided. |
| if (!cacheDesc.isolationKey.IsUndefined()) { |
| std::string_view isolationKey = cacheDesc.isolationKey; |
| |
| std::stringstream ss; |
| ss << "dawn_entry_point_"; |
| // Combine with hexadecimal representation of bytes in isolation key. |
| for (const char& byte : isolationKey) { |
| ss << std::hex << std::setw(2) << std::setfill('0') << static_cast<uint32_t>(byte); |
| } |
| |
| mIsolatedEntryPointName = ss.str(); |
| } else { |
| mIsolatedEntryPointName = "dawn_entry_point"; |
| } |
| |
| // Record the cache key from the adapter info. Note that currently, if a new extension |
| // descriptor is added (and probably handled here), the cache key recording needs to be |
| // updated. |
| StreamIn(&mDeviceCacheKey, kDawnVersion, adapterInfo, mEnabledFeatures.featuresBitSet, mToggles, |
| cacheDesc); |
| } |
| |
| DeviceBase::DeviceBase() : mState(State::Alive), mToggles(ToggleStage::Device) { |
| GetDefaultLimits(&mLimits, wgpu::FeatureLevel::Core); |
| EnforceLimitSpecInvariants(&mLimits, wgpu::FeatureLevel::Core); |
| mFormatTable = BuildFormatTable(this); |
| |
| DeviceDescriptor desc = {}; |
| desc.deviceLostCallbackInfo = {nullptr, WGPUCallbackMode_AllowSpontaneous, nullptr, nullptr, |
| nullptr}; |
| mLostEvent = DeviceLostEvent::Create(&desc); |
| mLostEvent->mDevice = this; |
| } |
| |
| DeviceBase::~DeviceBase() { |
| // We need to explicitly release the Queue before we complete the destructor so that the |
| // Queue does not get destroyed after the Device. |
| mQueue = nullptr; |
| } |
| |
| MaybeError DeviceBase::Initialize(const UnpackedPtr<DeviceDescriptor>& descriptor, |
| Ref<QueueBase> defaultQueue) { |
| mQueue = std::move(defaultQueue); |
| |
| SetWGSLExtensionAllowList(); |
| |
| mCaches = std::make_unique<DeviceBase::Caches>(); |
| mDynamicUploader = std::make_unique<DynamicUploader>(this); |
| mCallbackTaskManager = AcquireRef(new CallbackTaskManager()); |
| mInternalPipelineStore = std::make_unique<InternalPipelineStore>(this); |
| |
| DAWN_ASSERT(GetPlatform() != nullptr); |
| mWorkerTaskPool = GetPlatform()->CreateWorkerTaskPool(); |
| mAsyncTaskManager = std::make_unique<AsyncTaskManager>(mWorkerTaskPool.get()); |
| |
| // Starting from now the backend can start doing reentrant calls so the device is marked as |
| // alive. |
| mState = State::Alive; |
| |
| // Fake an error after the creation of a device here for testing. |
| if (descriptor.Get<DawnFakeDeviceInitializeErrorForTesting>() != nullptr) { |
| return DAWN_INTERNAL_ERROR("DawnFakeDeviceInitialzeErrorForTesting"); |
| } |
| |
| DAWN_TRY_ASSIGN(mEmptyBindGroupLayout, CreateEmptyBindGroupLayout()); |
| DAWN_TRY_ASSIGN(mEmptyPipelineLayout, CreateEmptyPipelineLayout()); |
| |
| // If placeholder fragment shader module is needed, initialize it |
| if (IsToggleEnabled(Toggle::UsePlaceholderFragmentInVertexOnlyPipeline)) { |
| // The empty fragment shader, used as a work around for vertex-only render pipeline |
| constexpr char kEmptyFragmentShader[] = R"( |
| @fragment fn fs_empty_main() {} |
| )"; |
| ShaderModuleDescriptor shaderDesc; |
| ShaderSourceWGSL wgslDesc; |
| wgslDesc.code = kEmptyFragmentShader; |
| shaderDesc.nextInChain = &wgslDesc; |
| |
| DAWN_TRY_ASSIGN(mInternalPipelineStore->placeholderFragmentShader, |
| CreateShaderModule(&shaderDesc, /* internalExtensions */ {})); |
| } |
| |
| if (HasFeature(Feature::ImplicitDeviceSynchronization)) { |
| mMutex = AcquireRef(new Mutex); |
| } else { |
| mMutex = nullptr; |
| } |
| |
| mAdapter->GetInstance()->AddDevice(this); |
| |
| return {}; |
| } |
| |
| void DeviceBase::WillDropLastExternalRef() { |
| { |
| // This will be invoked by API side, so we need to lock. |
| // Note: we cannot hold the lock when flushing the callbacks so have to limit the scope of |
| // the lock. |
| auto deviceLock(GetScopedLock()); |
| |
| // Set DeviceLostEvent to pass a null device to the callback (which may happen in Destroy() |
| // depending on the CallbackMode). This also makes DeviceLostEvent skip unregistering the |
| // UncapturedError and Logging callbacks; they'll be unregistered later in this function. |
| if (mLostEvent) { |
| mLostEvent->mDevice = nullptr; |
| } |
| |
| // DeviceBase uses RefCountedWithExternalCount to break refcycles. |
| // |
| // DeviceBase holds multiple Refs to various API objects (pipelines, buffers, etc.) which |
| // are used to implement various device-level facilities. These objects are cached on the |
| // device, so we want to keep them around instead of making transient allocations. However, |
| // many of the objects also hold a Ref<Device> back to their parent device. |
| // |
| // In order to break this cycle and prevent leaks, when the application drops the last |
| // external ref and WillDropLastExternalRef is called, the device clears out any member refs |
| // to API objects that hold back-refs to the device - thus breaking any reference cycles. |
| // |
| // Currently, this is done by calling Destroy on the device to cease all in-flight work and |
| // drop references to internal objects. We may want to lift this in the future, but it would |
| // make things more complex because there might be pending tasks which hold a ref back to |
| // the device - either directly or indirectly. We would need to ensure those tasks don't |
| // create new reference cycles, and we would need to continuously try draining the pending |
| // tasks to clear out all remaining refs. |
| Destroy(); |
| } |
| |
| // Flush last remaining callback tasks. |
| if (mCallbackTaskManager) { |
| do { |
| FlushCallbackTaskQueue(); |
| } while (!mCallbackTaskManager->IsEmpty()); |
| } |
| |
| auto deviceLock(GetScopedLock()); |
| // Drop the device's reference to the queue. Because the application dropped the last external |
| // reference, it's UB if they try to get the queue from APIGetQueue(). |
| mQueue = nullptr; |
| |
| // Reset callbacks since after dropping the last external reference, the application may have |
| // freed any device-scope memory needed to run the callback. |
| mUncapturedErrorCallbackInfo = kEmptyUncapturedErrorCallbackInfo; |
| { |
| std::lock_guard<std::shared_mutex> lock(mLoggingMutex); |
| mLoggingCallbackInfo = kEmptyLoggingCallbackInfo; |
| } |
| |
| mAdapter->GetInstance()->RemoveDevice(this); |
| |
| // Once last external ref dropped, all callbacks should be forwarded to Instance's callback |
| // queue instead. |
| mCallbackTaskManager = mAdapter->GetInstance()->GetCallbackTaskManager(); |
| } |
| |
| void DeviceBase::DestroyObjects() { |
| // List of object types in reverse "dependency" order so we can iterate and delete the |
| // objects safely. We define dependent here such that if B has a ref to A, then B depends on |
| // A. We therefore try to destroy B before destroying A. Note that this only considers the |
| // immediate frontend dependencies, while backend objects could add complications and extra |
| // dependencies. |
| // |
| // Note that AttachmentState is not an ApiObject so it cannot be eagerly destroyed. However, |
| // since AttachmentStates are cached by the device, objects that hold references to |
| // AttachmentStates should make sure to un-ref them in their Destroy operation so that we |
| // can destroy the frontend cache. |
| |
| // clang-format off |
| static constexpr std::array<ObjectType, 21> kObjectTypeDependencyOrder = { |
| ObjectType::ComputePassEncoder, |
| ObjectType::RenderPassEncoder, |
| ObjectType::RenderBundleEncoder, |
| ObjectType::RenderBundle, |
| ObjectType::CommandEncoder, |
| ObjectType::CommandBuffer, |
| ObjectType::RenderPipeline, |
| ObjectType::ComputePipeline, |
| ObjectType::PipelineLayout, |
| ObjectType::BindGroup, |
| ObjectType::BindGroupLayout, |
| ObjectType::BindGroupLayoutInternal, |
| ObjectType::ShaderModule, |
| ObjectType::SharedTextureMemory, |
| ObjectType::SharedFence, |
| ObjectType::ExternalTexture, |
| ObjectType::Texture, // Note that Textures own the TextureViews. |
| ObjectType::QuerySet, |
| ObjectType::Sampler, |
| ObjectType::Buffer, |
| }; |
| // clang-format on |
| |
| for (ObjectType type : kObjectTypeDependencyOrder) { |
| mObjectLists[type].Destroy(); |
| } |
| } |
| |
| void DeviceBase::Destroy() { |
| // Skip if we are already destroyed. |
| if (mState == State::Destroyed) { |
| return; |
| } |
| |
| // This function may be called re-entrantly inside APITick(). Tick triggers callbacks |
| // inside which the application may destroy the device. Thus, we should be careful not |
| // to delete objects that are needed inside Tick after callbacks have been called. |
| // - mCallbackTaskManager is not deleted since we flush the callback queue at the end |
| // of Tick(). Note: that flush should always be empty since all callbacks are drained |
| // inside Destroy() so there should be no outstanding tasks holding objects alive. |
| // - Similarly, mAsyncTaskManager is not deleted since we use it to return a status |
| // from Tick() whether or not there is any more pending work. |
| |
| // Skip handling device facilities if they haven't even been created (or failed doing so) |
| if (mState != State::BeingCreated) { |
| // The device is being destroyed so it will be lost, call the application callback. |
| HandleDeviceLost(wgpu::DeviceLostReason::Destroyed, "Device was destroyed."); |
| |
| // Call all the callbacks immediately as the device is about to shut down. |
| // TODO(crbug.com/dawn/826): Cancel the tasks that are in flight if possible. |
| mAsyncTaskManager->WaitAllPendingTasks(); |
| mCallbackTaskManager->HandleShutDown(); |
| |
| // Finish destroying all objects owned by the device. Note that this must be done before |
| // DestroyImpl() as it may relinquish resources that will be freed by backends in the |
| // DestroyImpl() call. |
| DestroyObjects(); |
| } |
| |
| // Disconnect the device, depending on which state we are currently in. |
| switch (mState) { |
| case State::BeingCreated: |
| // The GPU timeline was never started so we don't have to wait. |
| break; |
| |
| case State::Alive: |
| // Alive is the only state which can have GPU work happening. Wait for all of it to |
| // complete before proceeding with destruction. |
| // Ignore errors so that we can continue with destruction |
| IgnoreErrors(mQueue->WaitForIdleForDestruction()); |
| break; |
| |
| case State::BeingDisconnected: |
| // Getting disconnected is a transient state happening in a single API call so there |
| // is always an external reference keeping the Device alive, which means the |
| // destructor cannot run while BeingDisconnected. |
| DAWN_UNREACHABLE(); |
| break; |
| |
| case State::Disconnected: |
| break; |
| |
| case State::Destroyed: |
| // If we are already destroyed we should've skipped this work entirely. |
| DAWN_UNREACHABLE(); |
| break; |
| } |
| |
| if (mState != State::BeingCreated) { |
| // The GPU timeline is finished. |
| mQueue->AssumeCommandsComplete(); |
| DAWN_ASSERT(mQueue->GetCompletedCommandSerial() == mQueue->GetLastSubmittedCommandSerial()); |
| mQueue->Tick(mQueue->GetCompletedCommandSerial()); |
| |
| // Call TickImpl once last time to clean up resources |
| // Ignore errors so that we can continue with destruction |
| IgnoreErrors(TickImpl()); |
| } |
| |
| // At this point GPU operations are always finished, so we are in the disconnected state. |
| // Note that currently this state change is required because some of the backend |
| // implementations of DestroyImpl checks that we are disconnected before doing work. |
| mState = State::Disconnected; |
| |
| mDynamicUploader = nullptr; |
| mEmptyBindGroupLayout = nullptr; |
| mEmptyPipelineLayout = nullptr; |
| mInternalPipelineStore = nullptr; |
| mExternalTexturePlaceholderView = nullptr; |
| mTemporaryUniformBuffer = nullptr; |
| |
| // Note: mQueue is not released here since the application may still get it after calling |
| // Destroy() via APIGetQueue. |
| if (mQueue != nullptr) { |
| mQueue->AssumeCommandsComplete(); |
| mQueue->Destroy(); |
| } |
| |
| // Now that the GPU timeline is empty, destroy the backend device. |
| DestroyImpl(); |
| |
| mCaches = nullptr; |
| mState = State::Destroyed; |
| } |
| |
| void DeviceBase::APIDestroy() { |
| Destroy(); |
| } |
| |
| void DeviceBase::HandleDeviceLost(wgpu::DeviceLostReason reason, std::string_view message) { |
| if (mLostEvent != nullptr) { |
| mLostEvent->SetLost(GetInstance()->GetEventManager(), reason, message); |
| } |
| } |
| |
| void DeviceBase::HandleError(std::unique_ptr<ErrorData> error, |
| InternalErrorType additionalAllowedErrors, |
| wgpu::DeviceLostReason lostReason) { |
| AppendDebugLayerMessages(error.get()); |
| |
| InternalErrorType type = error->GetType(); |
| if (type != InternalErrorType::Validation) { |
| // D3D device can provide additional device removed reason. We would |
| // like to query and log the device removed reason if the error is |
| // not validation error. |
| AppendDeviceLostMessage(error.get()); |
| } |
| |
| InternalErrorType allowedErrors = |
| InternalErrorType::Validation | InternalErrorType::DeviceLost | additionalAllowedErrors; |
| |
| if (type == InternalErrorType::DeviceLost) { |
| mState = State::Disconnected; |
| |
| // If the ErrorInjector is enabled, then the device loss might be fake and the device |
| // still be executing commands. Force a wait for idle in this case, with State being |
| // Disconnected so we can detect this case in WaitForIdleForDestruction. |
| if (ErrorInjectorEnabled()) { |
| IgnoreErrors(mQueue->WaitForIdleForDestruction()); |
| } |
| |
| // A real device lost happened. Set the state to disconnected as the device cannot be |
| // used. Also tags all commands as completed since the device stopped running. |
| mQueue->AssumeCommandsComplete(); |
| } else if (!(allowedErrors & type)) { |
| // If we receive an error which we did not explicitly allow, assume the backend can't |
| // recover and proceed with device destruction. We first wait for all previous commands to |
| // be completed so that backend objects can be freed immediately, before handling the loss. |
| error->AppendContext("handling unexpected error type %s when allowed errors are %s.", type, |
| allowedErrors); |
| |
| // Move away from the Alive state so that the application cannot use this device |
| // anymore. |
| // TODO(crbug.com/dawn/831): Do we need atomics for this to become visible to other |
| // threads in a multithreaded scenario? |
| mState = State::BeingDisconnected; |
| |
| // Ignore errors so that we can continue with destruction |
| // Assume all commands are complete after WaitForIdleForDestruction (because they were) |
| IgnoreErrors(mQueue->WaitForIdleForDestruction()); |
| IgnoreErrors(TickImpl()); |
| mQueue->AssumeCommandsComplete(); |
| mState = State::Disconnected; |
| |
| // Now everything is as if the device was lost. |
| type = InternalErrorType::DeviceLost; |
| } |
| |
| const std::string messageStr = error->GetFormattedMessage(); |
| if (type == InternalErrorType::DeviceLost) { |
| // The device was lost, schedule the application callback's execution. |
| // Note: we don't invoke the callbacks directly here because it could cause re-entrances -> |
| // possible deadlock. |
| HandleDeviceLost(lostReason, messageStr); |
| mQueue->HandleDeviceLoss(); |
| |
| // TODO(crbug.com/dawn/826): Cancel the tasks that are in flight if possible. |
| mAsyncTaskManager->WaitAllPendingTasks(); |
| mCallbackTaskManager->HandleDeviceLoss(); |
| |
| // Still forward device loss errors to the error scopes so they all reject. |
| GetErrorScopeStack()->HandleError(ToWGPUErrorType(type), messageStr); |
| } else { |
| // Pass the error to the error scope stack and call the uncaptured error callback |
| // if it isn't handled. DeviceLost is not handled here because it should be |
| // handled by the lost callback. |
| bool captured = GetErrorScopeStack()->HandleError(ToWGPUErrorType(type), messageStr); |
| if (!captured) { |
| // Only call the uncaptured error callback if the device is alive. After the |
| // device is lost, the uncaptured error callback should cease firing. |
| if (mUncapturedErrorCallbackInfo.callback != nullptr && mState == State::Alive) { |
| auto device = ToAPI(this); |
| mUncapturedErrorCallbackInfo.callback( |
| &device, ToAPI(ToWGPUErrorType(type)), ToOutputStringView(messageStr), |
| mUncapturedErrorCallbackInfo.userdata1, mUncapturedErrorCallbackInfo.userdata2); |
| } |
| } |
| } |
| } |
| |
| void DeviceBase::ConsumeError(std::unique_ptr<ErrorData> error, |
| InternalErrorType additionalAllowedErrors) { |
| DAWN_ASSERT(error != nullptr); |
| HandleError(std::move(error), additionalAllowedErrors); |
| } |
| |
| void DeviceBase::APISetLoggingCallback(const WGPULoggingCallbackInfo& callbackInfo) { |
| if (mState != State::Alive) { |
| return; |
| } |
| std::lock_guard<std::shared_mutex> lock(mLoggingMutex); |
| mLoggingCallbackInfo = callbackInfo; |
| } |
| |
| ErrorScopeStack* DeviceBase::GetErrorScopeStack() { |
| ThreadUniqueId threadId = GetThreadUniqueId(); |
| if (!mErrorScopeStacks.contains(threadId)) { |
| // Each time a new thread creates an error stack on a device, we attempt to clean up |
| // terminated thread stacks before adding the new one. |
| TrimErrorScopeStacks(mErrorScopeStacks); |
| mErrorScopeStacks[threadId] = std::make_unique<ErrorScopeStack>(); |
| } |
| DAWN_ASSERT(mErrorScopeStacks[threadId] != nullptr); |
| return mErrorScopeStacks[threadId].get(); |
| } |
| |
| void DeviceBase::APIPushErrorScope(wgpu::ErrorFilter filter) { |
| if (ConsumedError(ValidateErrorFilter(filter))) { |
| return; |
| } |
| |
| GetErrorScopeStack()->Push(filter); |
| } |
| |
| Future DeviceBase::APIPopErrorScope(const WGPUPopErrorScopeCallbackInfo& callbackInfo) { |
| struct PopErrorScopeEvent final : public EventManager::TrackedEvent { |
| WGPUPopErrorScopeCallback mCallback; |
| raw_ptr<void> mUserdata1; |
| raw_ptr<void> mUserdata2; |
| std::optional<ErrorScope> mScope; |
| |
| PopErrorScopeEvent(const WGPUPopErrorScopeCallbackInfo& callbackInfo, |
| std::optional<ErrorScope>&& scope) |
| : TrackedEvent(static_cast<wgpu::CallbackMode>(callbackInfo.mode), |
| TrackedEvent::Completed{}), |
| mCallback(callbackInfo.callback), |
| mUserdata1(callbackInfo.userdata1), |
| mUserdata2(callbackInfo.userdata2), |
| mScope(std::move(scope)) {} |
| |
| ~PopErrorScopeEvent() override { EnsureComplete(EventCompletionType::Shutdown); } |
| |
| void Complete(EventCompletionType completionType) override { |
| WGPUPopErrorScopeStatus status = completionType == EventCompletionType::Ready |
| ? WGPUPopErrorScopeStatus_Success |
| : WGPUPopErrorScopeStatus_CallbackCancelled; |
| WGPUErrorType type; |
| WGPUStringView message = kEmptyOutputStringView; |
| if (mScope) { |
| type = static_cast<WGPUErrorType>(mScope->GetErrorType()); |
| message = mScope->GetErrorMessage(); |
| } else { |
| status = WGPUPopErrorScopeStatus_Error; |
| type = WGPUErrorType_NoError; |
| message = ToOutputStringView("No error scopes to pop"); |
| } |
| |
| mCallback(status, type, message, mUserdata1.ExtractAsDangling(), |
| mUserdata2.ExtractAsDangling()); |
| } |
| }; |
| |
| std::optional<ErrorScope> scope; |
| { |
| // TODO(crbug.com/dawn/831) Manually acquire device lock instead of relying on code-gen for |
| // re-entrancy. |
| auto deviceLock(GetScopedLock()); |
| |
| if (IsLost()) { |
| scope = ErrorScope(wgpu::ErrorType::NoError, ""); |
| } else if (!GetErrorScopeStack()->Empty()) { |
| scope = GetErrorScopeStack()->Pop(); |
| } |
| } |
| |
| FutureID futureID = GetInstance()->GetEventManager()->TrackEvent( |
| AcquireRef(new PopErrorScopeEvent(callbackInfo, std::move(scope)))); |
| return {futureID}; |
| } |
| |
| BlobCache* DeviceBase::GetBlobCache() const { |
| return mBlobCache.get(); |
| } |
| |
| Blob DeviceBase::LoadCachedBlob(const CacheKey& key) { |
| return GetBlobCache()->Load(key); |
| } |
| |
| void DeviceBase::StoreCachedBlob(const CacheKey& key, const Blob& blob) { |
| if (!blob.Empty()) { |
| GetBlobCache()->Store(key, blob); |
| } |
| } |
| |
| MaybeError DeviceBase::ValidateObject(const ApiObjectBase* object) const { |
| DAWN_ASSERT(object != nullptr); |
| DAWN_INVALID_IF(object->GetDevice() != this, |
| "%s is associated with %s, and cannot be used with %s.", object, |
| object->GetDevice(), this); |
| |
| // TODO(dawn:563): Preserve labels for error objects. |
| DAWN_INVALID_IF(object->IsError(), "%s is invalid.", object); |
| |
| return {}; |
| } |
| |
| MaybeError DeviceBase::ValidateIsAlive() const { |
| DAWN_INVALID_IF(mState != State::Alive, "%s is lost.", this); |
| return {}; |
| } |
| |
| void DeviceBase::APIForceLoss(wgpu::DeviceLostReason reason, StringView messageIn) { |
| std::string_view message = utils::NormalizeMessageString(messageIn); |
| if (mState != State::Alive) { |
| return; |
| } |
| // Note that since we are passing None as the allowedErrors, an additional message will be |
| // appended noting that the error was unexpected. Since this call is for testing only it is not |
| // too important, but useful for users to understand where the extra message is coming from. |
| HandleError(DAWN_INTERNAL_ERROR(std::string(message)), InternalErrorType::None, reason); |
| } |
| |
| DeviceBase::State DeviceBase::GetState() const { |
| return mState; |
| } |
| |
| bool DeviceBase::IsLost() const { |
| DAWN_ASSERT(mState != State::BeingCreated); |
| return mState != State::Alive; |
| } |
| |
| ApiObjectList* DeviceBase::GetObjectTrackingList(ObjectType type) { |
| return &mObjectLists[type]; |
| } |
| |
| const ApiObjectList* DeviceBase::GetObjectTrackingList(ObjectType type) const { |
| return &mObjectLists[type]; |
| } |
| |
| InstanceBase* DeviceBase::GetInstance() const { |
| return mAdapter->GetInstance(); |
| } |
| |
| AdapterBase* DeviceBase::GetAdapter() const { |
| return mAdapter.Get(); |
| } |
| |
| PhysicalDeviceBase* DeviceBase::GetPhysicalDevice() const { |
| return mAdapter->GetPhysicalDevice(); |
| } |
| |
| dawn::platform::Platform* DeviceBase::GetPlatform() const { |
| return GetAdapter()->GetInstance()->GetPlatform(); |
| } |
| |
| InternalPipelineStore* DeviceBase::GetInternalPipelineStore() { |
| return mInternalPipelineStore.get(); |
| } |
| |
| bool DeviceBase::HasPendingTasks() { |
| return mAsyncTaskManager->HasPendingTasks() || !mCallbackTaskManager->IsEmpty(); |
| } |
| |
| bool DeviceBase::IsDeviceIdle() { |
| if (HasPendingTasks()) { |
| return false; |
| } |
| return !mQueue->HasScheduledCommands(); |
| } |
| |
| ResultOrError<const Format*> DeviceBase::GetInternalFormat(wgpu::TextureFormat format) const { |
| FormatIndex index = ComputeFormatIndex(format); |
| DAWN_INVALID_IF(index >= mFormatTable.size(), "Unknown texture format %s.", format); |
| |
| const Format* internalFormat = &mFormatTable[index]; |
| DAWN_INVALID_IF(!internalFormat->IsSupported(), "Unsupported texture format %s, reason: %s.", |
| format, internalFormat->unsupportedReason); |
| |
| return internalFormat; |
| } |
| |
| const Format& DeviceBase::GetValidInternalFormat(wgpu::TextureFormat format) const { |
| FormatIndex index = ComputeFormatIndex(format); |
| DAWN_ASSERT(index < mFormatTable.size()); |
| DAWN_ASSERT(mFormatTable[index].IsSupported()); |
| return mFormatTable[index]; |
| } |
| |
| const Format& DeviceBase::GetValidInternalFormat(FormatIndex index) const { |
| DAWN_ASSERT(index < mFormatTable.size()); |
| DAWN_ASSERT(mFormatTable[index].IsSupported()); |
| return mFormatTable[index]; |
| } |
| |
| std::vector<const Format*> DeviceBase::GetCompatibleViewFormats(const Format& format) const { |
| wgpu::TextureFormat viewFormat = |
| format.format == format.baseFormat ? format.baseViewFormat : format.baseFormat; |
| if (viewFormat == wgpu::TextureFormat::Undefined) { |
| return {}; |
| } |
| const Format& f = mFormatTable[ComputeFormatIndex(viewFormat)]; |
| if (!f.IsSupported()) { |
| return {}; |
| } |
| return {&f}; |
| } |
| |
| ResultOrError<Ref<BindGroupLayoutBase>> DeviceBase::GetOrCreateBindGroupLayout( |
| const BindGroupLayoutDescriptor* descriptor, |
| PipelineCompatibilityToken pipelineCompatibilityToken) { |
| BindGroupLayoutInternalBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice); |
| |
| const size_t blueprintHash = blueprint.ComputeContentHash(); |
| blueprint.SetContentHash(blueprintHash); |
| |
| Ref<BindGroupLayoutInternalBase> internal; |
| DAWN_TRY_ASSIGN(internal, GetOrCreate(mCaches->bindGroupLayouts, &blueprint, |
| [&]() -> ResultOrError<Ref<BindGroupLayoutInternalBase>> { |
| Ref<BindGroupLayoutInternalBase> result; |
| DAWN_TRY_ASSIGN( |
| result, CreateBindGroupLayoutImpl(descriptor)); |
| result->SetContentHash(blueprintHash); |
| return result; |
| })); |
| return AcquireRef( |
| new BindGroupLayoutBase(this, descriptor->label, internal, pipelineCompatibilityToken)); |
| } |
| |
| // Private function used at initialization |
| ResultOrError<Ref<BindGroupLayoutBase>> DeviceBase::CreateEmptyBindGroupLayout() { |
| BindGroupLayoutDescriptor desc = {}; |
| desc.entryCount = 0; |
| desc.entries = nullptr; |
| |
| return GetOrCreateBindGroupLayout(&desc); |
| } |
| |
| ResultOrError<Ref<PipelineLayoutBase>> DeviceBase::CreateEmptyPipelineLayout() { |
| PipelineLayoutDescriptor desc = {}; |
| desc.bindGroupLayoutCount = 0; |
| desc.bindGroupLayouts = nullptr; |
| |
| return GetOrCreatePipelineLayout(Unpack(&desc)); |
| } |
| |
| BindGroupLayoutBase* DeviceBase::GetEmptyBindGroupLayout() { |
| DAWN_ASSERT(mEmptyBindGroupLayout != nullptr); |
| return mEmptyBindGroupLayout.Get(); |
| } |
| |
| PipelineLayoutBase* DeviceBase::GetEmptyPipelineLayout() { |
| DAWN_ASSERT(mEmptyPipelineLayout != nullptr); |
| return mEmptyPipelineLayout.Get(); |
| } |
| |
| Ref<ComputePipelineBase> DeviceBase::GetCachedComputePipeline( |
| ComputePipelineBase* uninitializedComputePipeline) { |
| return mCaches->computePipelines.Find(uninitializedComputePipeline); |
| } |
| |
| Ref<RenderPipelineBase> DeviceBase::GetCachedRenderPipeline( |
| RenderPipelineBase* uninitializedRenderPipeline) { |
| return mCaches->renderPipelines.Find(uninitializedRenderPipeline); |
| } |
| |
| Ref<ComputePipelineBase> DeviceBase::AddOrGetCachedComputePipeline( |
| Ref<ComputePipelineBase> computePipeline) { |
| auto [pipeline, _] = mCaches->computePipelines.Insert(computePipeline.Get()); |
| return std::move(pipeline); |
| } |
| |
| Ref<RenderPipelineBase> DeviceBase::AddOrGetCachedRenderPipeline( |
| Ref<RenderPipelineBase> renderPipeline) { |
| auto [pipeline, _] = mCaches->renderPipelines.Insert(renderPipeline.Get()); |
| return std::move(pipeline); |
| } |
| |
| ResultOrError<Ref<TextureViewBase>> |
| DeviceBase::GetOrCreatePlaceholderTextureViewForExternalTexture() { |
| if (!mExternalTexturePlaceholderView.Get()) { |
| Ref<TextureBase> externalTexturePlaceholder; |
| TextureDescriptor textureDesc; |
| textureDesc.dimension = wgpu::TextureDimension::e2D; |
| textureDesc.format = wgpu::TextureFormat::RGBA8Unorm; |
| textureDesc.label = "Dawn_External_Texture_Placeholder_Texture"; |
| textureDesc.size = {1, 1, 1}; |
| textureDesc.usage = wgpu::TextureUsage::TextureBinding; |
| |
| DAWN_TRY_ASSIGN(externalTexturePlaceholder, CreateTexture(&textureDesc)); |
| |
| TextureViewDescriptor textureViewDesc; |
| textureViewDesc.arrayLayerCount = 1; |
| textureViewDesc.aspect = wgpu::TextureAspect::All; |
| textureViewDesc.baseArrayLayer = 0; |
| textureViewDesc.dimension = wgpu::TextureViewDimension::e2D; |
| textureViewDesc.format = wgpu::TextureFormat::RGBA8Unorm; |
| textureViewDesc.label = "Dawn_External_Texture_Placeholder_Texture_View"; |
| textureViewDesc.mipLevelCount = 1; |
| |
| DAWN_TRY_ASSIGN(mExternalTexturePlaceholderView, |
| CreateTextureView(externalTexturePlaceholder.Get(), &textureViewDesc)); |
| } |
| |
| return mExternalTexturePlaceholderView; |
| } |
| |
| ResultOrError<Ref<PipelineLayoutBase>> DeviceBase::GetOrCreatePipelineLayout( |
| const UnpackedPtr<PipelineLayoutDescriptor>& descriptor) { |
| PipelineLayoutBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice); |
| |
| const size_t blueprintHash = blueprint.ComputeContentHash(); |
| blueprint.SetContentHash(blueprintHash); |
| |
| return GetOrCreate(mCaches->pipelineLayouts, &blueprint, |
| [&]() -> ResultOrError<Ref<PipelineLayoutBase>> { |
| Ref<PipelineLayoutBase> result; |
| DAWN_TRY_ASSIGN(result, CreatePipelineLayoutImpl(descriptor)); |
| result->SetContentHash(blueprintHash); |
| return result; |
| }); |
| } |
| |
| ResultOrError<Ref<SamplerBase>> DeviceBase::GetOrCreateSampler( |
| const SamplerDescriptor* descriptor) { |
| SamplerBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice); |
| |
| const size_t blueprintHash = blueprint.ComputeContentHash(); |
| blueprint.SetContentHash(blueprintHash); |
| |
| return GetOrCreate(mCaches->samplers, &blueprint, [&]() -> ResultOrError<Ref<SamplerBase>> { |
| Ref<SamplerBase> result; |
| DAWN_TRY_ASSIGN(result, CreateSamplerImpl(descriptor)); |
| result->SetContentHash(blueprintHash); |
| return result; |
| }); |
| } |
| |
| Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState(AttachmentState* blueprint) { |
| return GetOrCreate(mCaches->attachmentStates, blueprint, [&]() -> Ref<AttachmentState> { |
| return AcquireRef(new AttachmentState(*blueprint)); |
| }); |
| } |
| |
| Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState( |
| const RenderBundleEncoderDescriptor* descriptor) { |
| AttachmentState blueprint(this, descriptor); |
| return GetOrCreateAttachmentState(&blueprint); |
| } |
| |
| Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState( |
| const UnpackedPtr<RenderPipelineDescriptor>& descriptor, |
| const PipelineLayoutBase* layout) { |
| AttachmentState blueprint(this, descriptor, layout); |
| return GetOrCreateAttachmentState(&blueprint); |
| } |
| |
| Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState( |
| const UnpackedPtr<RenderPassDescriptor>& descriptor) { |
| AttachmentState blueprint(this, descriptor); |
| return GetOrCreateAttachmentState(&blueprint); |
| } |
| |
| Ref<PipelineCacheBase> DeviceBase::GetOrCreatePipelineCache(const CacheKey& key) { |
| return GetOrCreatePipelineCacheImpl(key); |
| } |
| |
| // Object creation API methods |
| |
| BindGroupBase* DeviceBase::APICreateBindGroup(const BindGroupDescriptor* descriptor) { |
| Ref<BindGroupBase> result; |
| if (ConsumedError(CreateBindGroup(descriptor), &result, "calling %s.CreateBindGroup(%s).", this, |
| descriptor)) { |
| return ReturnToAPI( |
| BindGroupBase::MakeError(this, descriptor ? descriptor->label : nullptr)); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| BindGroupLayoutBase* DeviceBase::APICreateBindGroupLayout( |
| const BindGroupLayoutDescriptor* descriptor) { |
| Ref<BindGroupLayoutBase> result; |
| if (ConsumedError(CreateBindGroupLayout(descriptor), &result, |
| "calling %s.CreateBindGroupLayout(%s).", this, descriptor)) { |
| return ReturnToAPI( |
| BindGroupLayoutBase::MakeError(this, descriptor ? descriptor->label : nullptr)); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| BufferBase* DeviceBase::APICreateBuffer(const BufferDescriptor* rawDescriptor) { |
| // 1. Validate the descriptor and call CreateBufferImpl. |
| bool fakeOOMAtNativeMap = false; |
| ResultOrError<Ref<BufferBase>> resultOrError = ([&]() -> ResultOrError<Ref<BufferBase>> { |
| DAWN_TRY(ValidateIsAlive()); |
| UnpackedPtr<BufferDescriptor> descriptor; |
| if (IsValidationEnabled()) { |
| DAWN_TRY_ASSIGN(descriptor, ValidateBufferDescriptor(this, rawDescriptor)); |
| } else { |
| descriptor = Unpack(rawDescriptor); |
| } |
| |
| bool hasHostMapped = descriptor.Get<BufferHostMappedPointer>() != nullptr; |
| bool fakeOOMAtDevice = false; |
| if (auto* ext = descriptor.Get<DawnFakeBufferOOMForTesting>()) { |
| fakeOOMAtNativeMap = ext->fakeOOMAtNativeMap; |
| fakeOOMAtDevice = ext->fakeOOMAtDevice; |
| } |
| |
| if (fakeOOMAtDevice) { |
| return DAWN_OUT_OF_MEMORY_ERROR("DawnFakeBufferOOMForTesting fakeOOMAtDevice"); |
| } |
| if (hasHostMapped) { |
| // Creating a buffer from a host-mapped pointer doesn't require the lock. |
| return CreateBufferImpl(descriptor); |
| } else { |
| auto deviceLock(GetScopedLock()); |
| return CreateBufferImpl(descriptor); |
| } |
| })(); |
| |
| // 2. Error handling. |
| Ref<BufferBase> buffer; |
| std::unique_ptr<ErrorData> deferredError; |
| if (resultOrError.IsSuccess()) [[likely]] { |
| buffer = resultOrError.AcquireSuccess(); |
| } else { |
| // Make an error buffer, but don't consume the ErrorData yet until we've tried to map, |
| // and determined whether to silence it - errors from mapping should always take |
| // priority, because that matches the spec's client-server model where mappedAtCreation |
| // takes place on the client before even sending the CreateBuffer command to the server. |
| deferredError = resultOrError.AcquireError(); |
| buffer = BufferBase::MakeError(this, rawDescriptor); |
| } |
| |
| // 3. Mapping at creation. The buffer may be either valid or ErrorBuffer. |
| if (rawDescriptor->mappedAtCreation) { |
| // MapAtCreation requires the device lock in case it allocates staging memory. |
| auto deviceLock(GetScopedLock()); |
| |
| MaybeError mapResult = |
| fakeOOMAtNativeMap |
| ? DAWN_OUT_OF_MEMORY_ERROR("DawnFakeBufferOOMForTesting fakeOOMAtNativeMap") |
| : buffer->MapAtCreation(); |
| if (mapResult.IsError()) { |
| // If we can't map, do "implementation-defined logging" and return null. |
| auto error = mapResult.AcquireError(); |
| EmitLog(wgpu::LoggingType::Error, error->GetFormattedMessage()); |
| // deferredError is silenced because we drop it here. |
| return nullptr; |
| } |
| } |
| |
| // If there was a deferredError saved from earlier, surface it now. |
| if (deferredError) { |
| deferredError->AppendContext("calling %s.CreateBuffer(%s).", this, rawDescriptor); |
| |
| // TODO(dawn:1662): Make error handling thread-safe. |
| auto deviceLock(GetScopedLock()); |
| ConsumeError(std::move(deferredError), InternalErrorType::OutOfMemory); |
| } |
| return ReturnToAPI(std::move(buffer)); |
| } |
| |
| CommandEncoder* DeviceBase::APICreateCommandEncoder(const CommandEncoderDescriptor* descriptor) { |
| Ref<CommandEncoder> result; |
| if (ConsumedError(CreateCommandEncoder(descriptor), &result, |
| "calling %s.CreateCommandEncoder(%s).", this, descriptor)) { |
| result = CommandEncoder::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| ComputePipelineBase* DeviceBase::APICreateComputePipeline( |
| const ComputePipelineDescriptor* descriptor) { |
| utils::TraceLabel label = utils::GetLabelForTrace(descriptor->label); |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateComputePipeline", "label", |
| label.label); |
| |
| auto resultOrError = CreateComputePipeline(descriptor); |
| if (resultOrError.IsSuccess()) { |
| return ReturnToAPI(resultOrError.AcquireSuccess()); |
| } |
| |
| // Acquire the device lock for error handling. |
| // TODO(dawn:1662): Make error handling thread-safe. |
| auto deviceLock(GetScopedLock()); |
| Ref<ComputePipelineBase> result; |
| if (ConsumedError(std::move(resultOrError), &result, InternalErrorType::Internal, |
| "calling %s.CreateComputePipeline(%s).", this, descriptor)) { |
| result = ComputePipelineBase::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| Future DeviceBase::APICreateComputePipelineAsync( |
| const ComputePipelineDescriptor* descriptor, |
| const WGPUCreateComputePipelineAsyncCallbackInfo& callbackInfo) { |
| utils::TraceLabel label = utils::GetLabelForTrace(descriptor->label); |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateComputePipelineAsync", "label", |
| label.label); |
| |
| EventManager* manager = GetInstance()->GetEventManager(); |
| |
| auto GetFuture = [&](Ref<EventManager::TrackedEvent>&& event) { |
| FutureID futureID = manager->TrackEvent(std::move(event)); |
| return Future{futureID}; |
| }; |
| |
| if (IsLost()) { |
| // Device lost error: create an async event that completes when created. |
| return GetFuture(AcquireRef(new CreateComputePipelineAsyncEvent( |
| this, callbackInfo, DAWN_DEVICE_LOST_ERROR("Device lost"), descriptor->label))); |
| } |
| |
| auto resultOrError = CreateUninitializedComputePipeline(descriptor); |
| if (resultOrError.IsError()) { |
| // Validation error: create an async event that completes when created. |
| return GetFuture(AcquireRef(new CreateComputePipelineAsyncEvent( |
| this, callbackInfo, resultOrError.AcquireError(), descriptor->label))); |
| } |
| |
| Ref<ComputePipelineBase> uninitializedComputePipeline = resultOrError.AcquireSuccess(); |
| Ref<ComputePipelineBase> cachedComputePipeline = |
| GetCachedComputePipeline(uninitializedComputePipeline.Get()); |
| if (cachedComputePipeline.Get() != nullptr) { |
| // Cached pipeline: create an async event that completes when created. |
| return GetFuture(AcquireRef(new CreateComputePipelineAsyncEvent( |
| this, callbackInfo, std::move(cachedComputePipeline)))); |
| } |
| |
| // New pipeline: create an event backed by system event that is really async. |
| Ref<CreateComputePipelineAsyncEvent> event = AcquireRef(new CreateComputePipelineAsyncEvent( |
| this, callbackInfo, std::move(uninitializedComputePipeline), |
| AcquireRef(new WaitListEvent()))); |
| Future future = GetFuture(event); |
| InitializeComputePipelineAsyncImpl(std::move(event)); |
| return future; |
| } |
| PipelineLayoutBase* DeviceBase::APICreatePipelineLayout( |
| const PipelineLayoutDescriptor* descriptor) { |
| Ref<PipelineLayoutBase> result; |
| if (ConsumedError(CreatePipelineLayout(descriptor), &result, |
| "calling %s.CreatePipelineLayout(%s).", this, descriptor)) { |
| result = PipelineLayoutBase::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| QuerySetBase* DeviceBase::APICreateQuerySet(const QuerySetDescriptor* descriptor) { |
| Ref<QuerySetBase> result; |
| if (ConsumedError(CreateQuerySet(descriptor), &result, InternalErrorType::OutOfMemory, |
| "calling %s.CreateQuerySet(%s).", this, descriptor)) { |
| result = QuerySetBase::MakeError(this, descriptor); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| SamplerBase* DeviceBase::APICreateSampler(const SamplerDescriptor* descriptor) { |
| Ref<SamplerBase> result; |
| if (ConsumedError(CreateSampler(descriptor), &result, "calling %s.CreateSampler(%s).", this, |
| descriptor)) { |
| result = SamplerBase::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| Future DeviceBase::APICreateRenderPipelineAsync( |
| const RenderPipelineDescriptor* descriptor, |
| const WGPUCreateRenderPipelineAsyncCallbackInfo& callbackInfo) { |
| utils::TraceLabel label = utils::GetLabelForTrace(descriptor->label); |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateRenderPipelineAsync", "label", |
| label.label); |
| |
| EventManager* manager = GetInstance()->GetEventManager(); |
| |
| auto GetFuture = [&](Ref<EventManager::TrackedEvent>&& event) { |
| FutureID futureID = manager->TrackEvent(std::move(event)); |
| return Future{futureID}; |
| }; |
| |
| if (IsLost()) { |
| // Device lost error: create an async event that completes when created. |
| return GetFuture(AcquireRef(new CreateRenderPipelineAsyncEvent( |
| this, callbackInfo, DAWN_DEVICE_LOST_ERROR("Device lost"), descriptor->label))); |
| } |
| |
| auto resultOrError = CreateUninitializedRenderPipeline(descriptor); |
| if (resultOrError.IsError()) { |
| // Validation error: create an async event that completes when created. |
| return GetFuture(AcquireRef(new CreateRenderPipelineAsyncEvent( |
| this, callbackInfo, resultOrError.AcquireError(), descriptor->label))); |
| } |
| |
| Ref<RenderPipelineBase> uninitializedRenderPipeline = resultOrError.AcquireSuccess(); |
| Ref<RenderPipelineBase> cachedRenderPipeline = |
| GetCachedRenderPipeline(uninitializedRenderPipeline.Get()); |
| if (cachedRenderPipeline.Get() != nullptr) { |
| // Cached pipeline: create an async event that completes when created. |
| return GetFuture(AcquireRef(new CreateRenderPipelineAsyncEvent( |
| this, callbackInfo, std::move(cachedRenderPipeline)))); |
| } |
| |
| // New pipeline: create an event backed by system event that is really async. |
| Ref<CreateRenderPipelineAsyncEvent> event = AcquireRef(new CreateRenderPipelineAsyncEvent( |
| this, callbackInfo, std::move(uninitializedRenderPipeline), |
| AcquireRef(new WaitListEvent()))); |
| Future future = GetFuture(event); |
| InitializeRenderPipelineAsyncImpl(std::move(event)); |
| return future; |
| } |
| RenderBundleEncoder* DeviceBase::APICreateRenderBundleEncoder( |
| const RenderBundleEncoderDescriptor* descriptor) { |
| Ref<RenderBundleEncoder> result; |
| if (ConsumedError(CreateRenderBundleEncoder(descriptor), &result, |
| "calling %s.CreateRenderBundleEncoder(%s).", this, descriptor)) { |
| result = RenderBundleEncoder::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| RenderPipelineBase* DeviceBase::APICreateRenderPipeline( |
| const RenderPipelineDescriptor* descriptor) { |
| utils::TraceLabel label = utils::GetLabelForTrace(descriptor->label); |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateRenderPipeline", "label", |
| label.label); |
| |
| auto resultOrError = CreateRenderPipeline(descriptor); |
| if (resultOrError.IsSuccess()) { |
| return ReturnToAPI(resultOrError.AcquireSuccess()); |
| } |
| |
| // Acquire the device lock for error handling. |
| // TODO(dawn:1662): Make error handling thread-safe. |
| auto deviceLock(GetScopedLock()); |
| Ref<RenderPipelineBase> result; |
| if (ConsumedError(std::move(resultOrError), &result, InternalErrorType::Internal, |
| "calling %s.CreateRenderPipeline(%s).", this, descriptor)) { |
| result = RenderPipelineBase::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| ShaderModuleBase* DeviceBase::APICreateShaderModule(const ShaderModuleDescriptor* descriptor) { |
| utils::TraceLabel label = utils::GetLabelForTrace(descriptor->label); |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateShaderModule", "label", label.label); |
| |
| // parseResult is modified by CreateShaderModule via pointer to provide compilation messages in |
| // error cases. |
| ShaderModuleParseResult parseResult; |
| auto creationResult = CreateShaderModule(descriptor, /*internalExtensions=*/{}, &parseResult); |
| |
| if (creationResult.IsSuccess()) { |
| Ref<ShaderModuleBase> validShaderModule = creationResult.AcquireSuccess(); |
| DAWN_ASSERT(validShaderModule != nullptr && !validShaderModule->IsError()); |
| EmitCompilationLog(validShaderModule.Get()); |
| return ReturnToAPI(std::move(validShaderModule)); |
| } |
| |
| // If shader creation failed, create an error shader module with compilation messages so the |
| // application can later retrieve it with GetCompilationInfo. |
| Ref<ShaderModuleBase> errorShaderModule = ShaderModuleBase::MakeError( |
| this, descriptor ? descriptor->label : nullptr, std::move(parseResult.compilationMessages)); |
| DAWN_ASSERT(errorShaderModule != nullptr && errorShaderModule->IsError()); |
| |
| // Acquire the device lock for error handling, and return the error shader module. |
| auto deviceLock(GetScopedLock()); |
| // Emit error, including Tint errors and warnings for the error shader module. |
| auto consumedError = ConsumedError(creationResult.AcquireError(), InternalErrorType::Internal, |
| "calling %s.CreateShaderModule(%s).", this, descriptor); |
| DAWN_ASSERT(consumedError); |
| return ReturnToAPI(std::move(errorShaderModule)); |
| } |
| |
| ShaderModuleBase* DeviceBase::APICreateErrorShaderModule(const ShaderModuleDescriptor* descriptor, |
| StringView errorMessage) { |
| ParsedCompilationMessages compilationMessages; |
| compilationMessages.AddUnanchoredMessage(errorMessage, wgpu::CompilationMessageType::Error); |
| Ref<ShaderModuleBase> result = ShaderModuleBase::MakeError( |
| this, descriptor ? descriptor->label : nullptr, std::move(compilationMessages)); |
| auto log = result->GetCompilationLog(); |
| |
| std::unique_ptr<ErrorData> errorData = DAWN_VALIDATION_ERROR( |
| "Error in calling %s.CreateShaderModule(%s).\n%s", this, descriptor, log); |
| ConsumeError(std::move(errorData)); |
| |
| return ReturnToAPI(std::move(result)); |
| } |
| TextureBase* DeviceBase::APICreateTexture(const TextureDescriptor* descriptor) { |
| Ref<TextureBase> result; |
| if (ConsumedError(CreateTexture(descriptor), &result, InternalErrorType::OutOfMemory, |
| "calling %s.CreateTexture(%s).", this, descriptor)) { |
| result = TextureBase::MakeError(this, descriptor); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| |
| // For Dawn Wire |
| |
| BufferBase* DeviceBase::APICreateErrorBuffer(const BufferDescriptor* desc) { |
| if (desc->mappedAtCreation) { |
| // This codepath isn't used (at the time of this writing). Just return nullptr |
| // (pretend there was a mapping OOM), so we don't have to bother mapping the ErrorBuffer |
| // (would have to return nullptr anyway if there was actually an OOM). |
| auto error = |
| DAWN_OUT_OF_MEMORY_ERROR("mappedAtCreation is not implemented for CreateErrorBuffer"); |
| error->AppendContext("calling %s.CreateBuffer(%s).", this, desc); |
| EmitLog(wgpu::LoggingType::Error, error->GetFormattedMessage()); |
| return nullptr; |
| } |
| |
| UnpackedPtr<BufferDescriptor> unpacked; |
| if (!ConsumedError(ValidateBufferDescriptor(this, desc), &unpacked, |
| InternalErrorType::OutOfMemory, "calling %s.CreateBuffer(%s).", this, |
| desc)) { |
| auto* clientErrorInfo = unpacked.Get<DawnBufferDescriptorErrorInfoFromWireClient>(); |
| if (clientErrorInfo != nullptr && clientErrorInfo->outOfMemory) { |
| HandleError(DAWN_OUT_OF_MEMORY_ERROR("Failed to allocate memory for buffer mapping"), |
| InternalErrorType::OutOfMemory); |
| } |
| } |
| |
| return ReturnToAPI(BufferBase::MakeError(this, desc)); |
| } |
| |
| ExternalTextureBase* DeviceBase::APICreateErrorExternalTexture() { |
| return ReturnToAPI(ExternalTextureBase::MakeError(this)); |
| } |
| |
| TextureBase* DeviceBase::APICreateErrorTexture(const TextureDescriptor* desc) { |
| return ReturnToAPI(TextureBase::MakeError(this, desc)); |
| } |
| |
| // Other Device API methods |
| |
| // Returns true if future ticking is needed. |
| bool DeviceBase::APITick() { |
| // TODO(dawn:1987) Add deprecation warning when Instance.ProcessEvents no longer calls this. |
| |
| // Tick may trigger callbacks which drop a ref to the device itself. Hold a Ref to ourselves |
| // to avoid deleting |this| in the middle of this function call. |
| Ref<DeviceBase> self(this); |
| bool tickError; |
| { |
| // Note: we cannot hold the lock when flushing the callbacks so have to limit the scope of |
| // the lock here. |
| auto deviceLock(GetScopedLock()); |
| tickError = ConsumedError(Tick()); |
| } |
| |
| // We have to check callback tasks in every APITick because it is not related to any global |
| // serials. |
| FlushCallbackTaskQueue(); |
| |
| if (tickError) { |
| return false; |
| } |
| |
| auto deviceLock(GetScopedLock()); |
| // We don't throw an error when device is lost. This allows pending callbacks to be |
| // executed even after the Device is lost/destroyed. |
| if (IsLost()) { |
| return HasPendingTasks(); |
| } |
| |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APITick::IsDeviceIdle", "isDeviceIdle", |
| IsDeviceIdle()); |
| |
| return !IsDeviceIdle(); |
| } |
| |
| MaybeError DeviceBase::Tick() { |
| if (IsLost() || !mQueue->HasScheduledCommands()) { |
| return {}; |
| } |
| |
| // To avoid overly ticking, we only want to tick when: |
| // 1. the last submitted serial has moved beyond the completed serial |
| // 2. or the backend still has pending commands to submit. |
| DAWN_TRY(mQueue->CheckPassedSerials()); |
| DAWN_TRY(TickImpl()); |
| |
| // TODO(crbug.com/dawn/833): decouple TickImpl from updating the serial so that we can |
| // tick the dynamic uploader before the backend resource allocators. This would allow |
| // reclaiming resources one tick earlier. |
| mDynamicUploader->Deallocate(mQueue->GetCompletedCommandSerial()); |
| mQueue->Tick(mQueue->GetCompletedCommandSerial()); |
| |
| return {}; |
| } |
| |
| AdapterBase* DeviceBase::APIGetAdapter() { |
| mAdapter->APIAddRef(); |
| return mAdapter.Get(); |
| } |
| |
| QueueBase* DeviceBase::APIGetQueue() { |
| // Backends gave the primary queue during initialization. |
| DAWN_ASSERT(mQueue != nullptr); |
| auto queue = mQueue; |
| return ReturnToAPI(std::move(queue)); |
| } |
| |
| ExternalTextureBase* DeviceBase::APICreateExternalTexture( |
| const ExternalTextureDescriptor* descriptor) { |
| Ref<ExternalTextureBase> result; |
| if (ConsumedError(CreateExternalTextureImpl(descriptor), &result, |
| "calling %s.CreateExternalTexture(%s).", this, descriptor)) { |
| result = ExternalTextureBase::MakeError(this); |
| } |
| |
| return ReturnToAPI(std::move(result)); |
| } |
| |
| SharedBufferMemoryBase* DeviceBase::APIImportSharedBufferMemory( |
| const SharedBufferMemoryDescriptor* descriptor) { |
| Ref<SharedBufferMemoryBase> result = nullptr; |
| if (ConsumedError( |
| [&]() -> ResultOrError<Ref<SharedBufferMemoryBase>> { |
| DAWN_TRY(ValidateIsAlive()); |
| return ImportSharedBufferMemoryImpl(descriptor); |
| }(), |
| &result, "calling %s.ImportSharedBufferMemory(%s).", this, descriptor)) { |
| return SharedBufferMemoryBase::MakeError(this, descriptor); |
| } |
| return result.Detach(); |
| } |
| |
| ResultOrError<Ref<SharedBufferMemoryBase>> DeviceBase::ImportSharedBufferMemoryImpl( |
| const SharedBufferMemoryDescriptor* descriptor) { |
| return DAWN_UNIMPLEMENTED_ERROR("Not implemented"); |
| } |
| |
| SharedTextureMemoryBase* DeviceBase::APIImportSharedTextureMemory( |
| const SharedTextureMemoryDescriptor* descriptor) { |
| Ref<SharedTextureMemoryBase> result; |
| if (ConsumedError( |
| [&]() -> ResultOrError<Ref<SharedTextureMemoryBase>> { |
| DAWN_TRY(ValidateIsAlive()); |
| return ImportSharedTextureMemoryImpl(descriptor); |
| }(), |
| &result, "calling %s.ImportSharedTextureMemory(%s).", this, descriptor)) { |
| result = SharedTextureMemoryBase::MakeError(this, descriptor); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| |
| ResultOrError<Ref<SharedTextureMemoryBase>> DeviceBase::ImportSharedTextureMemoryImpl( |
| const SharedTextureMemoryDescriptor* descriptor) { |
| return DAWN_UNIMPLEMENTED_ERROR("Not implemented"); |
| } |
| |
| SharedFenceBase* DeviceBase::APIImportSharedFence(const SharedFenceDescriptor* descriptor) { |
| Ref<SharedFenceBase> result; |
| if (ConsumedError( |
| [&]() -> ResultOrError<Ref<SharedFenceBase>> { |
| DAWN_TRY(ValidateIsAlive()); |
| return ImportSharedFenceImpl(descriptor); |
| }(), |
| &result, "calling %s.ImportSharedFence(%s).", this, descriptor)) { |
| result = SharedFenceBase::MakeError(this, descriptor); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| |
| ResultOrError<Ref<SharedFenceBase>> DeviceBase::ImportSharedFenceImpl( |
| const SharedFenceDescriptor* descriptor) { |
| return DAWN_UNIMPLEMENTED_ERROR("Not implemented"); |
| } |
| |
| void DeviceBase::ApplyFeatures(const UnpackedPtr<DeviceDescriptor>& deviceDescriptor, |
| wgpu::FeatureLevel level) { |
| DAWN_ASSERT(deviceDescriptor); |
| // Validate all required features with device toggles. |
| DAWN_ASSERT(GetPhysicalDevice()->SupportsAllRequiredFeatures( |
| {deviceDescriptor->requiredFeatures, deviceDescriptor->requiredFeatureCount}, mToggles)); |
| |
| for (uint32_t i = 0; i < deviceDescriptor->requiredFeatureCount; ++i) { |
| mEnabledFeatures.EnableFeature(deviceDescriptor->requiredFeatures[i]); |
| } |
| |
| if (level == wgpu::FeatureLevel::Core) { |
| // Core-defaulting adapters always support the "core-features-and-limits" feature. |
| // It is automatically enabled on devices created from such adapters. |
| mEnabledFeatures.EnableFeature(wgpu::FeatureName::CoreFeaturesAndLimits); |
| } |
| |
| // TODO(384921944): Enable Compat's optional features by default in Core Mode. |
| } |
| |
| bool DeviceBase::HasFeature(Feature feature) const { |
| return mEnabledFeatures.IsEnabled(feature); |
| } |
| |
| void DeviceBase::SetWGSLExtensionAllowList() { |
| // Set the WGSL extensions and language features allow list based on device's enabled features |
| // and other properties. |
| if (mEnabledFeatures.IsEnabled(Feature::ShaderF16)) { |
| mWGSLAllowedFeatures.extensions.insert(tint::wgsl::Extension::kF16); |
| } |
| if (mEnabledFeatures.IsEnabled(Feature::Subgroups)) { |
| mWGSLAllowedFeatures.extensions.insert(tint::wgsl::Extension::kSubgroups); |
| } |
| if (IsToggleEnabled(Toggle::AllowUnsafeAPIs)) { |
| mWGSLAllowedFeatures.extensions.insert( |
| tint::wgsl::Extension::kChromiumDisableUniformityAnalysis); |
| mWGSLAllowedFeatures.extensions.insert(tint::wgsl::Extension::kChromiumInternalGraphite); |
| mWGSLAllowedFeatures.extensions.insert( |
| tint::wgsl::Extension::kChromiumExperimentalImmediate); |
| } |
| if (mEnabledFeatures.IsEnabled(Feature::DualSourceBlending)) { |
| mWGSLAllowedFeatures.extensions.insert(tint::wgsl::Extension::kDualSourceBlending); |
| } |
| if (mEnabledFeatures.IsEnabled(Feature::PixelLocalStorageNonCoherent) || |
| mEnabledFeatures.IsEnabled(Feature::PixelLocalStorageCoherent)) { |
| mWGSLAllowedFeatures.extensions.insert( |
| tint::wgsl::Extension::kChromiumExperimentalPixelLocal); |
| } |
| if (mEnabledFeatures.IsEnabled(Feature::FramebufferFetch)) { |
| mWGSLAllowedFeatures.extensions.insert( |
| tint::wgsl::Extension::kChromiumExperimentalFramebufferFetch); |
| } |
| if (mEnabledFeatures.IsEnabled(Feature::ClipDistances)) { |
| mWGSLAllowedFeatures.extensions.insert(tint::wgsl::Extension::kClipDistances); |
| } |
| if (mEnabledFeatures.IsEnabled(Feature::ChromiumExperimentalSubgroupMatrix)) { |
| mWGSLAllowedFeatures.extensions.insert( |
| tint::wgsl::Extension::kChromiumExperimentalSubgroupMatrix); |
| } |
| |
| // Language features are enabled instance-wide. |
| const auto& allowedFeatures = GetInstance()->GetAllowedWGSLLanguageFeatures(); |
| mWGSLAllowedFeatures.features = {allowedFeatures.begin(), allowedFeatures.end()}; |
| } |
| |
| const tint::wgsl::AllowedFeatures& DeviceBase::GetWGSLAllowedFeatures() const { |
| return mWGSLAllowedFeatures; |
| } |
| |
| bool DeviceBase::IsValidationEnabled() const { |
| return !IsToggleEnabled(Toggle::SkipValidation); |
| } |
| |
| bool DeviceBase::IsRobustnessEnabled() const { |
| return !IsToggleEnabled(Toggle::DisableRobustness); |
| } |
| |
| bool DeviceBase::IsCompatibilityMode() const { |
| return !HasFeature(Feature::CoreFeaturesAndLimits); |
| } |
| |
| bool DeviceBase::IsImmediateErrorHandlingEnabled() const { |
| return mIsImmediateErrorHandlingEnabled; |
| } |
| |
| size_t DeviceBase::GetLazyClearCountForTesting() { |
| return mLazyClearCountForTesting; |
| } |
| |
| void DeviceBase::IncrementLazyClearCountForTesting() { |
| ++mLazyClearCountForTesting; |
| } |
| |
| void DeviceBase::EmitWarningOnce(std::string_view message) { |
| if (mWarnings.insert(std::string{message}).second) { |
| this->EmitLog(wgpu::LoggingType::Warning, message); |
| } |
| } |
| |
| void DeviceBase::EmitCompilationLog(const ShaderModuleBase* module) { |
| const OwnedCompilationMessages* messages = module->GetCompilationMessages(); |
| if (!messages->HasWarningsOrErrors()) { |
| return; |
| } |
| |
| // Limit the number of compilation error emitted to avoid spamming the devtools console hard. |
| constexpr uint32_t kCompilationLogSpamLimit = 20; |
| if (mEmittedCompilationLogCount.load(std::memory_order_acquire) > kCompilationLogSpamLimit) { |
| return; |
| } |
| |
| if (mEmittedCompilationLogCount.fetch_add(1, std::memory_order_acq_rel) == |
| kCompilationLogSpamLimit - 1) { |
| // Note: if there are multiple threads emitting logs, this may not actually be the exact |
| // last message. This is probably not a huge problem since this message will be emitted |
| // somewhere near the end. |
| EmitLog(wgpu::LoggingType::Warning, |
| "Reached the WGSL compilation log warning limit. To see all the compilation " |
| "logs, query them directly on the ShaderModule objects."); |
| } |
| |
| auto msg = module->GetCompilationLog(); |
| if (!msg.empty()) { |
| EmitLog(wgpu::LoggingType::Warning, msg.c_str()); |
| } |
| } |
| |
| void DeviceBase::EmitLog(std::string_view message) { |
| this->EmitLog(wgpu::LoggingType::Info, message); |
| } |
| |
| void DeviceBase::EmitLog(wgpu::LoggingType type, std::string_view message) { |
| // Acquire a shared lock. This allows multiple threads to emit logs, |
| // or even logs to be emitted re-entrantly. It will block if there is a call |
| // to SetLoggingCallback. Applications should not call SetLoggingCallback inside |
| // the logging callback or they will deadlock. |
| std::shared_lock<std::shared_mutex> lock(mLoggingMutex); |
| if (mLoggingCallbackInfo.callback) { |
| mLoggingCallbackInfo.callback(ToAPI(type), ToOutputStringView(message), |
| mLoggingCallbackInfo.userdata1, |
| mLoggingCallbackInfo.userdata2); |
| } |
| } |
| |
| wgpu::Status DeviceBase::APIGetAHardwareBufferProperties(void* handle, |
| AHardwareBufferProperties* properties) { |
| if (!HasFeature(Feature::SharedTextureMemoryAHardwareBuffer)) { |
| ConsumeError( |
| DAWN_VALIDATION_ERROR("Queried APIGetAHardwareBufferProperties() on %s " |
| "without the %s feature being set.", |
| this, ToAPI(Feature::SharedTextureMemoryAHardwareBuffer))); |
| return wgpu::Status::Error; |
| } |
| |
| // This method makes a Vulkan API call that will return an error if `handle` is invalid. This |
| // is not cause to lose the Dawn device, as it is a client-side error and not a true internal |
| // Dawn error. |
| if (ConsumedError(GetAHardwareBufferPropertiesImpl(handle, properties), |
| InternalErrorType::Internal)) { |
| return wgpu::Status::Error; |
| } |
| |
| return wgpu::Status::Success; |
| } |
| |
| wgpu::Status DeviceBase::APIGetLimits(Limits* limits) const { |
| if (GetAdapter()->GetInstance()->ConsumedError(FillLimits(limits, mEnabledFeatures, mLimits))) { |
| return wgpu::Status::Error; |
| } |
| return wgpu::Status::Success; |
| } |
| |
| bool DeviceBase::APIHasFeature(wgpu::FeatureName feature) const { |
| return mEnabledFeatures.IsEnabled(feature); |
| } |
| |
| void DeviceBase::APIGetFeatures(wgpu::SupportedFeatures* features) const { |
| this->APIGetFeatures(reinterpret_cast<SupportedFeatures*>(features)); |
| } |
| |
| void DeviceBase::APIGetFeatures(SupportedFeatures* features) const { |
| mEnabledFeatures.ToSupportedFeatures(features); |
| } |
| |
| wgpu::Status DeviceBase::APIGetAdapterInfo(AdapterInfo* adapterInfo) const { |
| return mAdapter->APIGetInfo(adapterInfo); |
| } |
| |
| Future DeviceBase::APIGetLostFuture() const { |
| if (mLostEvent) { |
| return mLostEvent->GetFuture(); |
| } |
| DAWN_ASSERT(mLostFuture.id != kNullFutureID); |
| return mLostFuture; |
| } |
| |
| void DeviceBase::APIInjectError(wgpu::ErrorType type, StringView message) { |
| if (ConsumedError(ValidateErrorType(type))) { |
| return; |
| } |
| |
| // This method should only be used to make error scope reject. For DeviceLost there is the |
| // LoseForTesting function that can be used instead. |
| if (type != wgpu::ErrorType::Validation && type != wgpu::ErrorType::OutOfMemory) { |
| HandleError( |
| DAWN_VALIDATION_ERROR("Invalid injected error, must be Validation or OutOfMemory")); |
| return; |
| } |
| |
| message = utils::NormalizeMessageString(message); |
| HandleError(DAWN_MAKE_ERROR(FromWGPUErrorType(type), std::string(message)), |
| InternalErrorType::OutOfMemory); |
| } |
| |
| void DeviceBase::APIValidateTextureDescriptor(const TextureDescriptor* descriptorOrig) { |
| AllowMultiPlanarTextureFormat allowMultiPlanar; |
| if (HasFeature(Feature::MultiPlanarFormatExtendedUsages)) { |
| allowMultiPlanar = AllowMultiPlanarTextureFormat::Yes; |
| } else { |
| allowMultiPlanar = AllowMultiPlanarTextureFormat::No; |
| } |
| |
| TextureDescriptor rawDescriptor = descriptorOrig->WithTrivialFrontendDefaults(); |
| |
| UnpackedPtr<TextureDescriptor> unpacked; |
| if (!ConsumedError(ValidateAndUnpack(&rawDescriptor), &unpacked)) { |
| [[maybe_unused]] bool hadError = |
| ConsumedError(ValidateTextureDescriptor(this, unpacked, allowMultiPlanar)); |
| } |
| } |
| |
| QueueBase* DeviceBase::GetQueue() const { |
| DAWN_ASSERT(mQueue != nullptr); |
| return mQueue.Get(); |
| } |
| |
| // Implementation details of object creation |
| |
| ResultOrError<Ref<BindGroupBase>> DeviceBase::CreateBindGroup(const BindGroupDescriptor* descriptor, |
| UsageValidationMode mode) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateBindGroupDescriptor(this, descriptor, mode), |
| "validating %s against %s", descriptor, descriptor->layout); |
| } |
| return CreateBindGroupImpl(descriptor); |
| } |
| |
| ResultOrError<Ref<BindGroupLayoutBase>> DeviceBase::CreateBindGroupLayout( |
| const BindGroupLayoutDescriptor* descriptor, |
| bool allowInternalBinding) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateBindGroupLayoutDescriptor(this, descriptor, allowInternalBinding), |
| "validating %s", descriptor); |
| } |
| return GetOrCreateBindGroupLayout(descriptor); |
| } |
| |
| ResultOrError<Ref<BufferBase>> DeviceBase::CreateBuffer(const BufferDescriptor* rawDescriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| UnpackedPtr<BufferDescriptor> descriptor; |
| if (IsValidationEnabled()) { |
| DAWN_TRY_ASSIGN(descriptor, ValidateBufferDescriptor(this, rawDescriptor)); |
| } else { |
| descriptor = Unpack(rawDescriptor); |
| } |
| |
| Ref<BufferBase> buffer; |
| DAWN_TRY_ASSIGN(buffer, CreateBufferImpl(descriptor)); |
| |
| if (descriptor->mappedAtCreation) { |
| DAWN_TRY(buffer->MapAtCreation()); |
| } |
| |
| return std::move(buffer); |
| } |
| |
| ResultOrError<Ref<ComputePipelineBase>> DeviceBase::CreateComputePipeline( |
| const ComputePipelineDescriptor* descriptor) { |
| // If a pipeline layout is not specified, we cannot use cached pipelines. |
| bool useCache = descriptor->layout != nullptr; |
| |
| Ref<ComputePipelineBase> uninitializedComputePipeline; |
| DAWN_TRY_ASSIGN(uninitializedComputePipeline, CreateUninitializedComputePipeline(descriptor)); |
| |
| if (useCache) { |
| Ref<ComputePipelineBase> cachedComputePipeline = |
| GetCachedComputePipeline(uninitializedComputePipeline.Get()); |
| if (cachedComputePipeline.Get() != nullptr) { |
| return cachedComputePipeline; |
| } |
| } |
| |
| MaybeError maybeError; |
| { |
| SCOPED_DAWN_HISTOGRAM_TIMER_MICROS(GetPlatform(), "CreateComputePipelineUS"); |
| maybeError = uninitializedComputePipeline->Initialize(); |
| } |
| DAWN_HISTOGRAM_BOOLEAN(GetPlatform(), "CreateComputePipelineSuccess", maybeError.IsSuccess()); |
| |
| DAWN_TRY(std::move(maybeError)); |
| return useCache ? AddOrGetCachedComputePipeline(std::move(uninitializedComputePipeline)) |
| : std::move(uninitializedComputePipeline); |
| } |
| |
| ResultOrError<Ref<CommandEncoder>> DeviceBase::CreateCommandEncoder( |
| const CommandEncoderDescriptor* descriptor) { |
| const CommandEncoderDescriptor defaultDescriptor = {}; |
| if (descriptor == nullptr) { |
| descriptor = &defaultDescriptor; |
| } |
| |
| DAWN_TRY(ValidateIsAlive()); |
| UnpackedPtr<CommandEncoderDescriptor> unpacked; |
| if (IsValidationEnabled()) { |
| DAWN_TRY_ASSIGN(unpacked, ValidateCommandEncoderDescriptor(this, descriptor)); |
| } else { |
| unpacked = Unpack(descriptor); |
| } |
| return CommandEncoder::Create(this, unpacked); |
| } |
| |
| // Overwritten on the backends to return pipeline caches if supported. |
| Ref<PipelineCacheBase> DeviceBase::GetOrCreatePipelineCacheImpl(const CacheKey& key) { |
| DAWN_UNREACHABLE(); |
| } |
| |
| ResultOrError<Ref<ComputePipelineBase>> DeviceBase::CreateUninitializedComputePipeline( |
| const ComputePipelineDescriptor* descriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY(ValidateComputePipelineDescriptor(this, descriptor)); |
| } |
| |
| Ref<PipelineLayoutBase> layoutRef; |
| ComputePipelineDescriptor appliedDescriptor; |
| DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetComputePipelineDescriptorWithDefaults( |
| this, *descriptor, &appliedDescriptor)); |
| |
| return CreateUninitializedComputePipelineImpl(Unpack(&appliedDescriptor)); |
| } |
| |
| // This base version is creating the pipeline synchronously, |
| // and is overwritten on the backends that actually support asynchronous pipeline creation. |
| void DeviceBase::InitializeComputePipelineAsyncImpl(Ref<CreateComputePipelineAsyncEvent> event) { |
| event->InitializeSync(); |
| } |
| |
| // This base version is creating the pipeline synchronously, |
| // and is overwritten on the backends that actually support asynchronous pipeline creation. |
| void DeviceBase::InitializeRenderPipelineAsyncImpl(Ref<CreateRenderPipelineAsyncEvent> event) { |
| event->InitializeSync(); |
| } |
| |
| ResultOrError<Ref<PipelineLayoutBase>> DeviceBase::CreatePipelineLayout( |
| const PipelineLayoutDescriptor* descriptor, |
| PipelineCompatibilityToken pipelineCompatibilityToken) { |
| DAWN_TRY(ValidateIsAlive()); |
| UnpackedPtr<PipelineLayoutDescriptor> unpacked; |
| if (IsValidationEnabled()) { |
| DAWN_TRY_ASSIGN(unpacked, ValidatePipelineLayoutDescriptor(this, descriptor, |
| pipelineCompatibilityToken)); |
| } else { |
| unpacked = Unpack(descriptor); |
| } |
| |
| // When we are not creating explicit pipeline layouts, i.e. we are using 'auto', don't use the |
| // cache. |
| if (pipelineCompatibilityToken != kExplicitPCT) { |
| Ref<PipelineLayoutBase> result; |
| DAWN_TRY_ASSIGN(result, CreatePipelineLayoutImpl(unpacked)); |
| result->SetContentHash(result->ComputeContentHash()); |
| return result; |
| } |
| return GetOrCreatePipelineLayout(unpacked); |
| } |
| |
| ResultOrError<Ref<ExternalTextureBase>> DeviceBase::CreateExternalTextureImpl( |
| const ExternalTextureDescriptor* descriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateExternalTextureDescriptor(this, descriptor), "validating %s", |
| descriptor); |
| } |
| |
| return ExternalTextureBase::Create(this, descriptor); |
| } |
| |
| ResultOrError<Ref<QuerySetBase>> DeviceBase::CreateQuerySet(const QuerySetDescriptor* descriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateQuerySetDescriptor(this, descriptor), "validating %s", descriptor); |
| } |
| return CreateQuerySetImpl(descriptor); |
| } |
| |
| ResultOrError<Ref<RenderBundleEncoder>> DeviceBase::CreateRenderBundleEncoder( |
| const RenderBundleEncoderDescriptor* descriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateRenderBundleEncoderDescriptor(this, descriptor), |
| "validating render bundle encoder descriptor."); |
| } |
| return RenderBundleEncoder::Create(this, descriptor); |
| } |
| |
| ResultOrError<Ref<RenderPipelineBase>> DeviceBase::CreateRenderPipeline( |
| const RenderPipelineDescriptor* descriptor, |
| bool allowInternalBinding) { |
| // If a pipeline layout is not specified, we cannot use cached pipelines. |
| bool useCache = descriptor->layout != nullptr; |
| |
| Ref<RenderPipelineBase> uninitializedRenderPipeline; |
| DAWN_TRY_ASSIGN(uninitializedRenderPipeline, |
| CreateUninitializedRenderPipeline(descriptor, allowInternalBinding)); |
| |
| if (useCache) { |
| Ref<RenderPipelineBase> cachedRenderPipeline = |
| GetCachedRenderPipeline(uninitializedRenderPipeline.Get()); |
| if (cachedRenderPipeline != nullptr) { |
| return cachedRenderPipeline; |
| } |
| } |
| |
| MaybeError maybeError; |
| { |
| SCOPED_DAWN_HISTOGRAM_TIMER_MICROS(GetPlatform(), "CreateRenderPipelineUS"); |
| maybeError = uninitializedRenderPipeline->Initialize(); |
| } |
| DAWN_HISTOGRAM_BOOLEAN(GetPlatform(), "CreateRenderPipelineSuccess", maybeError.IsSuccess()); |
| |
| DAWN_TRY(std::move(maybeError)); |
| return useCache ? AddOrGetCachedRenderPipeline(std::move(uninitializedRenderPipeline)) |
| : std::move(uninitializedRenderPipeline); |
| } |
| |
| ResultOrError<Ref<RenderPipelineBase>> DeviceBase::CreateUninitializedRenderPipeline( |
| const RenderPipelineDescriptor* descriptor, |
| bool allowInternalBinding) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY(ValidateRenderPipelineDescriptor(this, descriptor)); |
| |
| // Validation for kMaxBindGroupsPlusVertexBuffers is skipped because it is not necessary so |
| // far. |
| static_assert(kMaxBindGroups + kMaxVertexBuffers <= kMaxBindGroupsPlusVertexBuffers); |
| } |
| |
| // Ref will keep the pipeline layout alive until the end of the function where |
| // the pipeline will take another reference. |
| Ref<PipelineLayoutBase> layoutRef; |
| RenderPipelineDescriptor appliedDescriptor; |
| DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetRenderPipelineDescriptorWithDefaults( |
| this, *descriptor, &appliedDescriptor, allowInternalBinding)); |
| |
| return CreateUninitializedRenderPipelineImpl(Unpack(&appliedDescriptor)); |
| } |
| |
| ResultOrError<Ref<SamplerBase>> DeviceBase::CreateSampler(const SamplerDescriptor* descriptorOrig) { |
| DAWN_TRY(ValidateIsAlive()); |
| |
| SamplerDescriptor descriptor = {}; |
| if (descriptorOrig) { |
| descriptor = descriptorOrig->WithTrivialFrontendDefaults(); |
| } |
| |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateSamplerDescriptor(this, &descriptor), "validating %s", |
| &descriptor); |
| } |
| |
| return GetOrCreateSampler(&descriptor); |
| } |
| |
| ResultOrError<Ref<ShaderModuleBase>> DeviceBase::CreateShaderModule( |
| const ShaderModuleDescriptor* descriptor, |
| const std::vector<tint::wgsl::Extension>& internalExtensions, |
| ShaderModuleParseResult* outputParseResult) { |
| DAWN_TRY(ValidateIsAlive()); |
| |
| // Unpack and validate the descriptor chain before doing further validation or cache |
| // lookups. |
| UnpackedPtr<ShaderModuleDescriptor> unpacked; |
| DAWN_TRY_ASSIGN_CONTEXT(unpacked, ValidateAndUnpack(descriptor), "validating and unpacking %s", |
| descriptor); |
| |
| // A WGSL (xor SPIR-V, if enabled) subdescriptor is required, and a Dawn-specific SPIR-V |
| // options descriptor is allowed when using SPIR-V. |
| wgpu::SType moduleType = wgpu::SType(0u); |
| DAWN_TRY_ASSIGN( |
| moduleType, |
| (unpacked.ValidateBranches<Branch<ShaderSourceWGSL, ShaderModuleCompilationOptions>, |
| Branch<ShaderSourceSPIRV, DawnShaderModuleSPIRVOptionsDescriptor, |
| ShaderModuleCompilationOptions>>())); |
| |
| // Module type specific validation. |
| switch (moduleType) { |
| case wgpu::SType::ShaderSourceSPIRV: { |
| DAWN_INVALID_IF(!TINT_BUILD_SPV_READER || IsToggleEnabled(Toggle::DisallowSpirv), |
| "SPIR-V is disallowed."); |
| break; |
| } |
| case wgpu::SType::ShaderSourceWGSL: { |
| DAWN_INVALID_IF(unpacked.Get<ShaderModuleCompilationOptions>() != nullptr && |
| !HasFeature(Feature::ShaderModuleCompilationOptions), |
| "Shader module compilation options used without %s enabled.", |
| wgpu::FeatureName::ShaderModuleCompilationOptions); |
| break; |
| } |
| default: |
| DAWN_UNREACHABLE(); |
| } |
| |
| // Check the cache and do actual validation and parsing if cache missed. |
| ShaderModuleBase blueprint(this, unpacked, internalExtensions, |
| ApiObjectBase::kUntrackedByDevice); |
| |
| const size_t blueprintHash = blueprint.ComputeContentHash(); |
| blueprint.SetContentHash(blueprintHash); |
| |
| // Check in-memory shader module cache first, and if missed check the blob cache, and if missed |
| // again call ParseShaderModule. |
| return GetOrCreate( |
| mCaches->shaderModules, &blueprint, [&]() -> ResultOrError<Ref<ShaderModuleBase>> { |
| SCOPED_DAWN_HISTOGRAM_TIMER_MICROS(GetPlatform(), "CreateShaderModuleUS"); |
| |
| auto resultOrError = [&]() -> ResultOrError<Ref<ShaderModuleBase>> { |
| ShaderModuleParseRequest req = BuildShaderModuleParseRequest( |
| this, blueprint.GetHash(), unpacked, internalExtensions, |
| /* needReflection */ true); |
| |
| // Check blob cache first before calling ParseShaderModule. ShaderModuleParseResult |
| // returned from blob cache or ParseShaderModule will hold compilation messages and |
| // validation errors if any. ShaderModuleParseResult from ParseShaderModule also |
| // holds tint program. |
| CacheResult<ShaderModuleParseResult> result; |
| DAWN_TRY_LOAD_OR_RUN(result, this, std::move(req), |
| ShaderModuleParseResult::FromBlob, ParseShaderModule, |
| "ShaderModuleParsing"); |
| GetBlobCache()->EnsureStored(result); |
| ShaderModuleParseResult parseResult = result.Acquire(); |
| |
| // If ShaderModuleParseResult has validation error, move the compilation messages to |
| // *outputParseResult so that we can create an error shader module from it, and then |
| // return the validation error. |
| if (parseResult.HasError()) { |
| auto error = parseResult.cachedValidationError->ToErrorData(); |
| if (outputParseResult) { |
| *outputParseResult = std::move(parseResult); |
| } |
| return error; |
| } |
| // Otherwise with no error, create a shader module from parse result and return it. |
| Ref<ShaderModuleBase> shaderModule; |
| DAWN_TRY_ASSIGN(shaderModule, |
| CreateShaderModuleImpl(unpacked, internalExtensions, &parseResult)); |
| shaderModule->SetContentHash(blueprintHash); |
| return shaderModule; |
| }(); |
| |
| DAWN_HISTOGRAM_BOOLEAN(GetPlatform(), "CreateShaderModuleSuccess", |
| resultOrError.IsSuccess()); |
| |
| return resultOrError; |
| }); |
| } |
| |
| ResultOrError<Ref<SwapChainBase>> DeviceBase::CreateSwapChain(Surface* surface, |
| SwapChainBase* previousSwapChain, |
| const SurfaceConfiguration* config) { |
| // Nothing to validate here as it is done in Surface::Configure |
| return CreateSwapChainImpl(surface, previousSwapChain, config); |
| } |
| |
| ResultOrError<Ref<TextureBase>> DeviceBase::CreateTexture(const TextureDescriptor* descriptorOrig) { |
| DAWN_TRY(ValidateIsAlive()); |
| |
| TextureDescriptor rawDescriptor = descriptorOrig->WithTrivialFrontendDefaults(); |
| |
| UnpackedPtr<TextureDescriptor> descriptor; |
| if (IsValidationEnabled()) { |
| AllowMultiPlanarTextureFormat allowMultiPlanar; |
| if (HasFeature(Feature::MultiPlanarFormatExtendedUsages)) { |
| allowMultiPlanar = AllowMultiPlanarTextureFormat::SingleLayerOnly; |
| } else { |
| allowMultiPlanar = AllowMultiPlanarTextureFormat::No; |
| } |
| DAWN_TRY_ASSIGN_CONTEXT(descriptor, ValidateAndUnpack(&rawDescriptor), "validating %s.", |
| &rawDescriptor); |
| DAWN_TRY_CONTEXT(ValidateTextureDescriptor(this, descriptor, allowMultiPlanar), |
| "validating %s.", descriptor); |
| } else { |
| descriptor = Unpack(&rawDescriptor); |
| } |
| |
| return CreateTextureImpl(descriptor); |
| } |
| |
| ResultOrError<Ref<TextureViewBase>> DeviceBase::CreateTextureView( |
| TextureBase* texture, |
| const TextureViewDescriptor* descriptorOrig) { |
| DAWN_TRY(ValidateIsAlive()); |
| DAWN_TRY(ValidateObject(texture)); |
| |
| TextureViewDescriptor desc; |
| DAWN_TRY_ASSIGN(desc, GetTextureViewDescriptorWithDefaults(texture, descriptorOrig)); |
| |
| UnpackedPtr<TextureViewDescriptor> descriptor; |
| if (IsValidationEnabled()) { |
| DAWN_TRY_ASSIGN_CONTEXT(descriptor, ValidateAndUnpack(&desc), "validating %s.", &desc); |
| DAWN_TRY_CONTEXT(ValidateTextureViewDescriptor(this, texture, descriptor), |
| "validating %s against %s.", descriptor, texture); |
| } else { |
| descriptor = Unpack(&desc); |
| } |
| |
| return texture->GetOrCreateViewFromCache( |
| descriptor, [&](TextureViewQuery&) -> ResultOrError<Ref<TextureViewBase>> { |
| return CreateTextureViewImpl(texture, descriptor); |
| }); |
| } |
| |
| // Other implementation details |
| |
| DynamicUploader* DeviceBase::GetDynamicUploader() const { |
| return mDynamicUploader.get(); |
| } |
| |
| // The Toggle device facility |
| |
| std::vector<const char*> DeviceBase::GetTogglesUsed() const { |
| return mToggles.GetEnabledToggleNames(); |
| } |
| |
| bool DeviceBase::IsToggleEnabled(Toggle toggle) const { |
| return mToggles.IsEnabled(toggle); |
| } |
| |
| const TogglesState& DeviceBase::GetTogglesState() const { |
| return mToggles; |
| } |
| |
| const FeaturesSet& DeviceBase::GetEnabledFeatures() const { |
| return mEnabledFeatures; |
| } |
| |
| void DeviceBase::ForceEnableFeatureForTesting(Feature feature) { |
| mEnabledFeatures.EnableFeature(feature); |
| mFormatTable = BuildFormatTable(this); |
| } |
| |
| void DeviceBase::FlushCallbackTaskQueue() { |
| // Callbacks might cause re-entrances. Mutex shouldn't be locked. So we expect there is no |
| // locked mutex before entering this method. |
| DAWN_ASSERT(mMutex == nullptr || !mMutex->IsLockedByCurrentThread()); |
| |
| Ref<CallbackTaskManager> callbackTaskManager; |
| |
| { |
| // This is a data race with the assignment to InstanceBase's callback queue manager in |
| // WillDropLastExternalRef(). Need to protect with a lock and keep the old |
| // mCallbackTaskManager alive. |
| // TODO(crbug.com/dawn/752): In future, all devices should use InstanceBase's callback queue |
| // manager from the start. So we won't need to care about data race at that point. |
| auto deviceLock(GetScopedLock()); |
| callbackTaskManager = mCallbackTaskManager; |
| } |
| |
| callbackTaskManager->Flush(); |
| } |
| |
| const CombinedLimits& DeviceBase::GetLimits() const { |
| return mLimits; |
| } |
| |
| AsyncTaskManager* DeviceBase::GetAsyncTaskManager() const { |
| return mAsyncTaskManager.get(); |
| } |
| |
| CallbackTaskManager* DeviceBase::GetCallbackTaskManager() const { |
| return mCallbackTaskManager.Get(); |
| } |
| |
| dawn::platform::WorkerTaskPool* DeviceBase::GetWorkerTaskPool() const { |
| return mWorkerTaskPool.get(); |
| } |
| |
| PipelineCompatibilityToken DeviceBase::GetNextPipelineCompatibilityToken() { |
| return PipelineCompatibilityToken(mNextPipelineCompatibilityToken++); |
| } |
| |
| const CacheKey& DeviceBase::GetCacheKey() const { |
| return mDeviceCacheKey; |
| } |
| |
| const std::string& DeviceBase::GetLabel() const { |
| return mLabel; |
| } |
| |
| void DeviceBase::APISetLabel(StringView label) { |
| mLabel = utils::NormalizeMessageString(label); |
| SetLabelImpl(); |
| } |
| |
| void DeviceBase::SetLabelImpl() {} |
| |
| bool DeviceBase::ReduceMemoryUsageImpl() { |
| return false; |
| } |
| |
| void DeviceBase::PerformIdleTasksImpl() {} |
| |
| bool DeviceBase::ShouldDuplicateNumWorkgroupsForDispatchIndirect( |
| ComputePipelineBase* computePipeline) const { |
| return false; |
| } |
| |
| bool DeviceBase::MayRequireDuplicationOfIndirectParameters() const { |
| return false; |
| } |
| |
| bool DeviceBase::ShouldDuplicateParametersForDrawIndirect( |
| const RenderPipelineBase* renderPipelineBase) const { |
| return false; |
| } |
| |
| bool DeviceBase::BackendWillValidateMultiDraw() const { |
| return false; |
| } |
| |
| bool DeviceBase::ShouldApplyIndexBufferOffsetToFirstIndex() const { |
| return false; |
| } |
| |
| bool DeviceBase::CanTextureLoadResolveTargetInTheSameRenderpass() const { |
| return false; |
| } |
| |
| bool DeviceBase::CanAddStorageUsageToBufferWithoutSideEffects(wgpu::BufferUsage storageUsage, |
| wgpu::BufferUsage originalUsage, |
| size_t bufferSize) const { |
| return true; |
| } |
| |
| uint64_t DeviceBase::GetBufferCopyOffsetAlignmentForDepthStencil() const { |
| // For depth-stencil texture, buffer offset must be a multiple of 4, which is required |
| // by WebGPU and Vulkan SPEC. |
| return 4u; |
| } |
| |
| MaybeError DeviceBase::CopyFromStagingToTexture(BufferBase* source, |
| const TexelCopyBufferLayout& src, |
| const TextureCopy& dst, |
| const Extent3D& copySizePixels) { |
| if (dst.aspect == Aspect::Depth && |
| IsToggleEnabled(Toggle::UseBlitForBufferToDepthTextureCopy)) { |
| DAWN_TRY_CONTEXT(BlitStagingBufferToDepth(this, source, src, dst, copySizePixels), |
| "copying from staging buffer to depth aspect of %s using blit workaround.", |
| dst.texture.Get()); |
| } else if (dst.aspect == Aspect::Stencil && |
| IsToggleEnabled(Toggle::UseBlitForBufferToStencilTextureCopy)) { |
| DAWN_TRY_CONTEXT( |
| BlitStagingBufferToStencil(this, source, src, dst, copySizePixels), |
| "copying from staging buffer to stencil aspect of %s using blit workaround.", |
| dst.texture.Get()); |
| } else { |
| DAWN_TRY(CopyFromStagingToTextureImpl(source, src, dst, copySizePixels)); |
| } |
| |
| return {}; |
| } |
| |
| Mutex::AutoLockAndHoldRef DeviceBase::GetScopedLockSafeForDelete() { |
| return Mutex::AutoLockAndHoldRef(mMutex); |
| } |
| |
| Mutex::AutoLock DeviceBase::GetScopedLock() { |
| return Mutex::AutoLock(mMutex.Get()); |
| } |
| |
| bool DeviceBase::IsLockedByCurrentThreadIfNeeded() const { |
| return mMutex == nullptr || mMutex->IsLockedByCurrentThread(); |
| } |
| |
| void DeviceBase::DumpMemoryStatistics(dawn::native::MemoryDump* dump) const { |
| DAWN_ASSERT(IsLockedByCurrentThreadIfNeeded()); |
| std::string prefix = absl::StrFormat("device_%p", static_cast<const void*>(this)); |
| GetObjectTrackingList(ObjectType::Texture)->ForEach([&](const ApiObjectBase* texture) { |
| static_cast<const TextureBase*>(texture)->DumpMemoryStatistics(dump, prefix.c_str()); |
| }); |
| GetObjectTrackingList(ObjectType::Buffer)->ForEach([&](const ApiObjectBase* buffer) { |
| static_cast<const BufferBase*>(buffer)->DumpMemoryStatistics(dump, prefix.c_str()); |
| }); |
| } |
| |
| MemoryUsageInfo DeviceBase::ComputeEstimatedMemoryUsage() const { |
| DAWN_ASSERT(IsLockedByCurrentThreadIfNeeded()); |
| MemoryUsageInfo info = {}; |
| |
| GetObjectTrackingList(ObjectType::Texture)->ForEach([&](const ApiObjectBase* ptr) { |
| auto texture = static_cast<const TextureBase*>(ptr); |
| auto size = texture->ComputeEstimatedByteSize(); |
| info.totalUsage += size; |
| info.texturesUsage += size; |
| if (texture->GetSampleCount() > 1) { |
| info.msaaTexturesUsage += size; |
| info.msaaTexturesCount++; |
| info.largestMsaaTextureUsage = std::max(info.largestMsaaTextureUsage, size); |
| } |
| if (texture->GetFormat().HasDepthOrStencil()) { |
| info.depthStencilTexturesUsage += size; |
| } |
| }); |
| GetObjectTrackingList(ObjectType::Buffer)->ForEach([&](const ApiObjectBase* buffer) { |
| auto size = static_cast<const BufferBase*>(buffer)->GetAllocatedSize(); |
| info.totalUsage += size; |
| info.buffersUsage += size; |
| }); |
| |
| return info; |
| } |
| |
| AllocatorMemoryInfo DeviceBase::GetAllocatorMemoryInfo() const { |
| return {}; |
| } |
| |
| bool DeviceBase::ReduceMemoryUsage() { |
| DAWN_ASSERT(IsLockedByCurrentThreadIfNeeded()); |
| if (ConsumedError(GetQueue()->CheckPassedSerials())) { |
| return false; |
| } |
| GetDynamicUploader()->Deallocate(GetQueue()->GetCompletedCommandSerial(), /*freeAll=*/true); |
| mInternalPipelineStore->ResetScratchBuffers(); |
| mTemporaryUniformBuffer = nullptr; |
| |
| GetObjectTrackingList(ObjectType::BindGroupLayoutInternal)->ForEach([](ApiObjectBase* object) { |
| static_cast<BindGroupLayoutInternalBase*>(object)->ReduceMemoryUsage(); |
| }); |
| |
| TrimErrorScopeStacks(mErrorScopeStacks); |
| |
| // TODO(crbug.com/398193014): This could return a future to wait on instead of just a bool |
| // saying there is work to wait on. |
| return ReduceMemoryUsageImpl(); |
| } |
| |
| void DeviceBase::PerformIdleTasks() { |
| DAWN_ASSERT(IsLockedByCurrentThreadIfNeeded()); |
| PerformIdleTasksImpl(); |
| } |
| |
| ResultOrError<Ref<BufferBase>> DeviceBase::GetOrCreateTemporaryUniformBuffer(size_t size) { |
| if (!mTemporaryUniformBuffer || mTemporaryUniformBuffer->GetSize() != size) { |
| BufferDescriptor desc; |
| desc.label = "Internal_TemporaryUniform"; |
| desc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Uniform; |
| desc.size = size; |
| DAWN_TRY_ASSIGN(mTemporaryUniformBuffer, CreateBuffer(&desc)); |
| } |
| |
| return mTemporaryUniformBuffer; |
| } |
| |
| bool DeviceBase::HasFlexibleTextureViews() const { |
| // TODO(384921944): Once FlexibleTextureViews is enabled by default in Core Mode, we only need |
| // to check HasFeature(FlexibleTextureViews). |
| return !IsCompatibilityMode() || HasFeature(Feature::FlexibleTextureViews); |
| } |
| |
| std::string_view DeviceBase::GetIsolatedEntryPointName() const { |
| return mIsolatedEntryPointName; |
| } |
| |
| IgnoreLazyClearCountScope::IgnoreLazyClearCountScope(DeviceBase* device) |
| : mDevice(device), mLazyClearCountForTesting(device->mLazyClearCountForTesting) {} |
| |
| IgnoreLazyClearCountScope::~IgnoreLazyClearCountScope() { |
| mDevice->mLazyClearCountForTesting = mLazyClearCountForTesting; |
| } |
| |
| std::pair<std::string, bool> DeviceBase::GetTraceInfo() { |
| static std::atomic<uint32_t> s_count = 0; |
| |
| auto [traceFileBase, traceFileBaseSet] = GetEnvironmentVar("DAWN_TRACE_FILE_BASE"); |
| auto [traceDeviceFilter, traceDeviceFilterSet] = GetEnvironmentVar("DAWN_TRACE_DEVICE_FILTER"); |
| |
| // Skip if trace file name is not set. |
| if (!traceFileBaseSet) { |
| return {"", false}; |
| } |
| |
| // If a filter was specified, only trace if the filter is found |
| if (traceDeviceFilterSet && GetLabel().find(traceDeviceFilter) == std::string::npos) { |
| return {"", false}; |
| } |
| |
| /* |
| One reason to put the date is Metal will not overwrite an existing trace. |
| Deleting a trace is problematic as a trace is a folder and dawn shouldn't |
| be deleting folders. So, adding the date means when you re-run your program |
| you'll get a trace that doesn't clash with your last trace. The count is |
| there because if you're running something that makes makes more than one |
| device, if they are created within the same second they'd have the same |
| name and metal would fail to capture. |
| */ |
| |
| uint32_t count = s_count.fetch_add(1, std::memory_order_acq_rel); |
| |
| std::time_t now = std::time(0); |
| std::tm tm(*std::localtime(&now)); |
| std::string traceName(absl::StrFormat("%s-%04d-%02d-%02dT%02d-%02d-%02d-c%03d", traceFileBase, |
| tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, |
| tm.tm_min, tm.tm_sec, count)); |
| |
| return {traceName, true}; |
| } |
| |
| } // namespace dawn::native |