blob: 62e011c18720981ca5e1effd4cc290ef988e61be [file] [log] [blame]
// Copyright 2022 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/resolver/const_eval.h"
#include <algorithm>
#include <limits>
#include <optional>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include "src/tint/program_builder.h"
#include "src/tint/sem/abstract_float.h"
#include "src/tint/sem/abstract_int.h"
#include "src/tint/sem/array.h"
#include "src/tint/sem/bool.h"
#include "src/tint/sem/constant.h"
#include "src/tint/sem/f16.h"
#include "src/tint/sem/f32.h"
#include "src/tint/sem/i32.h"
#include "src/tint/sem/matrix.h"
#include "src/tint/sem/member_accessor_expression.h"
#include "src/tint/sem/type_constructor.h"
#include "src/tint/sem/u32.h"
#include "src/tint/sem/vector.h"
#include "src/tint/utils/compiler_macros.h"
#include "src/tint/utils/map.h"
#include "src/tint/utils/scoped_assignment.h"
#include "src/tint/utils/transform.h"
using namespace tint::number_suffixes; // NOLINT
namespace tint::resolver {
namespace {
/// Returns the first element of a parameter pack
template <typename T>
T First(T&& first, ...) {
return std::forward<T>(first);
}
/// Helper that calls `f` passing in the value of all `cs`.
/// Assumes all `cs` are of the same type.
template <typename F, typename... CONSTANTS>
auto Dispatch_ia_iu32(F&& f, CONSTANTS&&... cs) {
return Switch(
First(cs...)->Type(), //
[&](const sem::AbstractInt*) { return f(cs->template As<AInt>()...); },
[&](const sem::I32*) { return f(cs->template As<i32>()...); },
[&](const sem::U32*) { return f(cs->template As<u32>()...); });
}
/// Helper that calls `f` passing in the value of all `cs`.
/// Assumes all `cs` are of the same type.
template <typename F, typename... CONSTANTS>
auto Dispatch_ia_iu32_bool(F&& f, CONSTANTS&&... cs) {
return Switch(
First(cs...)->Type(), //
[&](const sem::AbstractInt*) { return f(cs->template As<AInt>()...); },
[&](const sem::I32*) { return f(cs->template As<i32>()...); },
[&](const sem::U32*) { return f(cs->template As<u32>()...); },
[&](const sem::Bool*) { return f(cs->template As<bool>()...); });
}
/// Helper that calls `f` passing in the value of all `cs`.
/// Assumes all `cs` are of the same type.
template <typename F, typename... CONSTANTS>
auto Dispatch_fia_fi32_f16(F&& f, CONSTANTS&&... cs) {
return Switch(
First(cs...)->Type(), //
[&](const sem::AbstractInt*) { return f(cs->template As<AInt>()...); },
[&](const sem::AbstractFloat*) { return f(cs->template As<AFloat>()...); },
[&](const sem::F32*) { return f(cs->template As<f32>()...); },
[&](const sem::I32*) { return f(cs->template As<i32>()...); },
[&](const sem::F16*) { return f(cs->template As<f16>()...); });
}
/// Helper that calls `f` passing in the value of all `cs`.
/// Assumes all `cs` are of the same type.
template <typename F, typename... CONSTANTS>
auto Dispatch_fia_fiu32_f16(F&& f, CONSTANTS&&... cs) {
return Switch(
First(cs...)->Type(), //
[&](const sem::AbstractInt*) { return f(cs->template As<AInt>()...); },
[&](const sem::AbstractFloat*) { return f(cs->template As<AFloat>()...); },
[&](const sem::F32*) { return f(cs->template As<f32>()...); },
[&](const sem::I32*) { return f(cs->template As<i32>()...); },
[&](const sem::U32*) { return f(cs->template As<u32>()...); },
[&](const sem::F16*) { return f(cs->template As<f16>()...); });
}
/// Helper that calls `f` passing in the value of all `cs`.
/// Assumes all `cs` are of the same type.
template <typename F, typename... CONSTANTS>
auto Dispatch_fia_fiu32_f16_bool(F&& f, CONSTANTS&&... cs) {
return Switch(
First(cs...)->Type(), //
[&](const sem::AbstractInt*) { return f(cs->template As<AInt>()...); },
[&](const sem::AbstractFloat*) { return f(cs->template As<AFloat>()...); },
[&](const sem::F32*) { return f(cs->template As<f32>()...); },
[&](const sem::I32*) { return f(cs->template As<i32>()...); },
[&](const sem::U32*) { return f(cs->template As<u32>()...); },
[&](const sem::F16*) { return f(cs->template As<f16>()...); },
[&](const sem::Bool*) { return f(cs->template As<bool>()...); });
}
/// Helper that calls `f` passing in the value of all `cs`.
/// Assumes all `cs` are of the same type.
template <typename F, typename... CONSTANTS>
auto Dispatch_fa_f32_f16(F&& f, CONSTANTS&&... cs) {
return Switch(
First(cs...)->Type(), //
[&](const sem::AbstractFloat*) { return f(cs->template As<AFloat>()...); },
[&](const sem::F32*) { return f(cs->template As<f32>()...); },
[&](const sem::F16*) { return f(cs->template As<f16>()...); });
}
/// Helper that calls `f` passing in the value of all `cs`.
/// Assumes all `cs` are of the same type.
template <typename F, typename... CONSTANTS>
auto Dispatch_bool(F&& f, CONSTANTS&&... cs) {
return f(cs->template As<bool>()...);
}
/// ZeroTypeDispatch is a helper for calling the function `f`, passing a single zero-value argument
/// of the C++ type that corresponds to the sem::Type `type`. For example, calling
/// `ZeroTypeDispatch()` with a type of `sem::I32*` will call the function f with a single argument
/// of `i32(0)`.
/// @returns the value returned by calling `f`.
/// @note `type` must be a scalar or abstract numeric type. Other types will not call `f`, and will
/// return the zero-initialized value of the return type for `f`.
template <typename F>
auto ZeroTypeDispatch(const sem::Type* type, F&& f) {
return Switch(
type, //
[&](const sem::AbstractInt*) { return f(AInt(0)); }, //
[&](const sem::AbstractFloat*) { return f(AFloat(0)); }, //
[&](const sem::I32*) { return f(i32(0)); }, //
[&](const sem::U32*) { return f(u32(0)); }, //
[&](const sem::F32*) { return f(f32(0)); }, //
[&](const sem::F16*) { return f(f16(0)); }, //
[&](const sem::Bool*) { return f(static_cast<bool>(0)); });
}
/// @returns `value` if `T` is not a Number, otherwise ValueOf returns the inner value of the
/// Number.
template <typename T>
inline auto ValueOf(T value) {
if constexpr (std::is_same_v<UnwrapNumber<T>, T>) {
return value;
} else {
return value.value;
}
}
/// @returns true if `value` is a positive zero.
template <typename T>
inline bool IsPositiveZero(T value) {
using N = UnwrapNumber<T>;
return Number<N>(value) == Number<N>(0); // Considers sign bit
}
template <typename NumberT>
std::string OverflowErrorMessage(NumberT lhs, const char* op, NumberT rhs) {
std::stringstream ss;
ss << "'" << lhs.value << " " << op << " " << rhs.value << "' cannot be represented as '"
<< FriendlyName<NumberT>() << "'";
return ss.str();
}
/// ImplConstant inherits from sem::Constant to add an private implementation method for conversion.
struct ImplConstant : public sem::Constant {
/// Convert attempts to convert the constant value to the given type. On error, Convert()
/// creates a new diagnostic message and returns a Failure.
virtual utils::Result<const ImplConstant*> Convert(ProgramBuilder& builder,
const sem::Type* target_ty,
const Source& source) const = 0;
};
/// A result templated with a ImplConstant.
using ImplResult = utils::Result<const ImplConstant*>;
// Forward declaration
const ImplConstant* CreateComposite(ProgramBuilder& builder,
const sem::Type* type,
utils::VectorRef<const sem::Constant*> elements);
/// Element holds a single scalar or abstract-numeric value.
/// Element implements the Constant interface.
template <typename T>
struct Element : ImplConstant {
static_assert(!std::is_same_v<UnwrapNumber<T>, T> || std::is_same_v<T, bool>,
"T must be a Number or bool");
Element(const sem::Type* t, T v) : type(t), value(v) {}
~Element() override = default;
const sem::Type* Type() const override { return type; }
std::variant<std::monostate, AInt, AFloat> Value() const override {
if constexpr (IsFloatingPoint<UnwrapNumber<T>>) {
return static_cast<AFloat>(value);
} else {
return static_cast<AInt>(value);
}
}
const sem::Constant* Index(size_t) const override { return nullptr; }
bool AllZero() const override { return IsPositiveZero(value); }
bool AnyZero() const override { return IsPositiveZero(value); }
bool AllEqual() const override { return true; }
size_t Hash() const override { return utils::Hash(type, ValueOf(value)); }
ImplResult Convert(ProgramBuilder& builder,
const sem::Type* target_ty,
const Source& source) const override {
TINT_BEGIN_DISABLE_WARNING(UNREACHABLE_CODE);
if (target_ty == type) {
// If the types are identical, then no conversion is needed.
return this;
}
return ZeroTypeDispatch(target_ty, [&](auto zero_to) -> ImplResult {
// `T` is the source type, `value` is the source value.
// `TO` is the target type.
using TO = std::decay_t<decltype(zero_to)>;
if constexpr (std::is_same_v<TO, bool>) {
// [x -> bool]
return builder.create<Element<TO>>(target_ty, !IsPositiveZero(value));
} else if constexpr (std::is_same_v<T, bool>) {
// [bool -> x]
return builder.create<Element<TO>>(target_ty, TO(value ? 1 : 0));
} else if (auto conv = CheckedConvert<TO>(value)) {
// Conversion success
return builder.create<Element<TO>>(target_ty, conv.Get());
// --- Below this point are the failure cases ---
} else if constexpr (IsAbstract<T>) {
// [abstract-numeric -> x] - materialization failure
std::stringstream ss;
ss << "value " << value << " cannot be represented as ";
ss << "'" << builder.FriendlyName(target_ty) << "'";
builder.Diagnostics().add_error(tint::diag::System::Resolver, ss.str(), source);
return utils::Failure;
} else if constexpr (IsFloatingPoint<UnwrapNumber<TO>>) {
// [x -> floating-point] - number not exactly representable
// https://www.w3.org/TR/WGSL/#floating-point-conversion
switch (conv.Failure()) {
case ConversionFailure::kExceedsNegativeLimit:
return builder.create<Element<TO>>(target_ty, -TO::Inf());
case ConversionFailure::kExceedsPositiveLimit:
return builder.create<Element<TO>>(target_ty, TO::Inf());
}
} else {
// [x -> integer] - number not exactly representable
// https://www.w3.org/TR/WGSL/#floating-point-conversion
switch (conv.Failure()) {
case ConversionFailure::kExceedsNegativeLimit:
return builder.create<Element<TO>>(target_ty, TO::Lowest());
case ConversionFailure::kExceedsPositiveLimit:
return builder.create<Element<TO>>(target_ty, TO::Highest());
}
}
return nullptr; // Expression is not constant.
});
TINT_END_DISABLE_WARNING(UNREACHABLE_CODE);
}
sem::Type const* const type;
const T value;
};
/// Splat holds a single Constant value, duplicated as all children.
/// Splat is used for zero-initializers, 'splat' constructors, or constructors where each element is
/// identical. Splat may be of a vector, matrix or array type.
/// Splat implements the Constant interface.
struct Splat : ImplConstant {
Splat(const sem::Type* t, const sem::Constant* e, size_t n) : type(t), el(e), count(n) {}
~Splat() override = default;
const sem::Type* Type() const override { return type; }
std::variant<std::monostate, AInt, AFloat> Value() const override { return {}; }
const sem::Constant* Index(size_t i) const override { return i < count ? el : nullptr; }
bool AllZero() const override { return el->AllZero(); }
bool AnyZero() const override { return el->AnyZero(); }
bool AllEqual() const override { return true; }
size_t Hash() const override { return utils::Hash(type, el->Hash(), count); }
ImplResult Convert(ProgramBuilder& builder,
const sem::Type* target_ty,
const Source& source) const override {
// Convert the single splatted element type.
// Note: This file is the only place where `sem::Constant`s are created, so this static_cast
// is safe.
auto conv_el = static_cast<const ImplConstant*>(el)->Convert(
builder, sem::Type::ElementOf(target_ty), source);
if (!conv_el) {
return utils::Failure;
}
if (!conv_el.Get()) {
return nullptr;
}
return builder.create<Splat>(target_ty, conv_el.Get(), count);
}
sem::Type const* const type;
const sem::Constant* el;
const size_t count;
};
/// Composite holds a number of mixed child Constant values.
/// Composite may be of a vector, matrix or array type.
/// If each element is the same type and value, then a Splat would be a more efficient constant
/// implementation. Use CreateComposite() to create the appropriate Constant type.
/// Composite implements the Constant interface.
struct Composite : ImplConstant {
Composite(const sem::Type* t,
utils::VectorRef<const sem::Constant*> els,
bool all_0,
bool any_0)
: type(t), elements(std::move(els)), all_zero(all_0), any_zero(any_0), hash(CalcHash()) {}
~Composite() override = default;
const sem::Type* Type() const override { return type; }
std::variant<std::monostate, AInt, AFloat> Value() const override { return {}; }
const sem::Constant* Index(size_t i) const override {
return i < elements.Length() ? elements[i] : nullptr;
}
bool AllZero() const override { return all_zero; }
bool AnyZero() const override { return any_zero; }
bool AllEqual() const override { return false; /* otherwise this should be a Splat */ }
size_t Hash() const override { return hash; }
ImplResult Convert(ProgramBuilder& builder,
const sem::Type* target_ty,
const Source& source) const override {
// Convert each of the composite element types.
auto* el_ty = sem::Type::ElementOf(target_ty);
utils::Vector<const sem::Constant*, 4> conv_els;
conv_els.Reserve(elements.Length());
for (auto* el : elements) {
// Note: This file is the only place where `sem::Constant`s are created, so this
// static_cast is safe.
auto conv_el = static_cast<const ImplConstant*>(el)->Convert(builder, el_ty, source);
if (!conv_el) {
return utils::Failure;
}
if (!conv_el.Get()) {
return nullptr;
}
conv_els.Push(conv_el.Get());
}
return CreateComposite(builder, target_ty, std::move(conv_els));
}
size_t CalcHash() {
auto h = utils::Hash(type, all_zero, any_zero);
for (auto* el : elements) {
h = utils::HashCombine(h, el->Hash());
}
return h;
}
sem::Type const* const type;
const utils::Vector<const sem::Constant*, 8> elements;
const bool all_zero;
const bool any_zero;
const size_t hash;
};
/// CreateElement constructs and returns an Element<T>.
template <typename T>
const ImplConstant* CreateElement(ProgramBuilder& builder, const sem::Type* t, T v) {
return builder.create<Element<T>>(t, v);
}
/// ZeroValue returns a Constant for the zero-value of the type `type`.
const ImplConstant* ZeroValue(ProgramBuilder& builder, const sem::Type* type) {
return Switch(
type, //
[&](const sem::Vector* v) -> const ImplConstant* {
auto* zero_el = ZeroValue(builder, v->type());
return builder.create<Splat>(type, zero_el, v->Width());
},
[&](const sem::Matrix* m) -> const ImplConstant* {
auto* zero_el = ZeroValue(builder, m->ColumnType());
return builder.create<Splat>(type, zero_el, m->columns());
},
[&](const sem::Array* a) -> const ImplConstant* {
if (auto n = a->ConstantCount()) {
if (auto* zero_el = ZeroValue(builder, a->ElemType())) {
return builder.create<Splat>(type, zero_el, n.value());
}
}
return nullptr;
},
[&](const sem::Struct* s) -> const ImplConstant* {
std::unordered_map<const sem::Type*, const ImplConstant*> zero_by_type;
utils::Vector<const sem::Constant*, 4> zeros;
zeros.Reserve(s->Members().size());
for (auto* member : s->Members()) {
auto* zero = utils::GetOrCreate(zero_by_type, member->Type(),
[&] { return ZeroValue(builder, member->Type()); });
if (!zero) {
return nullptr;
}
zeros.Push(zero);
}
if (zero_by_type.size() == 1) {
// All members were of the same type, so the zero value is the same for all members.
return builder.create<Splat>(type, zeros[0], s->Members().size());
}
return CreateComposite(builder, s, std::move(zeros));
},
[&](Default) -> const ImplConstant* {
return ZeroTypeDispatch(type, [&](auto zero) -> const ImplConstant* {
return CreateElement(builder, type, zero);
});
});
}
/// Equal returns true if the constants `a` and `b` are of the same type and value.
bool Equal(const sem::Constant* a, const sem::Constant* b) {
if (a->Hash() != b->Hash()) {
return false;
}
if (a->Type() != b->Type()) {
return false;
}
return Switch(
a->Type(), //
[&](const sem::Vector* vec) {
for (size_t i = 0; i < vec->Width(); i++) {
if (!Equal(a->Index(i), b->Index(i))) {
return false;
}
}
return true;
},
[&](const sem::Matrix* mat) {
for (size_t i = 0; i < mat->columns(); i++) {
if (!Equal(a->Index(i), b->Index(i))) {
return false;
}
}
return true;
},
[&](const sem::Array* arr) {
if (auto count = arr->ConstantCount()) {
for (size_t i = 0; i < count; i++) {
if (!Equal(a->Index(i), b->Index(i))) {
return false;
}
}
return true;
}
return false;
},
[&](Default) { return a->Value() == b->Value(); });
}
/// CreateComposite is used to construct a constant of a vector, matrix or array type.
/// CreateComposite examines the element values and will return either a Composite or a Splat,
/// depending on the element types and values.
const ImplConstant* CreateComposite(ProgramBuilder& builder,
const sem::Type* type,
utils::VectorRef<const sem::Constant*> elements) {
if (elements.IsEmpty()) {
return nullptr;
}
bool any_zero = false;
bool all_zero = true;
bool all_equal = true;
auto* first = elements.Front();
for (auto* el : elements) {
if (!el) {
return nullptr;
}
if (!any_zero && el->AnyZero()) {
any_zero = true;
}
if (all_zero && !el->AllZero()) {
all_zero = false;
}
if (all_equal && el != first) {
if (!Equal(el, first)) {
all_equal = false;
}
}
}
if (all_equal) {
return builder.create<Splat>(type, elements[0], elements.Length());
} else {
return builder.create<Composite>(type, std::move(elements), all_zero, any_zero);
}
}
/// TransformElements constructs a new constant of type `composite_ty` by applying the
/// transformation function 'f' on each of the most deeply nested elements of 'cs'. Assumes that all
/// input constants `cs` are of the same type.
template <typename F, typename... CONSTANTS>
ImplResult TransformElements(ProgramBuilder& builder,
const sem::Type* composite_ty,
F&& f,
CONSTANTS&&... cs) {
uint32_t n = 0;
auto* ty = First(cs...)->Type();
auto* el_ty = sem::Type::ElementOf(ty, &n);
if (el_ty == ty) {
return f(cs...);
}
utils::Vector<const sem::Constant*, 8> els;
els.Reserve(n);
for (uint32_t i = 0; i < n; i++) {
if (auto el = TransformElements(builder, sem::Type::ElementOf(composite_ty),
std::forward<F>(f), cs->Index(i)...)) {
els.Push(el.Get());
} else {
return el.Failure();
}
}
return CreateComposite(builder, composite_ty, std::move(els));
}
/// TransformBinaryElements constructs a new constant of type `composite_ty` by applying the
/// transformation function 'f' on each of the most deeply nested elements of both `c0` and `c1`.
/// Unlike TransformElements, this function handles the constants being of different types, e.g.
/// vector-scalar, scalar-vector.
template <typename F>
ImplResult TransformBinaryElements(ProgramBuilder& builder,
const sem::Type* composite_ty,
F&& f,
const sem::Constant* c0,
const sem::Constant* c1) {
uint32_t n0 = 0, n1 = 0;
sem::Type::ElementOf(c0->Type(), &n0);
sem::Type::ElementOf(c1->Type(), &n1);
uint32_t max_n = std::max(n0, n1);
// If arity of both constants is 1, invoke callback
if (max_n == 1u) {
return f(c0, c1);
}
utils::Vector<const sem::Constant*, 8> els;
els.Reserve(max_n);
for (uint32_t i = 0; i < max_n; i++) {
auto nested_or_self = [&](auto& c, uint32_t num_elems) {
if (num_elems == 1) {
return c;
}
return c->Index(i);
};
if (auto el = TransformBinaryElements(builder, sem::Type::ElementOf(composite_ty),
std::forward<F>(f), nested_or_self(c0, n0),
nested_or_self(c1, n1))) {
els.Push(el.Get());
} else {
return el.Failure();
}
}
return CreateComposite(builder, composite_ty, std::move(els));
}
} // namespace
ConstEval::ConstEval(ProgramBuilder& b) : builder(b) {}
template <typename NumberT>
utils::Result<NumberT> ConstEval::Add(NumberT a, NumberT b) {
NumberT result;
if constexpr (IsAbstract<NumberT>) {
// Check for over/underflow for abstract values
if (auto r = CheckedAdd(a, b)) {
result = r->value;
} else {
AddError(OverflowErrorMessage(a, "+", b), *current_source);
return utils::Failure;
}
} else {
using T = UnwrapNumber<NumberT>;
auto add_values = [](T lhs, T rhs) {
if constexpr (std::is_integral_v<T> && std::is_signed_v<T>) {
// Ensure no UB for signed overflow
using UT = std::make_unsigned_t<T>;
return static_cast<T>(static_cast<UT>(lhs) + static_cast<UT>(rhs));
} else {
return lhs + rhs;
}
};
result = add_values(a.value, b.value);
}
return result;
}
template <typename NumberT>
utils::Result<NumberT> ConstEval::Mul(NumberT a, NumberT b) {
using T = UnwrapNumber<NumberT>;
NumberT result;
if constexpr (IsAbstract<NumberT>) {
// Check for over/underflow for abstract values
if (auto r = CheckedMul(a, b)) {
result = r->value;
} else {
AddError(OverflowErrorMessage(a, "*", b), *current_source);
return utils::Failure;
}
} else {
auto mul_values = [](T lhs, T rhs) {
if constexpr (std::is_integral_v<T> && std::is_signed_v<T>) {
// For signed integrals, avoid C++ UB by multiplying as unsigned
using UT = std::make_unsigned_t<T>;
return static_cast<T>(static_cast<UT>(lhs) * static_cast<UT>(rhs));
} else {
return lhs * rhs;
}
};
result = mul_values(a.value, b.value);
}
return result;
}
template <typename NumberT>
utils::Result<NumberT> ConstEval::Dot2(NumberT a1, NumberT a2, NumberT b1, NumberT b2) {
auto r1 = Mul(a1, b1);
if (!r1) {
return utils::Failure;
}
auto r2 = Mul(a2, b2);
if (!r2) {
return utils::Failure;
}
auto r = Add(r1.Get(), r2.Get());
if (!r) {
return utils::Failure;
}
return r;
}
template <typename NumberT>
utils::Result<NumberT> ConstEval::Dot3(NumberT a1,
NumberT a2,
NumberT a3,
NumberT b1,
NumberT b2,
NumberT b3) {
auto r1 = Mul(a1, b1);
if (!r1) {
return utils::Failure;
}
auto r2 = Mul(a2, b2);
if (!r2) {
return utils::Failure;
}
auto r3 = Mul(a3, b3);
if (!r3) {
return utils::Failure;
}
auto r = Add(r1.Get(), r2.Get());
if (!r) {
return utils::Failure;
}
r = Add(r.Get(), r3.Get());
if (!r) {
return utils::Failure;
}
return r;
}
template <typename NumberT>
utils::Result<NumberT> ConstEval::Dot4(NumberT a1,
NumberT a2,
NumberT a3,
NumberT a4,
NumberT b1,
NumberT b2,
NumberT b3,
NumberT b4) {
auto r1 = Mul(a1, b1);
if (!r1) {
return utils::Failure;
}
auto r2 = Mul(a2, b2);
if (!r2) {
return utils::Failure;
}
auto r3 = Mul(a3, b3);
if (!r3) {
return utils::Failure;
}
auto r4 = Mul(a4, b4);
if (!r4) {
return utils::Failure;
}
auto r = Add(r1.Get(), r2.Get());
if (!r) {
return utils::Failure;
}
r = Add(r.Get(), r3.Get());
if (!r) {
return utils::Failure;
}
r = Add(r.Get(), r4.Get());
if (!r) {
return utils::Failure;
}
return r;
}
auto ConstEval::AddFunc(const sem::Type* elem_ty) {
return [=](auto a1, auto a2) -> ImplResult {
if (auto r = Add(a1, a2)) {
return CreateElement(builder, elem_ty, r.Get());
}
return utils::Failure;
};
}
auto ConstEval::MulFunc(const sem::Type* elem_ty) {
return [=](auto a1, auto a2) -> ImplResult {
if (auto r = Mul(a1, a2)) {
return CreateElement(builder, elem_ty, r.Get());
}
return utils::Failure;
};
}
auto ConstEval::Dot2Func(const sem::Type* elem_ty) {
return [=](auto a1, auto a2, auto b1, auto b2) -> ImplResult {
if (auto r = Dot2(a1, a2, b1, b2)) {
return CreateElement(builder, elem_ty, r.Get());
}
return utils::Failure;
};
}
auto ConstEval::Dot3Func(const sem::Type* elem_ty) {
return [=](auto a1, auto a2, auto a3, auto b1, auto b2, auto b3) -> ImplResult {
if (auto r = Dot3(a1, a2, a3, b1, b2, b3)) {
return CreateElement(builder, elem_ty, r.Get());
}
return utils::Failure;
};
}
auto ConstEval::Dot4Func(const sem::Type* elem_ty) {
return
[=](auto a1, auto a2, auto a3, auto a4, auto b1, auto b2, auto b3, auto b4) -> ImplResult {
if (auto r = Dot4(a1, a2, a3, a4, b1, b2, b3, b4)) {
return CreateElement(builder, elem_ty, r.Get());
}
return utils::Failure;
};
}
ConstEval::Result ConstEval::Literal(const sem::Type* ty, const ast::LiteralExpression* literal) {
return Switch(
literal,
[&](const ast::BoolLiteralExpression* lit) {
return CreateElement(builder, ty, lit->value);
},
[&](const ast::IntLiteralExpression* lit) -> ImplResult {
switch (lit->suffix) {
case ast::IntLiteralExpression::Suffix::kNone:
return CreateElement(builder, ty, AInt(lit->value));
case ast::IntLiteralExpression::Suffix::kI:
return CreateElement(builder, ty, i32(lit->value));
case ast::IntLiteralExpression::Suffix::kU:
return CreateElement(builder, ty, u32(lit->value));
}
return nullptr;
},
[&](const ast::FloatLiteralExpression* lit) -> ImplResult {
switch (lit->suffix) {
case ast::FloatLiteralExpression::Suffix::kNone:
return CreateElement(builder, ty, AFloat(lit->value));
case ast::FloatLiteralExpression::Suffix::kF:
return CreateElement(builder, ty, f32(lit->value));
case ast::FloatLiteralExpression::Suffix::kH:
return CreateElement(builder, ty, f16(lit->value));
}
return nullptr;
});
}
ConstEval::Result ConstEval::ArrayOrStructCtor(const sem::Type* ty,
utils::VectorRef<const sem::Expression*> args) {
if (args.IsEmpty()) {
return ZeroValue(builder, ty);
}
if (args.Length() == 1 && args[0]->Type() == ty) {
// Identity constructor.
return args[0]->ConstantValue();
}
// Multiple arguments. Must be a type constructor.
utils::Vector<const sem::Constant*, 4> els;
els.Reserve(args.Length());
for (auto* arg : args) {
els.Push(arg->ConstantValue());
}
return CreateComposite(builder, ty, std::move(els));
}
ConstEval::Result ConstEval::Conv(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source& source) {
uint32_t el_count = 0;
auto* el_ty = sem::Type::ElementOf(ty, &el_count);
if (!el_ty) {
return nullptr;
}
if (!args[0]) {
return nullptr; // Single argument is not constant.
}
if (auto conv = Convert(ty, args[0], source)) {
return conv.Get();
}
return nullptr;
}
ConstEval::Result ConstEval::Zero(const sem::Type* ty,
utils::VectorRef<const sem::Constant*>,
const Source&) {
return ZeroValue(builder, ty);
}
ConstEval::Result ConstEval::Identity(const sem::Type*,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
return args[0];
}
ConstEval::Result ConstEval::VecSplat(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
if (auto* arg = args[0]) {
return builder.create<Splat>(ty, arg, static_cast<const sem::Vector*>(ty)->Width());
}
return nullptr;
}
ConstEval::Result ConstEval::VecCtorS(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
return CreateComposite(builder, ty, args);
}
ConstEval::Result ConstEval::VecCtorM(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
utils::Vector<const sem::Constant*, 4> els;
for (auto* arg : args) {
auto* val = arg;
if (!val) {
return nullptr;
}
auto* arg_ty = arg->Type();
if (auto* arg_vec = arg_ty->As<sem::Vector>()) {
// Extract out vector elements.
for (uint32_t j = 0; j < arg_vec->Width(); j++) {
auto* el = val->Index(j);
if (!el) {
return nullptr;
}
els.Push(el);
}
} else {
els.Push(val);
}
}
return CreateComposite(builder, ty, std::move(els));
}
ConstEval::Result ConstEval::MatCtorS(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto* m = static_cast<const sem::Matrix*>(ty);
utils::Vector<const sem::Constant*, 4> els;
for (uint32_t c = 0; c < m->columns(); c++) {
utils::Vector<const sem::Constant*, 4> column;
for (uint32_t r = 0; r < m->rows(); r++) {
auto i = r + c * m->rows();
column.Push(args[i]);
}
els.Push(CreateComposite(builder, m->ColumnType(), std::move(column)));
}
return CreateComposite(builder, ty, std::move(els));
}
ConstEval::Result ConstEval::MatCtorV(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
return CreateComposite(builder, ty, args);
}
ConstEval::Result ConstEval::Index(const sem::Expression* obj_expr,
const sem::Expression* idx_expr) {
auto idx_val = idx_expr->ConstantValue();
if (!idx_val) {
return nullptr;
}
uint32_t el_count = 0;
sem::Type::ElementOf(obj_expr->Type()->UnwrapRef(), &el_count);
AInt idx = idx_val->As<AInt>();
if (idx < 0 || (el_count > 0 && idx >= el_count)) {
std::string range;
if (el_count > 0) {
range = " [0.." + std::to_string(el_count - 1) + "]";
}
AddError("index " + std::to_string(idx) + " out of bounds" + range,
idx_expr->Declaration()->source);
return utils::Failure;
}
auto obj_val = obj_expr->ConstantValue();
if (!obj_val) {
return nullptr;
}
return obj_val->Index(static_cast<size_t>(idx));
}
ConstEval::Result ConstEval::MemberAccess(const sem::Expression* obj_expr,
const sem::StructMember* member) {
auto obj_val = obj_expr->ConstantValue();
if (!obj_val) {
return nullptr;
}
return obj_val->Index(static_cast<size_t>(member->Index()));
}
ConstEval::Result ConstEval::Swizzle(const sem::Type* ty,
const sem::Expression* vec_expr,
utils::VectorRef<uint32_t> indices) {
auto* vec_val = vec_expr->ConstantValue();
if (!vec_val) {
return nullptr;
}
if (indices.Length() == 1) {
return vec_val->Index(static_cast<size_t>(indices[0]));
}
auto values = utils::Transform<4>(
indices, [&](uint32_t i) { return vec_val->Index(static_cast<size_t>(i)); });
return CreateComposite(builder, ty, std::move(values));
}
ConstEval::Result ConstEval::Bitcast(const sem::Type*, const sem::Expression*) {
// TODO(crbug.com/tint/1581): Implement @const intrinsics
return nullptr;
}
ConstEval::Result ConstEval::OpComplement(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c) {
auto create = [&](auto i) {
return CreateElement(builder, c->Type(), decltype(i)(~i.value));
};
return Dispatch_ia_iu32(create, c);
};
return TransformElements(builder, ty, transform, args[0]);
}
ConstEval::Result ConstEval::OpUnaryMinus(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c) {
auto create = [&](auto i) {
// For signed integrals, avoid C++ UB by not negating the
// smallest negative number. In WGSL, this operation is well
// defined to return the same value, see:
// https://gpuweb.github.io/gpuweb/wgsl/#arithmetic-expr.
using T = UnwrapNumber<decltype(i)>;
if constexpr (std::is_integral_v<T>) {
auto v = i.value;
if (v != std::numeric_limits<T>::min()) {
v = -v;
}
return CreateElement(builder, c->Type(), decltype(i)(v));
} else {
return CreateElement(builder, c->Type(), decltype(i)(-i.value));
}
};
return Dispatch_fia_fi32_f16(create, c);
};
return TransformElements(builder, ty, transform, args[0]);
}
ConstEval::Result ConstEval::OpNot(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c) {
auto create = [&](auto i) { return CreateElement(builder, c->Type(), decltype(i)(!i)); };
return Dispatch_bool(create, c);
};
return TransformElements(builder, ty, transform, args[0]);
}
ConstEval::Result ConstEval::OpPlus(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source& source) {
TINT_SCOPED_ASSIGNMENT(current_source, &source);
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
return Dispatch_fia_fiu32_f16(AddFunc(c0->Type()), c0, c1);
};
return TransformBinaryElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpMinus(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source& source) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) -> ImplResult {
using NumberT = decltype(i);
NumberT result;
if constexpr (IsAbstract<NumberT>) {
// Check for over/underflow for abstract values
if (auto r = CheckedSub(i, j)) {
result = r->value;
} else {
AddError(OverflowErrorMessage(i, "-", j), source);
return utils::Failure;
}
} else {
using T = UnwrapNumber<NumberT>;
auto subtract_values = [](T lhs, T rhs) {
if constexpr (std::is_integral_v<T> && std::is_signed_v<T>) {
// Ensure no UB for signed underflow
using UT = std::make_unsigned_t<T>;
return static_cast<T>(static_cast<UT>(lhs) - static_cast<UT>(rhs));
} else {
return lhs - rhs;
}
};
result = subtract_values(i.value, j.value);
}
return CreateElement(builder, c0->Type(), result);
};
return Dispatch_fia_fiu32_f16(create, c0, c1);
};
return TransformBinaryElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpMultiply(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source& source) {
TINT_SCOPED_ASSIGNMENT(current_source, &source);
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
return Dispatch_fia_fiu32_f16(MulFunc(c0->Type()), c0, c1);
};
return TransformBinaryElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpMultiplyMatVec(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source& source) {
TINT_SCOPED_ASSIGNMENT(current_source, &source);
auto* mat_ty = args[0]->Type()->As<sem::Matrix>();
auto* vec_ty = args[1]->Type()->As<sem::Vector>();
auto* elem_ty = vec_ty->type();
auto dot = [&](const sem::Constant* m, size_t row, const sem::Constant* v) {
ImplResult result;
switch (mat_ty->columns()) {
case 2:
result = Dispatch_fa_f32_f16(Dot2Func(elem_ty), //
m->Index(0)->Index(row), //
m->Index(1)->Index(row), //
v->Index(0), //
v->Index(1));
break;
case 3:
result = Dispatch_fa_f32_f16(Dot3Func(elem_ty), //
m->Index(0)->Index(row), //
m->Index(1)->Index(row), //
m->Index(2)->Index(row), //
v->Index(0), //
v->Index(1), v->Index(2));
break;
case 4:
result = Dispatch_fa_f32_f16(Dot4Func(elem_ty), //
m->Index(0)->Index(row), //
m->Index(1)->Index(row), //
m->Index(2)->Index(row), //
m->Index(3)->Index(row), //
v->Index(0), //
v->Index(1), //
v->Index(2), //
v->Index(3));
break;
}
return result;
};
utils::Vector<const sem::Constant*, 4> result;
for (size_t i = 0; i < mat_ty->rows(); ++i) {
auto r = dot(args[0], i, args[1]); // matrix row i * vector
if (!r) {
return utils::Failure;
}
result.Push(r.Get());
}
return CreateComposite(builder, ty, result);
}
ConstEval::Result ConstEval::OpMultiplyVecMat(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source& source) {
TINT_SCOPED_ASSIGNMENT(current_source, &source);
auto* vec_ty = args[0]->Type()->As<sem::Vector>();
auto* mat_ty = args[1]->Type()->As<sem::Matrix>();
auto* elem_ty = vec_ty->type();
auto dot = [&](const sem::Constant* v, const sem::Constant* m, size_t col) {
ImplResult result;
switch (mat_ty->rows()) {
case 2:
result = Dispatch_fa_f32_f16(Dot2Func(elem_ty), //
m->Index(col)->Index(0), //
m->Index(col)->Index(1), //
v->Index(0), //
v->Index(1));
break;
case 3:
result = Dispatch_fa_f32_f16(Dot3Func(elem_ty), //
m->Index(col)->Index(0), //
m->Index(col)->Index(1), //
m->Index(col)->Index(2),
v->Index(0), //
v->Index(1), //
v->Index(2));
break;
case 4:
result = Dispatch_fa_f32_f16(Dot4Func(elem_ty), //
m->Index(col)->Index(0), //
m->Index(col)->Index(1), //
m->Index(col)->Index(2), //
m->Index(col)->Index(3), //
v->Index(0), //
v->Index(1), //
v->Index(2), //
v->Index(3));
}
return result;
};
utils::Vector<const sem::Constant*, 4> result;
for (size_t i = 0; i < mat_ty->columns(); ++i) {
auto r = dot(args[0], args[1], i); // vector * matrix col i
if (!r) {
return utils::Failure;
}
result.Push(r.Get());
}
return CreateComposite(builder, ty, result);
}
ConstEval::Result ConstEval::OpMultiplyMatMat(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source& source) {
TINT_SCOPED_ASSIGNMENT(current_source, &source);
auto* mat1 = args[0];
auto* mat2 = args[1];
auto* mat1_ty = mat1->Type()->As<sem::Matrix>();
auto* mat2_ty = mat2->Type()->As<sem::Matrix>();
auto* elem_ty = mat1_ty->type();
auto dot = [&](const sem::Constant* m1, size_t row, const sem::Constant* m2, size_t col) {
auto m1e = [&](size_t r, size_t c) { return m1->Index(c)->Index(r); };
auto m2e = [&](size_t r, size_t c) { return m2->Index(c)->Index(r); };
ImplResult result;
switch (mat1_ty->columns()) {
case 2:
result = Dispatch_fa_f32_f16(Dot2Func(elem_ty), //
m1e(row, 0), //
m1e(row, 1), //
m2e(0, col), //
m2e(1, col));
break;
case 3:
result = Dispatch_fa_f32_f16(Dot3Func(elem_ty), //
m1e(row, 0), //
m1e(row, 1), //
m1e(row, 2), //
m2e(0, col), //
m2e(1, col), //
m2e(2, col));
break;
case 4:
result = Dispatch_fa_f32_f16(Dot4Func(elem_ty), //
m1e(row, 0), //
m1e(row, 1), //
m1e(row, 2), //
m1e(row, 3), //
m2e(0, col), //
m2e(1, col), //
m2e(2, col), //
m2e(3, col));
break;
}
return result;
};
utils::Vector<const sem::Constant*, 4> result_mat;
for (size_t c = 0; c < mat2_ty->columns(); ++c) {
utils::Vector<const sem::Constant*, 4> col_vec;
for (size_t r = 0; r < mat1_ty->rows(); ++r) {
auto v = dot(mat1, r, mat2, c); // mat1 row r * mat2 col c
if (!v) {
return utils::Failure;
}
col_vec.Push(v.Get()); // mat1 row r * mat2 col c
}
// Add column vector to matrix
auto* col_vec_ty = ty->As<sem::Matrix>()->ColumnType();
result_mat.Push(CreateComposite(builder, col_vec_ty, col_vec));
}
return CreateComposite(builder, ty, result_mat);
}
ConstEval::Result ConstEval::OpDivide(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source& source) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) -> ImplResult {
using NumberT = decltype(i);
NumberT result;
if constexpr (IsAbstract<NumberT>) {
// Check for over/underflow for abstract values
if (auto r = CheckedDiv(i, j)) {
result = r->value;
} else {
AddError(OverflowErrorMessage(i, "/", j), source);
return utils::Failure;
}
} else {
using T = UnwrapNumber<NumberT>;
auto divide_values = [](T lhs, T rhs) {
if constexpr (std::is_integral_v<T>) {
// For integers, lhs / 0 returns lhs
if (rhs == 0) {
return lhs;
}
if constexpr (std::is_signed_v<T>) {
// For signed integers, for lhs / -1, return lhs if lhs is the
// most negative value
if (rhs == -1 && lhs == std::numeric_limits<T>::min()) {
return lhs;
}
}
}
return lhs / rhs;
};
result = divide_values(i.value, j.value);
}
return CreateElement(builder, c0->Type(), result);
};
return Dispatch_fia_fiu32_f16(create, c0, c1);
};
return TransformBinaryElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpEqual(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) -> ImplResult {
return CreateElement(builder, sem::Type::DeepestElementOf(ty), i == j);
};
return Dispatch_fia_fiu32_f16_bool(create, c0, c1);
};
return TransformElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpNotEqual(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) -> ImplResult {
return CreateElement(builder, sem::Type::DeepestElementOf(ty), i != j);
};
return Dispatch_fia_fiu32_f16_bool(create, c0, c1);
};
return TransformElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpLessThan(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) -> ImplResult {
return CreateElement(builder, sem::Type::DeepestElementOf(ty), i < j);
};
return Dispatch_fia_fiu32_f16(create, c0, c1);
};
return TransformElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpGreaterThan(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) -> ImplResult {
return CreateElement(builder, sem::Type::DeepestElementOf(ty), i > j);
};
return Dispatch_fia_fiu32_f16(create, c0, c1);
};
return TransformElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpLessThanEqual(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) -> ImplResult {
return CreateElement(builder, sem::Type::DeepestElementOf(ty), i <= j);
};
return Dispatch_fia_fiu32_f16(create, c0, c1);
};
return TransformElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpGreaterThanEqual(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) -> ImplResult {
return CreateElement(builder, sem::Type::DeepestElementOf(ty), i >= j);
};
return Dispatch_fia_fiu32_f16(create, c0, c1);
};
return TransformElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpAnd(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) -> ImplResult {
using T = decltype(i);
T result;
if constexpr (std::is_same_v<T, bool>) {
result = i && j;
} else { // integral
result = i & j;
}
return CreateElement(builder, sem::Type::DeepestElementOf(ty), result);
};
return Dispatch_ia_iu32_bool(create, c0, c1);
};
return TransformElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpOr(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) -> ImplResult {
using T = decltype(i);
T result;
if constexpr (std::is_same_v<T, bool>) {
result = i || j;
} else { // integral
result = i | j;
}
return CreateElement(builder, sem::Type::DeepestElementOf(ty), result);
};
return Dispatch_ia_iu32_bool(create, c0, c1);
};
return TransformElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::OpXor(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) -> const ImplConstant* {
return CreateElement(builder, sem::Type::DeepestElementOf(ty), decltype(i){i ^ j});
};
return Dispatch_ia_iu32(create, c0, c1);
};
auto r = TransformElements(builder, ty, transform, args[0], args[1]);
if (builder.Diagnostics().contains_errors()) {
return utils::Failure;
}
return r;
}
ConstEval::Result ConstEval::OpShiftLeft(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source& source) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto e1, auto e2) -> const ImplConstant* {
using NumberT = decltype(e1);
using T = UnwrapNumber<NumberT>;
using UT = std::make_unsigned_t<T>;
constexpr size_t bit_width = BitWidth<NumberT>;
UT e1u = static_cast<UT>(e1);
UT e2u = static_cast<UT>(e2);
if constexpr (IsAbstract<NumberT>) {
// NOTE: Concrete shift left requires an unsigned rhs, so this check only applies
// for abstracts.
if (e2 < 0) {
AddError("cannot shift left by a negative value", source);
return nullptr;
}
// The e2 + 1 most significant bits of e1 must have the same bit value, otherwise
// sign change (overflow) would occur.
// Check sign change only if e2 is less than bit width of e1. If e1 is larger
// than bit width, we check for non-representable value below.
if (e2u < bit_width) {
size_t must_match_msb = e2u + 1;
UT mask = ~UT{0} << (bit_width - must_match_msb);
if ((e1u & mask) != 0 && (e1u & mask) != mask) {
AddError("shift left operation results in sign change", source);
return nullptr;
}
} else {
// If shift value >= bit_width, then any non-zero value would overflow
if (e1 != 0) {
AddError(OverflowErrorMessage(e1, "<<", e2), source);
return nullptr;
}
}
} else {
if (static_cast<size_t>(e2) >= bit_width) {
// At shader/pipeline-creation time, it is an error to shift by the bit width of
// the lhs or greater.
// NOTE: At runtime, we shift by e2 % (bit width of e1).
AddError(
"shift left value must be less than the bit width of the lhs, which is " +
std::to_string(bit_width),
source);
return nullptr;
}
// The e2 + 1 most significant bits of e1 must have the same bit value, otherwise
// sign change (overflow) would occur.
size_t must_match_msb = e2u + 1;
UT mask = ~UT{0} << (bit_width - must_match_msb);
if ((e1u & mask) != 0 && (e1u & mask) != mask) {
AddError("shift left operation results in sign change", source);
return nullptr;
}
}
// Avoid UB by left shifting as unsigned value
auto result = static_cast<T>(static_cast<UT>(e1) << e2);
return CreateElement(builder, sem::Type::DeepestElementOf(ty), NumberT{result});
};
return Dispatch_ia_iu32(create, c0, c1);
};
auto r = TransformElements(builder, ty, transform, args[0], args[1]);
if (builder.Diagnostics().contains_errors()) {
return utils::Failure;
}
return r;
}
ConstEval::Result ConstEval::atan2(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1) {
auto create = [&](auto i, auto j) {
return CreateElement(builder, c0->Type(), decltype(i)(std::atan2(i.value, j.value)));
};
return Dispatch_fa_f32_f16(create, c0, c1);
};
return TransformElements(builder, ty, transform, args[0], args[1]);
}
ConstEval::Result ConstEval::clamp(const sem::Type* ty,
utils::VectorRef<const sem::Constant*> args,
const Source&) {
auto transform = [&](const sem::Constant* c0, const sem::Constant* c1,
const sem::Constant* c2) {
auto create = [&](auto e, auto low, auto high) {
return CreateElement(builder, c0->Type(),
decltype(e)(std::min(std::max(e, low), high)));
};
return Dispatch_fia_fiu32_f16(create, c0, c1, c2);
};
return TransformElements(builder, ty, transform, args[0], args[1], args[2]);
}
ConstEval::Result ConstEval::Convert(const sem::Type* target_ty,
const sem::Constant* value,
const Source& source) {
if (value->Type() == target_ty) {
return value;
}
return static_cast<const ImplConstant*>(value)->Convert(builder, target_ty, source);
}
void ConstEval::AddError(const std::string& msg, const Source& source) const {
builder.Diagnostics().add_error(diag::System::Resolver, msg, source);
}
void ConstEval::AddWarning(const std::string& msg, const Source& source) const {
builder.Diagnostics().add_warning(diag::System::Resolver, msg, source);
}
} // namespace tint::resolver