| // Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/tint/resolver/resolver.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <iomanip> |
| #include <limits> |
| #include <utility> |
| |
| #include "src/tint/ast/alias.h" |
| #include "src/tint/ast/array.h" |
| #include "src/tint/ast/assignment_statement.h" |
| #include "src/tint/ast/bitcast_expression.h" |
| #include "src/tint/ast/break_statement.h" |
| #include "src/tint/ast/call_statement.h" |
| #include "src/tint/ast/continue_statement.h" |
| #include "src/tint/ast/depth_texture.h" |
| #include "src/tint/ast/disable_validation_attribute.h" |
| #include "src/tint/ast/discard_statement.h" |
| #include "src/tint/ast/fallthrough_statement.h" |
| #include "src/tint/ast/for_loop_statement.h" |
| #include "src/tint/ast/id_attribute.h" |
| #include "src/tint/ast/if_statement.h" |
| #include "src/tint/ast/internal_attribute.h" |
| #include "src/tint/ast/interpolate_attribute.h" |
| #include "src/tint/ast/loop_statement.h" |
| #include "src/tint/ast/matrix.h" |
| #include "src/tint/ast/pointer.h" |
| #include "src/tint/ast/return_statement.h" |
| #include "src/tint/ast/sampled_texture.h" |
| #include "src/tint/ast/sampler.h" |
| #include "src/tint/ast/storage_texture.h" |
| #include "src/tint/ast/switch_statement.h" |
| #include "src/tint/ast/traverse_expressions.h" |
| #include "src/tint/ast/type_name.h" |
| #include "src/tint/ast/unary_op_expression.h" |
| #include "src/tint/ast/variable_decl_statement.h" |
| #include "src/tint/ast/vector.h" |
| #include "src/tint/ast/while_statement.h" |
| #include "src/tint/ast/workgroup_attribute.h" |
| #include "src/tint/resolver/uniformity.h" |
| #include "src/tint/sem/abstract_float.h" |
| #include "src/tint/sem/abstract_int.h" |
| #include "src/tint/sem/array.h" |
| #include "src/tint/sem/atomic.h" |
| #include "src/tint/sem/call.h" |
| #include "src/tint/sem/depth_multisampled_texture.h" |
| #include "src/tint/sem/depth_texture.h" |
| #include "src/tint/sem/for_loop_statement.h" |
| #include "src/tint/sem/function.h" |
| #include "src/tint/sem/if_statement.h" |
| #include "src/tint/sem/loop_statement.h" |
| #include "src/tint/sem/materialize.h" |
| #include "src/tint/sem/member_accessor_expression.h" |
| #include "src/tint/sem/module.h" |
| #include "src/tint/sem/multisampled_texture.h" |
| #include "src/tint/sem/pointer.h" |
| #include "src/tint/sem/reference.h" |
| #include "src/tint/sem/sampled_texture.h" |
| #include "src/tint/sem/sampler.h" |
| #include "src/tint/sem/statement.h" |
| #include "src/tint/sem/storage_texture.h" |
| #include "src/tint/sem/struct.h" |
| #include "src/tint/sem/switch_statement.h" |
| #include "src/tint/sem/type_constructor.h" |
| #include "src/tint/sem/type_conversion.h" |
| #include "src/tint/sem/variable.h" |
| #include "src/tint/sem/while_statement.h" |
| #include "src/tint/utils/defer.h" |
| #include "src/tint/utils/math.h" |
| #include "src/tint/utils/reverse.h" |
| #include "src/tint/utils/scoped_assignment.h" |
| #include "src/tint/utils/transform.h" |
| |
| namespace tint::resolver { |
| |
| Resolver::Resolver(ProgramBuilder* builder) |
| : builder_(builder), |
| diagnostics_(builder->Diagnostics()), |
| intrinsic_table_(IntrinsicTable::Create(*builder)), |
| sem_(builder, dependencies_), |
| validator_(builder, sem_) {} |
| |
| Resolver::~Resolver() = default; |
| |
| bool Resolver::Resolve() { |
| if (builder_->Diagnostics().contains_errors()) { |
| return false; |
| } |
| |
| if (!DependencyGraph::Build(builder_->AST(), builder_->Symbols(), builder_->Diagnostics(), |
| dependencies_)) { |
| return false; |
| } |
| |
| bool result = ResolveInternal(); |
| |
| if (!result && !diagnostics_.contains_errors()) { |
| TINT_ICE(Resolver, diagnostics_) << "resolving failed, but no error was raised"; |
| return false; |
| } |
| |
| // Create the semantic module |
| builder_->Sem().SetModule(builder_->create<sem::Module>( |
| std::move(dependencies_.ordered_globals), std::move(enabled_extensions_))); |
| |
| return result; |
| } |
| |
| bool Resolver::ResolveInternal() { |
| Mark(&builder_->AST()); |
| |
| // Process all module-scope declarations in dependency order. |
| for (auto* decl : dependencies_.ordered_globals) { |
| Mark(decl); |
| if (!Switch<bool>( |
| decl, // |
| [&](const ast::Enable* e) { return Enable(e); }, |
| [&](const ast::TypeDecl* td) { return TypeDecl(td); }, |
| [&](const ast::Function* func) { return Function(func); }, |
| [&](const ast::Variable* var) { return GlobalVariable(var); }, |
| [&](Default) { |
| TINT_UNREACHABLE(Resolver, diagnostics_) |
| << "unhandled global declaration: " << decl->TypeInfo().name; |
| return false; |
| })) { |
| return false; |
| } |
| } |
| |
| AllocateOverridableConstantIds(); |
| |
| SetShadows(); |
| |
| if (!validator_.PipelineStages(entry_points_)) { |
| return false; |
| } |
| |
| if (!enabled_extensions_.contains(ast::Extension::kChromiumDisableUniformityAnalysis)) { |
| if (!AnalyzeUniformity(builder_, dependencies_)) { |
| // TODO(jrprice): Reject programs that fail uniformity analysis. |
| } |
| } |
| |
| bool result = true; |
| for (auto* node : builder_->ASTNodes().Objects()) { |
| if (marked_.count(node) == 0) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "AST node '" << node->TypeInfo().name << "' was not reached by the resolver\n" |
| << "At: " << node->source << "\n" |
| << "Pointer: " << node; |
| result = false; |
| } |
| } |
| |
| return result; |
| } |
| |
| sem::Type* Resolver::Type(const ast::Type* ty) { |
| Mark(ty); |
| auto* s = Switch( |
| ty, // |
| [&](const ast::Void*) { return builder_->create<sem::Void>(); }, |
| [&](const ast::Bool*) { return builder_->create<sem::Bool>(); }, |
| [&](const ast::I32*) { return builder_->create<sem::I32>(); }, |
| [&](const ast::U32*) { return builder_->create<sem::U32>(); }, |
| [&](const ast::F16* t) -> sem::F16* { |
| // Validate if f16 type is allowed. |
| if (!enabled_extensions_.contains(ast::Extension::kF16)) { |
| AddError("f16 used without 'f16' extension enabled", t->source); |
| return nullptr; |
| } |
| return builder_->create<sem::F16>(); |
| }, |
| [&](const ast::F32*) { return builder_->create<sem::F32>(); }, |
| [&](const ast::Vector* t) -> sem::Vector* { |
| if (!t->type) { |
| AddError("missing vector element type", t->source.End()); |
| return nullptr; |
| } |
| if (auto* el = Type(t->type)) { |
| if (auto* vector = builder_->create<sem::Vector>(el, t->width)) { |
| if (validator_.Vector(vector, t->source)) { |
| return vector; |
| } |
| } |
| } |
| return nullptr; |
| }, |
| [&](const ast::Matrix* t) -> sem::Matrix* { |
| if (!t->type) { |
| AddError("missing matrix element type", t->source.End()); |
| return nullptr; |
| } |
| if (auto* el = Type(t->type)) { |
| if (auto* column_type = builder_->create<sem::Vector>(el, t->rows)) { |
| if (auto* matrix = builder_->create<sem::Matrix>(column_type, t->columns)) { |
| if (validator_.Matrix(matrix, t->source)) { |
| return matrix; |
| } |
| } |
| } |
| } |
| return nullptr; |
| }, |
| [&](const ast::Array* t) { return Array(t); }, |
| [&](const ast::Atomic* t) -> sem::Atomic* { |
| if (auto* el = Type(t->type)) { |
| auto* a = builder_->create<sem::Atomic>(el); |
| if (!validator_.Atomic(t, a)) { |
| return nullptr; |
| } |
| return a; |
| } |
| return nullptr; |
| }, |
| [&](const ast::Pointer* t) -> sem::Pointer* { |
| if (auto* el = Type(t->type)) { |
| auto access = t->access; |
| if (access == ast::kUndefined) { |
| access = DefaultAccessForStorageClass(t->storage_class); |
| } |
| return builder_->create<sem::Pointer>(el, t->storage_class, access); |
| } |
| return nullptr; |
| }, |
| [&](const ast::Sampler* t) { return builder_->create<sem::Sampler>(t->kind); }, |
| [&](const ast::SampledTexture* t) -> sem::SampledTexture* { |
| if (auto* el = Type(t->type)) { |
| auto* sem = builder_->create<sem::SampledTexture>(t->dim, el); |
| if (!validator_.SampledTexture(sem, t->source)) { |
| return nullptr; |
| } |
| return sem; |
| } |
| return nullptr; |
| }, |
| [&](const ast::MultisampledTexture* t) -> sem::MultisampledTexture* { |
| if (auto* el = Type(t->type)) { |
| auto* sem = builder_->create<sem::MultisampledTexture>(t->dim, el); |
| if (!validator_.MultisampledTexture(sem, t->source)) { |
| return nullptr; |
| } |
| return sem; |
| } |
| return nullptr; |
| }, |
| [&](const ast::DepthTexture* t) { return builder_->create<sem::DepthTexture>(t->dim); }, |
| [&](const ast::DepthMultisampledTexture* t) { |
| return builder_->create<sem::DepthMultisampledTexture>(t->dim); |
| }, |
| [&](const ast::StorageTexture* t) -> sem::StorageTexture* { |
| if (auto* el = Type(t->type)) { |
| if (!validator_.StorageTexture(t)) { |
| return nullptr; |
| } |
| return builder_->create<sem::StorageTexture>(t->dim, t->format, t->access, el); |
| } |
| return nullptr; |
| }, |
| [&](const ast::ExternalTexture*) { return builder_->create<sem::ExternalTexture>(); }, |
| [&](Default) { |
| auto* resolved = sem_.ResolvedSymbol(ty); |
| return Switch( |
| resolved, // |
| [&](sem::Type* type) { return type; }, |
| [&](sem::Variable* var) { |
| auto name = builder_->Symbols().NameFor(var->Declaration()->symbol); |
| AddError("cannot use variable '" + name + "' as type", ty->source); |
| AddNote("'" + name + "' declared here", var->Declaration()->source); |
| return nullptr; |
| }, |
| [&](sem::Function* func) { |
| auto name = builder_->Symbols().NameFor(func->Declaration()->symbol); |
| AddError("cannot use function '" + name + "' as type", ty->source); |
| AddNote("'" + name + "' declared here", func->Declaration()->source); |
| return nullptr; |
| }, |
| [&](Default) { |
| if (auto* tn = ty->As<ast::TypeName>()) { |
| if (IsBuiltin(tn->name)) { |
| auto name = builder_->Symbols().NameFor(tn->name); |
| AddError("cannot use builtin '" + name + "' as type", ty->source); |
| return nullptr; |
| } |
| } |
| TINT_UNREACHABLE(Resolver, diagnostics_) |
| << "Unhandled resolved type '" |
| << (resolved ? resolved->TypeInfo().name : "<null>") |
| << "' resolved from ast::Type '" << ty->TypeInfo().name << "'"; |
| return nullptr; |
| }); |
| }); |
| |
| if (s) { |
| builder_->Sem().Add(ty, s); |
| } |
| return s; |
| } |
| |
| sem::Variable* Resolver::Variable(const ast::Variable* v, bool is_global) { |
| return Switch( |
| v, // |
| [&](const ast::Var* var) { return Var(var, is_global); }, |
| [&](const ast::Let* let) { return Let(let, is_global); }, |
| [&](const ast::Override* override) { return Override(override); }, |
| [&](Default) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "Resolver::GlobalVariable() called with a unknown variable type: " |
| << v->TypeInfo().name; |
| return nullptr; |
| }); |
| } |
| |
| sem::Variable* Resolver::Let(const ast::Let* v, bool is_global) { |
| const sem::Type* ty = nullptr; |
| |
| // If the variable has a declared type, resolve it. |
| if (v->type) { |
| ty = Type(v->type); |
| if (!ty) { |
| return nullptr; |
| } |
| } |
| |
| if (!v->constructor) { |
| AddError("'let' declaration must have an initializer", v->source); |
| return nullptr; |
| } |
| |
| auto* rhs = Materialize(Expression(v->constructor), ty); |
| if (!rhs) { |
| return nullptr; |
| } |
| |
| // If the variable has no declared type, infer it from the RHS |
| if (!ty) { |
| ty = rhs->Type()->UnwrapRef(); // Implicit load of RHS |
| } |
| |
| if (rhs && |
| !validator_.VariableConstructorOrCast(v, ast::StorageClass::kNone, ty, rhs->Type())) { |
| return nullptr; |
| } |
| |
| if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, const_cast<sem::Type*>(ty), |
| v->source)) { |
| AddNote("while instantiating 'let' " + builder_->Symbols().NameFor(v->symbol), v->source); |
| return nullptr; |
| } |
| |
| sem::Variable* sem = nullptr; |
| if (is_global) { |
| sem = builder_->create<sem::GlobalVariable>( |
| v, ty, ast::StorageClass::kNone, ast::Access::kUndefined, |
| rhs ? rhs->ConstantValue() : sem::Constant{}, sem::BindingPoint{}); |
| } else { |
| sem = builder_->create<sem::LocalVariable>(v, ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, current_statement_, |
| rhs ? rhs->ConstantValue() : sem::Constant{}); |
| } |
| |
| sem->SetConstructor(rhs); |
| builder_->Sem().Add(v, sem); |
| return sem; |
| } |
| |
| sem::Variable* Resolver::Override(const ast::Override* v) { |
| const sem::Type* ty = nullptr; |
| |
| // If the variable has a declared type, resolve it. |
| if (v->type) { |
| ty = Type(v->type); |
| if (!ty) { |
| return nullptr; |
| } |
| } |
| |
| const sem::Expression* rhs = nullptr; |
| |
| // Does the variable have a constructor? |
| if (v->constructor) { |
| rhs = Materialize(Expression(v->constructor), ty); |
| if (!rhs) { |
| return nullptr; |
| } |
| |
| // If the variable has no declared type, infer it from the RHS |
| if (!ty) { |
| ty = rhs->Type()->UnwrapRef(); // Implicit load of RHS |
| } |
| } else if (!ty) { |
| AddError("'override' declaration requires a type or initializer", v->source); |
| return nullptr; |
| } |
| |
| if (rhs && |
| !validator_.VariableConstructorOrCast(v, ast::StorageClass::kNone, ty, rhs->Type())) { |
| return nullptr; |
| } |
| |
| if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, const_cast<sem::Type*>(ty), |
| v->source)) { |
| AddNote("while instantiating 'override' " + builder_->Symbols().NameFor(v->symbol), |
| v->source); |
| return nullptr; |
| } |
| |
| auto* sem = builder_->create<sem::GlobalVariable>(v, ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined, sem::Constant{}, |
| sem::BindingPoint{}); |
| |
| if (auto* id = ast::GetAttribute<ast::IdAttribute>(v->attributes)) { |
| sem->SetConstantId(static_cast<uint16_t>(id->value)); |
| } |
| |
| sem->SetConstructor(rhs); |
| builder_->Sem().Add(v, sem); |
| return sem; |
| } |
| |
| sem::Variable* Resolver::Var(const ast::Var* var, bool is_global) { |
| const sem::Type* storage_ty = nullptr; |
| |
| // If the variable has a declared type, resolve it. |
| if (auto* ty = var->type) { |
| storage_ty = Type(ty); |
| if (!storage_ty) { |
| return nullptr; |
| } |
| } |
| |
| const sem::Expression* rhs = nullptr; |
| |
| // Does the variable have a constructor? |
| if (var->constructor) { |
| rhs = Materialize(Expression(var->constructor), storage_ty); |
| if (!rhs) { |
| return nullptr; |
| } |
| // If the variable has no declared type, infer it from the RHS |
| if (!storage_ty) { |
| storage_ty = rhs->Type()->UnwrapRef(); // Implicit load of RHS |
| } |
| } |
| |
| if (!storage_ty) { |
| AddError("'var' declaration requires a type or initializer", var->source); |
| return nullptr; |
| } |
| |
| auto storage_class = var->declared_storage_class; |
| if (storage_class == ast::StorageClass::kNone) { |
| // No declared storage class. Infer from usage / type. |
| if (!is_global) { |
| storage_class = ast::StorageClass::kFunction; |
| } else if (storage_ty->UnwrapRef()->is_handle()) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables |
| // If the store type is a texture type or a sampler type, then the |
| // variable declaration must not have a storage class attribute. The |
| // storage class will always be handle. |
| storage_class = ast::StorageClass::kHandle; |
| } |
| } |
| |
| if (!is_global && storage_class != ast::StorageClass::kFunction && |
| validator_.IsValidationEnabled(var->attributes, |
| ast::DisabledValidation::kIgnoreStorageClass)) { |
| AddError("function-scope 'var' declaration must use 'function' storage class", var->source); |
| return nullptr; |
| } |
| |
| auto access = var->declared_access; |
| if (access == ast::Access::kUndefined) { |
| access = DefaultAccessForStorageClass(storage_class); |
| } |
| |
| if (rhs && !validator_.VariableConstructorOrCast(var, storage_class, storage_ty, rhs->Type())) { |
| return nullptr; |
| } |
| |
| auto* var_ty = builder_->create<sem::Reference>(storage_ty, storage_class, access); |
| |
| if (!ApplyStorageClassUsageToType(storage_class, var_ty, var->source)) { |
| AddNote("while instantiating 'var' " + builder_->Symbols().NameFor(var->symbol), |
| var->source); |
| return nullptr; |
| } |
| |
| sem::Variable* sem = nullptr; |
| if (is_global) { |
| sem::BindingPoint binding_point; |
| if (auto bp = var->BindingPoint()) { |
| binding_point = {bp.group->value, bp.binding->value}; |
| } |
| sem = builder_->create<sem::GlobalVariable>(var, var_ty, storage_class, access, |
| sem::Constant{}, binding_point); |
| |
| } else { |
| sem = builder_->create<sem::LocalVariable>(var, var_ty, storage_class, access, |
| current_statement_, sem::Constant{}); |
| } |
| |
| sem->SetConstructor(rhs); |
| builder_->Sem().Add(var, sem); |
| return sem; |
| } |
| |
| sem::Parameter* Resolver::Parameter(const ast::Parameter* param, uint32_t index) { |
| auto add_note = [&] { |
| AddNote("while instantiating parameter " + builder_->Symbols().NameFor(param->symbol), |
| param->source); |
| }; |
| |
| for (auto* attr : param->attributes) { |
| Mark(attr); |
| } |
| if (!validator_.NoDuplicateAttributes(param->attributes)) { |
| return nullptr; |
| } |
| |
| sem::Type* ty = Type(param->type); |
| if (!ty) { |
| return nullptr; |
| } |
| |
| if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, ty, param->source)) { |
| add_note(); |
| return nullptr; |
| } |
| |
| if (auto* ptr = ty->As<sem::Pointer>()) { |
| // For MSL, we push module-scope variables into the entry point as pointer |
| // parameters, so we also need to handle their store type. |
| if (!ApplyStorageClassUsageToType( |
| ptr->StorageClass(), const_cast<sem::Type*>(ptr->StoreType()), param->source)) { |
| add_note(); |
| return nullptr; |
| } |
| } |
| |
| auto* sem = builder_->create<sem::Parameter>(param, index, ty, ast::StorageClass::kNone, |
| ast::Access::kUndefined); |
| builder_->Sem().Add(param, sem); |
| return sem; |
| } |
| |
| ast::Access Resolver::DefaultAccessForStorageClass(ast::StorageClass storage_class) { |
| // https://gpuweb.github.io/gpuweb/wgsl/#storage-class |
| switch (storage_class) { |
| case ast::StorageClass::kStorage: |
| case ast::StorageClass::kUniform: |
| case ast::StorageClass::kHandle: |
| return ast::Access::kRead; |
| default: |
| break; |
| } |
| return ast::Access::kReadWrite; |
| } |
| |
| void Resolver::AllocateOverridableConstantIds() { |
| // The next pipeline constant ID to try to allocate. |
| uint16_t next_constant_id = 0; |
| |
| // Allocate constant IDs in global declaration order, so that they are |
| // deterministic. |
| // TODO(crbug.com/tint/1192): If a transform changes the order or removes an |
| // unused constant, the allocation may change on the next Resolver pass. |
| for (auto* decl : builder_->AST().GlobalDeclarations()) { |
| auto* override = decl->As<ast::Override>(); |
| if (!override) { |
| continue; |
| } |
| |
| uint16_t constant_id; |
| if (auto* id_attr = ast::GetAttribute<ast::IdAttribute>(override->attributes)) { |
| constant_id = static_cast<uint16_t>(id_attr->value); |
| } else { |
| // No ID was specified, so allocate the next available ID. |
| constant_id = next_constant_id; |
| while (constant_ids_.count(constant_id)) { |
| if (constant_id == UINT16_MAX) { |
| TINT_ICE(Resolver, builder_->Diagnostics()) |
| << "no more pipeline constant IDs available"; |
| return; |
| } |
| constant_id++; |
| } |
| next_constant_id = constant_id + 1; |
| } |
| |
| auto* sem = sem_.Get<sem::GlobalVariable>(override); |
| const_cast<sem::GlobalVariable*>(sem)->SetConstantId(constant_id); |
| } |
| } |
| |
| void Resolver::SetShadows() { |
| for (auto it : dependencies_.shadows) { |
| Switch( |
| sem_.Get(it.first), // |
| [&](sem::LocalVariable* local) { local->SetShadows(sem_.Get(it.second)); }, |
| [&](sem::Parameter* param) { param->SetShadows(sem_.Get(it.second)); }); |
| } |
| } |
| |
| sem::GlobalVariable* Resolver::GlobalVariable(const ast::Variable* v) { |
| auto* sem = As<sem::GlobalVariable>(Variable(v, /* is_global */ true)); |
| if (!sem) { |
| return nullptr; |
| } |
| |
| for (auto* attr : v->attributes) { |
| Mark(attr); |
| |
| if (auto* id_attr = attr->As<ast::IdAttribute>()) { |
| // Track the constant IDs that are specified in the shader. |
| constant_ids_.emplace(id_attr->value, sem); |
| } |
| } |
| |
| if (!validator_.NoDuplicateAttributes(v->attributes)) { |
| return nullptr; |
| } |
| |
| if (!validator_.GlobalVariable(sem, constant_ids_, atomic_composite_info_)) { |
| return nullptr; |
| } |
| |
| // TODO(bclayton): Call this at the end of resolve on all uniform and storage |
| // referenced structs |
| if (!validator_.StorageClassLayout(sem, valid_type_storage_layouts_)) { |
| return nullptr; |
| } |
| |
| return sem; |
| } |
| |
| sem::Function* Resolver::Function(const ast::Function* decl) { |
| uint32_t parameter_index = 0; |
| std::unordered_map<Symbol, Source> parameter_names; |
| std::vector<sem::Parameter*> parameters; |
| |
| // Resolve all the parameters |
| for (auto* param : decl->params) { |
| Mark(param); |
| |
| { // Check the parameter name is unique for the function |
| auto emplaced = parameter_names.emplace(param->symbol, param->source); |
| if (!emplaced.second) { |
| auto name = builder_->Symbols().NameFor(param->symbol); |
| AddError("redefinition of parameter '" + name + "'", param->source); |
| AddNote("previous definition is here", emplaced.first->second); |
| return nullptr; |
| } |
| } |
| |
| auto* p = Parameter(param, parameter_index++); |
| if (!p) { |
| return nullptr; |
| } |
| |
| if (!validator_.Parameter(decl, p)) { |
| return nullptr; |
| } |
| |
| parameters.emplace_back(p); |
| |
| auto* p_ty = const_cast<sem::Type*>(p->Type()); |
| if (auto* str = p_ty->As<sem::Struct>()) { |
| switch (decl->PipelineStage()) { |
| case ast::PipelineStage::kVertex: |
| str->AddUsage(sem::PipelineStageUsage::kVertexInput); |
| break; |
| case ast::PipelineStage::kFragment: |
| str->AddUsage(sem::PipelineStageUsage::kFragmentInput); |
| break; |
| case ast::PipelineStage::kCompute: |
| str->AddUsage(sem::PipelineStageUsage::kComputeInput); |
| break; |
| case ast::PipelineStage::kNone: |
| break; |
| } |
| } |
| } |
| |
| // Resolve the return type |
| sem::Type* return_type = nullptr; |
| if (auto* ty = decl->return_type) { |
| return_type = Type(ty); |
| if (!return_type) { |
| return nullptr; |
| } |
| } else { |
| return_type = builder_->create<sem::Void>(); |
| } |
| |
| if (auto* str = return_type->As<sem::Struct>()) { |
| if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str, decl->source)) { |
| AddNote( |
| "while instantiating return type for " + builder_->Symbols().NameFor(decl->symbol), |
| decl->source); |
| return nullptr; |
| } |
| |
| switch (decl->PipelineStage()) { |
| case ast::PipelineStage::kVertex: |
| str->AddUsage(sem::PipelineStageUsage::kVertexOutput); |
| break; |
| case ast::PipelineStage::kFragment: |
| str->AddUsage(sem::PipelineStageUsage::kFragmentOutput); |
| break; |
| case ast::PipelineStage::kCompute: |
| str->AddUsage(sem::PipelineStageUsage::kComputeOutput); |
| break; |
| case ast::PipelineStage::kNone: |
| break; |
| } |
| } |
| |
| auto* func = builder_->create<sem::Function>(decl, return_type, parameters); |
| builder_->Sem().Add(decl, func); |
| |
| TINT_SCOPED_ASSIGNMENT(current_function_, func); |
| |
| if (!WorkgroupSize(decl)) { |
| return nullptr; |
| } |
| |
| if (decl->IsEntryPoint()) { |
| entry_points_.emplace_back(func); |
| } |
| |
| if (decl->body) { |
| Mark(decl->body); |
| if (current_compound_statement_) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "Resolver::Function() called with a current compound statement"; |
| return nullptr; |
| } |
| auto* body = StatementScope(decl->body, builder_->create<sem::FunctionBlockStatement>(func), |
| [&] { return Statements(decl->body->statements); }); |
| if (!body) { |
| return nullptr; |
| } |
| func->Behaviors() = body->Behaviors(); |
| if (func->Behaviors().Contains(sem::Behavior::kReturn)) { |
| // https://www.w3.org/TR/WGSL/#behaviors-rules |
| // We assign a behavior to each function: it is its body’s behavior |
| // (treating the body as a regular statement), with any "Return" replaced |
| // by "Next". |
| func->Behaviors().Remove(sem::Behavior::kReturn); |
| func->Behaviors().Add(sem::Behavior::kNext); |
| } |
| } |
| |
| for (auto* attr : decl->attributes) { |
| Mark(attr); |
| } |
| if (!validator_.NoDuplicateAttributes(decl->attributes)) { |
| return nullptr; |
| } |
| |
| for (auto* attr : decl->return_type_attributes) { |
| Mark(attr); |
| } |
| if (!validator_.NoDuplicateAttributes(decl->return_type_attributes)) { |
| return nullptr; |
| } |
| |
| auto stage = current_function_ ? current_function_->Declaration()->PipelineStage() |
| : ast::PipelineStage::kNone; |
| if (!validator_.Function(func, stage)) { |
| return nullptr; |
| } |
| |
| // If this is an entry point, mark all transitively called functions as being |
| // used by this entry point. |
| if (decl->IsEntryPoint()) { |
| for (auto* f : func->TransitivelyCalledFunctions()) { |
| const_cast<sem::Function*>(f)->AddAncestorEntryPoint(func); |
| } |
| } |
| |
| return func; |
| } |
| |
| bool Resolver::WorkgroupSize(const ast::Function* func) { |
| // Set work-group size defaults. |
| sem::WorkgroupSize ws; |
| for (int i = 0; i < 3; i++) { |
| ws[i].value = 1; |
| ws[i].overridable_const = nullptr; |
| } |
| |
| auto* attr = ast::GetAttribute<ast::WorkgroupAttribute>(func->attributes); |
| if (!attr) { |
| return true; |
| } |
| |
| auto values = attr->Values(); |
| std::array<const sem::Expression*, 3> args = {}; |
| std::array<const sem::Type*, 3> arg_tys = {}; |
| size_t arg_count = 0; |
| |
| constexpr const char* kErrBadType = |
| "workgroup_size argument must be either literal or module-scope constant of type i32 " |
| "or u32"; |
| |
| for (int i = 0; i < 3; i++) { |
| // Each argument to this attribute can either be a literal, an identifier for a module-scope |
| // constants, or nullptr if not specified. |
| auto* value = values[i]; |
| if (!value) { |
| break; |
| } |
| const auto* expr = Expression(value); |
| if (!expr) { |
| return false; |
| } |
| auto* ty = expr->Type(); |
| if (!ty->IsAnyOf<sem::I32, sem::U32, sem::AbstractInt>()) { |
| AddError(kErrBadType, value->source); |
| return false; |
| } |
| |
| args[i] = expr; |
| arg_tys[i] = ty; |
| arg_count++; |
| } |
| |
| auto* common_ty = sem::Type::Common(arg_tys.data(), arg_count); |
| if (!common_ty) { |
| AddError("workgroup_size arguments must be of the same type, either i32 or u32", |
| attr->source); |
| return false; |
| } |
| |
| // If all arguments are abstract-integers, then materialize to i32. |
| if (common_ty->Is<sem::AbstractInt>()) { |
| common_ty = builder_->create<sem::I32>(); |
| } |
| |
| for (size_t i = 0; i < arg_count; i++) { |
| auto* materialized = Materialize(args[i], common_ty); |
| if (!materialized) { |
| return false; |
| } |
| |
| sem::Constant value; |
| |
| if (auto* user = args[i]->As<sem::VariableUser>()) { |
| // We have an variable of a module-scope constant. |
| auto* decl = user->Variable()->Declaration(); |
| if (!decl->IsAnyOf<ast::Let, ast::Override>()) { |
| AddError(kErrBadType, values[i]->source); |
| return false; |
| } |
| // Capture the constant if it is pipeline-overridable. |
| if (decl->Is<ast::Override>()) { |
| ws[i].overridable_const = decl; |
| } |
| |
| if (decl->constructor) { |
| value = sem_.Get(decl->constructor)->ConstantValue(); |
| } else { |
| // No constructor means this value must be overriden by the user. |
| ws[i].value = 0; |
| continue; |
| } |
| } else if (values[i]->Is<ast::LiteralExpression>()) { |
| value = materialized->ConstantValue(); |
| } else { |
| AddError( |
| "workgroup_size argument must be either a literal or a " |
| "module-scope constant", |
| values[i]->source); |
| return false; |
| } |
| |
| if (!value) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "could not resolve constant workgroup_size constant value"; |
| continue; |
| } |
| // validator_.Validate and set the default value for this dimension. |
| if (value.Element<AInt>(0).value < 1) { |
| AddError("workgroup_size argument must be at least 1", values[i]->source); |
| return false; |
| } |
| |
| ws[i].value = value.Element<uint32_t>(0); |
| } |
| |
| current_function_->SetWorkgroupSize(std::move(ws)); |
| return true; |
| } |
| |
| bool Resolver::Statements(const ast::StatementList& stmts) { |
| sem::Behaviors behaviors{sem::Behavior::kNext}; |
| |
| bool reachable = true; |
| for (auto* stmt : stmts) { |
| Mark(stmt); |
| auto* sem = Statement(stmt); |
| if (!sem) { |
| return false; |
| } |
| // s1 s2:(B1∖{Next}) ∪ B2 |
| sem->SetIsReachable(reachable); |
| if (reachable) { |
| behaviors = (behaviors - sem::Behavior::kNext) + sem->Behaviors(); |
| } |
| reachable = reachable && sem->Behaviors().Contains(sem::Behavior::kNext); |
| } |
| |
| current_statement_->Behaviors() = behaviors; |
| |
| if (!validator_.Statements(stmts)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| sem::Statement* Resolver::Statement(const ast::Statement* stmt) { |
| return Switch( |
| stmt, |
| // Compound statements. These create their own sem::CompoundStatement |
| // bindings. |
| [&](const ast::BlockStatement* b) { return BlockStatement(b); }, |
| [&](const ast::ForLoopStatement* l) { return ForLoopStatement(l); }, |
| [&](const ast::LoopStatement* l) { return LoopStatement(l); }, |
| [&](const ast::WhileStatement* w) { return WhileStatement(w); }, |
| [&](const ast::IfStatement* i) { return IfStatement(i); }, |
| [&](const ast::SwitchStatement* s) { return SwitchStatement(s); }, |
| |
| // Non-Compound statements |
| [&](const ast::AssignmentStatement* a) { return AssignmentStatement(a); }, |
| [&](const ast::BreakStatement* b) { return BreakStatement(b); }, |
| [&](const ast::CallStatement* c) { return CallStatement(c); }, |
| [&](const ast::CompoundAssignmentStatement* c) { return CompoundAssignmentStatement(c); }, |
| [&](const ast::ContinueStatement* c) { return ContinueStatement(c); }, |
| [&](const ast::DiscardStatement* d) { return DiscardStatement(d); }, |
| [&](const ast::FallthroughStatement* f) { return FallthroughStatement(f); }, |
| [&](const ast::IncrementDecrementStatement* i) { return IncrementDecrementStatement(i); }, |
| [&](const ast::ReturnStatement* r) { return ReturnStatement(r); }, |
| [&](const ast::VariableDeclStatement* v) { return VariableDeclStatement(v); }, |
| |
| // Error cases |
| [&](const ast::CaseStatement*) { |
| AddError("case statement can only be used inside a switch statement", stmt->source); |
| return nullptr; |
| }, |
| [&](Default) { |
| AddError("unknown statement type: " + std::string(stmt->TypeInfo().name), stmt->source); |
| return nullptr; |
| }); |
| } |
| |
| sem::CaseStatement* Resolver::CaseStatement(const ast::CaseStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::CaseStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| sem->Selectors().reserve(stmt->selectors.size()); |
| for (auto* sel : stmt->selectors) { |
| auto* expr = Expression(sel); |
| if (!expr) { |
| return false; |
| } |
| sem->Selectors().emplace_back(expr); |
| } |
| Mark(stmt->body); |
| auto* body = BlockStatement(stmt->body); |
| if (!body) { |
| return false; |
| } |
| sem->SetBlock(body); |
| sem->Behaviors() = body->Behaviors(); |
| return true; |
| }); |
| } |
| |
| sem::IfStatement* Resolver::IfStatement(const ast::IfStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::IfStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto* cond = Expression(stmt->condition); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| sem->Behaviors() = cond->Behaviors(); |
| sem->Behaviors().Remove(sem::Behavior::kNext); |
| |
| Mark(stmt->body); |
| auto* body = builder_->create<sem::BlockStatement>(stmt->body, current_compound_statement_, |
| current_function_); |
| if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| sem->Behaviors().Add(body->Behaviors()); |
| |
| if (stmt->else_statement) { |
| Mark(stmt->else_statement); |
| auto* else_sem = Statement(stmt->else_statement); |
| if (!else_sem) { |
| return false; |
| } |
| sem->Behaviors().Add(else_sem->Behaviors()); |
| } else { |
| // https://www.w3.org/TR/WGSL/#behaviors-rules |
| // if statements without an else branch are treated as if they had an |
| // empty else branch (which adds Next to their behavior) |
| sem->Behaviors().Add(sem::Behavior::kNext); |
| } |
| |
| return validator_.IfStatement(sem); |
| }); |
| } |
| |
| sem::BlockStatement* Resolver::BlockStatement(const ast::BlockStatement* stmt) { |
| auto* sem = builder_->create<sem::BlockStatement>( |
| stmt->As<ast::BlockStatement>(), current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { return Statements(stmt->statements); }); |
| } |
| |
| sem::LoopStatement* Resolver::LoopStatement(const ast::LoopStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::LoopStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| Mark(stmt->body); |
| |
| auto* body = builder_->create<sem::LoopBlockStatement>( |
| stmt->body, current_compound_statement_, current_function_); |
| return StatementScope(stmt->body, body, [&] { |
| if (!Statements(stmt->body->statements)) { |
| return false; |
| } |
| auto& behaviors = sem->Behaviors(); |
| behaviors = body->Behaviors(); |
| |
| if (stmt->continuing) { |
| Mark(stmt->continuing); |
| auto* continuing = StatementScope( |
| stmt->continuing, |
| builder_->create<sem::LoopContinuingBlockStatement>( |
| stmt->continuing, current_compound_statement_, current_function_), |
| [&] { return Statements(stmt->continuing->statements); }); |
| if (!continuing) { |
| return false; |
| } |
| behaviors.Add(continuing->Behaviors()); |
| } |
| |
| if (behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? |
| behaviors.Add(sem::Behavior::kNext); |
| } else { |
| behaviors.Remove(sem::Behavior::kNext); |
| } |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); |
| |
| return validator_.LoopStatement(sem); |
| }); |
| }); |
| } |
| |
| sem::ForLoopStatement* Resolver::ForLoopStatement(const ast::ForLoopStatement* stmt) { |
| auto* sem = builder_->create<sem::ForLoopStatement>(stmt, current_compound_statement_, |
| current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = sem->Behaviors(); |
| if (auto* initializer = stmt->initializer) { |
| Mark(initializer); |
| auto* init = Statement(initializer); |
| if (!init) { |
| return false; |
| } |
| behaviors.Add(init->Behaviors()); |
| } |
| |
| if (auto* cond_expr = stmt->condition) { |
| auto* cond = Expression(cond_expr); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| behaviors.Add(cond->Behaviors()); |
| } |
| |
| if (auto* continuing = stmt->continuing) { |
| Mark(continuing); |
| auto* cont = Statement(continuing); |
| if (!cont) { |
| return false; |
| } |
| behaviors.Add(cont->Behaviors()); |
| } |
| |
| Mark(stmt->body); |
| |
| auto* body = builder_->create<sem::LoopBlockStatement>( |
| stmt->body, current_compound_statement_, current_function_); |
| if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| |
| behaviors.Add(body->Behaviors()); |
| if (stmt->condition || behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit? |
| behaviors.Add(sem::Behavior::kNext); |
| } else { |
| behaviors.Remove(sem::Behavior::kNext); |
| } |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); |
| |
| return validator_.ForLoopStatement(sem); |
| }); |
| } |
| |
| sem::WhileStatement* Resolver::WhileStatement(const ast::WhileStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::WhileStatement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = sem->Behaviors(); |
| |
| auto* cond = Expression(stmt->condition); |
| if (!cond) { |
| return false; |
| } |
| sem->SetCondition(cond); |
| behaviors.Add(cond->Behaviors()); |
| |
| Mark(stmt->body); |
| |
| auto* body = builder_->create<sem::LoopBlockStatement>( |
| stmt->body, current_compound_statement_, current_function_); |
| if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) { |
| return false; |
| } |
| |
| behaviors.Add(body->Behaviors()); |
| // Always consider the while as having a 'next' behaviour because it has |
| // a condition. We don't check if the condition will terminate but it isn't |
| // valid to have an infinite loop in a WGSL program, so a non-terminating |
| // condition is already an invalid program. |
| behaviors.Add(sem::Behavior::kNext); |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue); |
| |
| return validator_.WhileStatement(sem); |
| }); |
| } |
| |
| sem::Expression* Resolver::Expression(const ast::Expression* root) { |
| std::vector<const ast::Expression*> sorted; |
| constexpr size_t kMaxExpressionDepth = 512U; |
| bool failed = false; |
| if (!ast::TraverseExpressions<ast::TraverseOrder::RightToLeft>( |
| root, diagnostics_, [&](const ast::Expression* expr, size_t depth) { |
| if (depth > kMaxExpressionDepth) { |
| AddError( |
| "reached max expression depth of " + std::to_string(kMaxExpressionDepth), |
| expr->source); |
| failed = true; |
| return ast::TraverseAction::Stop; |
| } |
| if (!Mark(expr)) { |
| failed = true; |
| return ast::TraverseAction::Stop; |
| } |
| sorted.emplace_back(expr); |
| return ast::TraverseAction::Descend; |
| })) { |
| return nullptr; |
| } |
| |
| if (failed) { |
| return nullptr; |
| } |
| |
| for (auto* expr : utils::Reverse(sorted)) { |
| auto* sem_expr = Switch( |
| expr, |
| [&](const ast::IndexAccessorExpression* array) -> sem::Expression* { |
| return IndexAccessor(array); |
| }, |
| [&](const ast::BinaryExpression* bin_op) -> sem::Expression* { return Binary(bin_op); }, |
| [&](const ast::BitcastExpression* bitcast) -> sem::Expression* { |
| return Bitcast(bitcast); |
| }, |
| [&](const ast::CallExpression* call) -> sem::Expression* { return Call(call); }, |
| [&](const ast::IdentifierExpression* ident) -> sem::Expression* { |
| return Identifier(ident); |
| }, |
| [&](const ast::LiteralExpression* literal) -> sem::Expression* { |
| return Literal(literal); |
| }, |
| [&](const ast::MemberAccessorExpression* member) -> sem::Expression* { |
| return MemberAccessor(member); |
| }, |
| [&](const ast::UnaryOpExpression* unary) -> sem::Expression* { return UnaryOp(unary); }, |
| [&](const ast::PhonyExpression*) -> sem::Expression* { |
| return builder_->create<sem::Expression>(expr, builder_->create<sem::Void>(), |
| current_statement_, sem::Constant{}, |
| /* has_side_effects */ false); |
| }, |
| [&](Default) { |
| TINT_ICE(Resolver, diagnostics_) |
| << "unhandled expression type: " << expr->TypeInfo().name; |
| return nullptr; |
| }); |
| if (!sem_expr) { |
| return nullptr; |
| } |
| |
| builder_->Sem().Add(expr, sem_expr); |
| if (expr == root) { |
| return sem_expr; |
| } |
| } |
| |
| TINT_ICE(Resolver, diagnostics_) << "Expression() did not find root node"; |
| return nullptr; |
| } |
| |
| const sem::Expression* Resolver::Materialize(const sem::Expression* expr, |
| const sem::Type* target_type /* = nullptr */) { |
| if (!expr) { |
| return nullptr; // Allow for Materialize(Expression(blah)) |
| } |
| |
| // Helper for actually creating the the materialize node, performing the constant cast, updating |
| // the ast -> sem binding, and performing validation. |
| auto materialize = [&](const sem::Type* target_ty) -> sem::Materialize* { |
| auto* src_ty = expr->Type(); |
| auto* decl = expr->Declaration(); |
| if (!validator_.Materialize(target_ty, src_ty, decl->source)) { |
| return nullptr; |
| } |
| auto expr_val = EvaluateConstantValue(decl, expr->Type()); |
| auto materialized_val = ConvertValue(std::move(expr_val), target_ty, decl->source); |
| if (!materialized_val) { |
| return nullptr; |
| } |
| if (!materialized_val->IsValid()) { |
| TINT_ICE(Resolver, builder_->Diagnostics()) |
| << decl->source << "ConvertValue(" << builder_->FriendlyName(expr_val.Type()) |
| << " -> " << builder_->FriendlyName(target_ty) << ") returned invalid value"; |
| return nullptr; |
| } |
| auto* m = |
| builder_->create<sem::Materialize>(expr, current_statement_, materialized_val.Get()); |
| m->Behaviors() = expr->Behaviors(); |
| builder_->Sem().Replace(decl, m); |
| return m; |
| }; |
| |
| // Helpers for constructing semantic types |
| auto i32 = [&] { return builder_->create<sem::I32>(); }; |
| auto f32 = [&] { return builder_->create<sem::F32>(); }; |
| auto i32v = [&](uint32_t width) { return builder_->create<sem::Vector>(i32(), width); }; |
| auto f32v = [&](uint32_t width) { return builder_->create<sem::Vector>(f32(), width); }; |
| auto f32m = [&](uint32_t columns, uint32_t rows) { |
| return builder_->create<sem::Matrix>(f32v(rows), columns); |
| }; |
| |
| // Type dispatch based on the expression type |
| return Switch<sem::Expression*>( |
| expr->Type(), // |
| [&](const sem::AbstractInt*) { return materialize(target_type ? target_type : i32()); }, |
| [&](const sem::AbstractFloat*) { return materialize(target_type ? target_type : f32()); }, |
| [&](const sem::Vector* v) { |
| return Switch( |
| v->type(), // |
| [&](const sem::AbstractInt*) { |
| return materialize(target_type ? target_type : i32v(v->Width())); |
| }, |
| [&](const sem::AbstractFloat*) { |
| return materialize(target_type ? target_type : f32v(v->Width())); |
| }, |
| [&](Default) { return expr; }); |
| }, |
| [&](const sem::Matrix* m) { |
| return Switch( |
| m->type(), // |
| [&](const sem::AbstractFloat*) { |
| return materialize(target_type ? target_type : f32m(m->columns(), m->rows())); |
| }, |
| [&](Default) { return expr; }); |
| }, |
| [&](Default) { return expr; }); |
| } |
| |
| bool Resolver::MaterializeArguments(std::vector<const sem::Expression*>& args, |
| const sem::CallTarget* target) { |
| for (size_t i = 0, n = std::min(args.size(), target->Parameters().size()); i < n; i++) { |
| const auto* param_ty = target->Parameters()[i]->Type(); |
| if (ShouldMaterializeArgument(param_ty)) { |
| auto* materialized = Materialize(args[i], param_ty); |
| if (!materialized) { |
| return false; |
| } |
| args[i] = materialized; |
| } |
| } |
| return true; |
| } |
| |
| bool Resolver::ShouldMaterializeArgument(const sem::Type* parameter_ty) const { |
| const auto* param_el_ty = sem::Type::ElementOf(parameter_ty); |
| return param_el_ty && !param_el_ty->Is<sem::AbstractNumeric>(); |
| } |
| |
| sem::Expression* Resolver::IndexAccessor(const ast::IndexAccessorExpression* expr) { |
| auto* idx = Materialize(sem_.Get(expr->index)); |
| if (!idx) { |
| return nullptr; |
| } |
| auto* obj = sem_.Get(expr->object); |
| auto* obj_raw_ty = obj->Type(); |
| auto* obj_ty = obj_raw_ty->UnwrapRef(); |
| auto* ty = Switch( |
| obj_ty, // |
| [&](const sem::Array* arr) { return arr->ElemType(); }, |
| [&](const sem::Vector* vec) { return vec->type(); }, |
| [&](const sem::Matrix* mat) { |
| return builder_->create<sem::Vector>(mat->type(), mat->rows()); |
| }, |
| [&](Default) { |
| AddError("cannot index type '" + sem_.TypeNameOf(obj_ty) + "'", expr->source); |
| return nullptr; |
| }); |
| if (ty == nullptr) { |
| return nullptr; |
| } |
| |
| auto* idx_ty = idx->Type()->UnwrapRef(); |
| if (!idx_ty->IsAnyOf<sem::I32, sem::U32>()) { |
| AddError("index must be of type 'i32' or 'u32', found: '" + sem_.TypeNameOf(idx_ty) + "'", |
| idx->Declaration()->source); |
| return nullptr; |
| } |
| |
| // If we're extracting from a reference, we return a reference. |
| if (auto* ref = obj_raw_ty->As<sem::Reference>()) { |
| ty = builder_->create<sem::Reference>(ty, ref->StorageClass(), ref->Access()); |
| } |
| |
| auto val = EvaluateConstantValue(expr, ty); |
| bool has_side_effects = idx->HasSideEffects() || obj->HasSideEffects(); |
| auto* sem = builder_->create<sem::Expression>(expr, ty, current_statement_, std::move(val), |
| has_side_effects, obj->SourceVariable()); |
| sem->Behaviors() = idx->Behaviors() + obj->Behaviors(); |
| return sem; |
| } |
| |
| sem::Expression* Resolver::Bitcast(const ast::BitcastExpression* expr) { |
| auto* inner = Materialize(sem_.Get(expr->expr)); |
| if (!inner) { |
| return nullptr; |
| } |
| auto* ty = Type(expr->type); |
| if (!ty) { |
| return nullptr; |
| } |
| |
| auto val = EvaluateConstantValue(expr, ty); |
| auto* sem = builder_->create<sem::Expression>(expr, ty, current_statement_, std::move(val), |
| inner->HasSideEffects()); |
| |
| sem->Behaviors() = inner->Behaviors(); |
| |
| if (!validator_.Bitcast(expr, ty)) { |
| return nullptr; |
| } |
| |
| return sem; |
| } |
| |
| sem::Call* Resolver::Call(const ast::CallExpression* expr) { |
| // A CallExpression can resolve to one of: |
| // * A function call. |
| // * A builtin call. |
| // * A type constructor. |
| // * A type conversion. |
| |
| // Resolve all of the arguments, their types and the set of behaviors. |
| std::vector<const sem::Expression*> args(expr->args.size()); |
| sem::Behaviors arg_behaviors; |
| for (size_t i = 0; i < expr->args.size(); i++) { |
| auto* arg = sem_.Get(expr->args[i]); |
| if (!arg) { |
| return nullptr; |
| } |
| args[i] = arg; |
| arg_behaviors.Add(arg->Behaviors()); |
| } |
| arg_behaviors.Remove(sem::Behavior::kNext); |
| |
| // Did any arguments have side effects? |
| bool has_side_effects = |
| std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); }); |
| |
| // ct_ctor_or_conv is a helper for building either a sem::TypeConstructor or sem::TypeConversion |
| // call for a CtorConvIntrinsic with an optional template argument type. |
| auto ct_ctor_or_conv = [&](CtorConvIntrinsic ty, const sem::Type* template_arg) -> sem::Call* { |
| auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type(); }); |
| auto* call_target = intrinsic_table_->Lookup(ty, template_arg, arg_tys, expr->source); |
| if (!call_target) { |
| return nullptr; |
| } |
| if (!MaterializeArguments(args, call_target)) { |
| return nullptr; |
| } |
| auto val = EvaluateConstantValue(expr, call_target->ReturnType()); |
| return builder_->create<sem::Call>(expr, call_target, std::move(args), current_statement_, |
| std::move(val), has_side_effects); |
| }; |
| |
| // ct_ctor_or_conv is a helper for building either a sem::TypeConstructor or sem::TypeConversion |
| // call for the given semantic type. |
| auto ty_ctor_or_conv = [&](const sem::Type* ty) { |
| return Switch( |
| ty, // |
| [&](const sem::Vector* v) { |
| return ct_ctor_or_conv(VectorCtorConvIntrinsic(v->Width()), v->type()); |
| }, |
| [&](const sem::Matrix* m) { |
| return ct_ctor_or_conv(MatrixCtorConvIntrinsic(m->columns(), m->rows()), m->type()); |
| }, |
| [&](const sem::I32*) { return ct_ctor_or_conv(CtorConvIntrinsic::kI32, nullptr); }, |
| [&](const sem::U32*) { return ct_ctor_or_conv(CtorConvIntrinsic::kU32, nullptr); }, |
| [&](const sem::F32*) { return ct_ctor_or_conv(CtorConvIntrinsic::kF32, nullptr); }, |
| [&](const sem::Bool*) { return ct_ctor_or_conv(CtorConvIntrinsic::kBool, nullptr); }, |
| [&](const sem::Array* arr) -> sem::Call* { |
| auto* call_target = utils::GetOrCreate( |
| array_ctors_, ArrayConstructorSig{{arr, args.size()}}, |
| [&]() -> sem::TypeConstructor* { |
| sem::ParameterList params(args.size()); |
| for (size_t i = 0; i < args.size(); i++) { |
| params[i] = builder_->create<sem::Parameter>( |
| nullptr, // declaration |
| static_cast<uint32_t>(i), // index |
| arr->ElemType(), // type |
| ast::StorageClass::kNone, // storage_class |
| ast::Access::kUndefined); // access |
| } |
| return builder_->create<sem::TypeConstructor>(arr, std::move(params)); |
| }); |
| if (!MaterializeArguments(args, call_target)) { |
| return nullptr; |
| } |
| auto val = EvaluateConstantValue(expr, call_target->ReturnType()); |
| return builder_->create<sem::Call>(expr, call_target, std::move(args), |
| current_statement_, std::move(val), |
| has_side_effects); |
| }, |
| [&](const sem::Struct* str) -> sem::Call* { |
| auto* call_target = utils::GetOrCreate( |
| struct_ctors_, StructConstructorSig{{str, args.size()}}, |
| [&]() -> sem::TypeConstructor* { |
| sem::ParameterList params(std::min(args.size(), str->Members().size())); |
| for (size_t i = 0, n = params.size(); i < n; i++) { |
| params[i] = builder_->create<sem::Parameter>( |
| nullptr, // declaration |
| static_cast<uint32_t>(i), // index |
| str->Members()[i]->Type(), // type |
| ast::StorageClass::kNone, // storage_class |
| ast::Access::kUndefined); // access |
| } |
| return builder_->create<sem::TypeConstructor>(str, std::move(params)); |
| }); |
| if (!MaterializeArguments(args, call_target)) { |
| return nullptr; |
| } |
| auto val = EvaluateConstantValue(expr, call_target->ReturnType()); |
| return builder_->create<sem::Call>(expr, call_target, std::move(args), |
| current_statement_, std::move(val), |
| has_side_effects); |
| }, |
| [&](Default) { |
| AddError("type is not constructible", expr->source); |
| return nullptr; |
| }); |
| }; |
| |
| // ast::CallExpression has a target which is either an ast::Type or an ast::IdentifierExpression |
| sem::Call* call = nullptr; |
| if (expr->target.type) { |
| // ast::CallExpression has an ast::Type as the target. |
| // This call is either a type constructor or type conversion. |
| call = Switch( |
| expr->target.type, |
| [&](const ast::Vector* v) -> sem::Call* { |
| Mark(v); |
| // vector element type must be inferred if it was not specified. |
| sem::Type* template_arg = nullptr; |
| if (v->type) { |
| template_arg = Type(v->type); |
| if (!template_arg) { |
| return nullptr; |
| } |
| } |
| if (auto* c = ct_ctor_or_conv(VectorCtorConvIntrinsic(v->width), template_arg)) { |
| builder_->Sem().Add(expr->target.type, c->Target()->ReturnType()); |
| return c; |
| } |
| return nullptr; |
| }, |
| [&](const ast::Matrix* m) -> sem::Call* { |
| Mark(m); |
| // matrix element type must be inferred if it was not specified. |
| sem::Type* template_arg = nullptr; |
| if (m->type) { |
| template_arg = Type(m->type); |
| if (!template_arg) { |
| return nullptr; |
| } |
| } |
| if (auto* c = ct_ctor_or_conv(MatrixCtorConvIntrinsic(m->columns, m->rows), |
| template_arg)) { |
| builder_->Sem().Add(expr->target.type, c->Target()->ReturnType()); |
| return c; |
| } |
| return nullptr; |
| }, |
| [&](const ast::Type* ast) -> sem::Call* { |
| // Handler for AST types that do not have an optional element type. |
| if (auto* ty = Type(ast)) { |
| return ty_ctor_or_conv(ty); |
| } |
| return nullptr; |
| }, |
| [&](Default) { |
| TINT_ICE(Resolver, diagnostics_) |
| << expr->source << " unhandled CallExpression target:\n" |
| << "type: " |
| << (expr->target.type ? expr->target.type->TypeInfo().name : "<null>"); |
| return nullptr; |
| }); |
| } else { |
| // ast::CallExpression has an ast::IdentifierExpression as the target. |
| // This call is either a function call, builtin call, type constructor or type conversion. |
| auto* ident = expr->target.name; |
| Mark(ident); |
| auto* resolved = sem_.ResolvedSymbol(ident); |
| call = Switch<sem::Call*>( |
| resolved, // |
| [&](sem::Type* ty) { |
| // A type constructor or conversions. |
| // Note: Unlike the code path where we're resolving the call target from an |
| // ast::Type, all types must already have the element type explicitly specified, so |
| // there's no need to infer element types. |
| return ty_ctor_or_conv(ty); |
| }, |
| [&](sem::Function* func) { |
| return FunctionCall(expr, func, std::move(args), arg_behaviors); |
| }, |
| [&](sem::Variable* var) { |
| auto name = builder_->Symbols().NameFor(var->Declaration()->symbol); |
| AddError("cannot call variable '" + name + "'", ident->source); |
| AddNote("'" + name + "' declared here", var->Declaration()->source); |
| return nullptr; |
| }, |
| [&](Default) -> sem::Call* { |
| auto name = builder_->Symbols().NameFor(ident->symbol); |
| auto builtin_type = sem::ParseBuiltinType(name); |
| if (builtin_type != sem::BuiltinType::kNone) { |
| return BuiltinCall(expr, builtin_type, std::move(args)); |
| } |
| |
| TINT_ICE(Resolver, diagnostics_) |
| << expr->source << " unhandled CallExpression target:\n" |
| << "resolved: " << (resolved ? resolved->TypeInfo().name : "<null>") << "\n" |
| << "name: " << builder_->Symbols().NameFor(ident->symbol); |
| return nullptr; |
| }); |
| } |
| |
| if (!call) { |
| return nullptr; |
| } |
| |
| return validator_.Call(call, current_statement_) ? call : nullptr; |
| } |
| |
| sem::Call* Resolver::BuiltinCall(const ast::CallExpression* expr, |
| sem::BuiltinType builtin_type, |
| std::vector<const sem::Expression*> args) { |
| IntrinsicTable::Builtin builtin; |
| { |
| auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type(); }); |
| builtin = intrinsic_table_->Lookup(builtin_type, arg_tys, expr->source); |
| if (!builtin.sem) { |
| return nullptr; |
| } |
| } |
| |
| if (!MaterializeArguments(args, builtin.sem)) { |
| return nullptr; |
| } |
| |
| if (builtin.sem->IsDeprecated()) { |
| AddWarning("use of deprecated builtin", expr->source); |
| } |
| |
| // If the builtin is @const, and all arguments have constant values, evaluate the builtin now. |
| sem::Constant constant; |
| if (builtin.const_eval_fn) { |
| std::vector<sem::Constant> values(args.size()); |
| bool is_const = true; // all arguments have constant values |
| for (size_t i = 0; i < values.size(); i++) { |
| if (auto v = args[i]->ConstantValue()) { |
| values[i] = std::move(v); |
| } else { |
| is_const = false; |
| break; |
| } |
| } |
| if (is_const) { |
| constant = builtin.const_eval_fn(*builder_, values.data(), args.size()); |
| } |
| } |
| |
| bool has_side_effects = |
| builtin.sem->HasSideEffects() || |
| std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); }); |
| auto* call = builder_->create<sem::Call>(expr, builtin.sem, std::move(args), current_statement_, |
| constant, has_side_effects); |
| |
| current_function_->AddDirectlyCalledBuiltin(builtin.sem); |
| |
| if (!validator_.RequiredExtensionForBuiltinFunction(call, enabled_extensions_)) { |
| return nullptr; |
| } |
| |
| if (IsTextureBuiltin(builtin_type)) { |
| if (!validator_.TextureBuiltinFunction(call)) { |
| return nullptr; |
| } |
| CollectTextureSamplerPairs(builtin.sem, call->Arguments()); |
| } |
| |
| if (!validator_.BuiltinCall(call)) { |
| return nullptr; |
| } |
| |
| current_function_->AddDirectCall(call); |
| |
| return call; |
| } |
| |
| void Resolver::CollectTextureSamplerPairs(const sem::Builtin* builtin, |
| const std::vector<const sem::Expression*>& args) const { |
| // Collect a texture/sampler pair for this builtin. |
| const auto& signature = builtin->Signature(); |
| int texture_index = signature.IndexOf(sem::ParameterUsage::kTexture); |
| if (texture_index == -1) { |
| TINT_ICE(Resolver, diagnostics_) << "texture builtin without texture parameter"; |
| } |
| auto* texture = args[texture_index]->As<sem::VariableUser>()->Variable(); |
| if (!texture->Type()->UnwrapRef()->Is<sem::StorageTexture>()) { |
| int sampler_index = signature.IndexOf(sem::ParameterUsage::kSampler); |
| const sem::Variable* sampler = |
| sampler_index != -1 ? args[sampler_index]->As<sem::VariableUser>()->Variable() |
| : nullptr; |
| current_function_->AddTextureSamplerPair(texture, sampler); |
| } |
| } |
| |
| sem::Call* Resolver::FunctionCall(const ast::CallExpression* expr, |
| sem::Function* target, |
| std::vector<const sem::Expression*> args, |
| sem::Behaviors arg_behaviors) { |
| auto sym = expr->target.name->symbol; |
| auto name = builder_->Symbols().NameFor(sym); |
| |
| if (!MaterializeArguments(args, target)) { |
| return nullptr; |
| } |
| |
| // TODO(crbug.com/tint/1420): For now, assume all function calls have side |
| // effects. |
| bool has_side_effects = true; |
| auto* call = builder_->create<sem::Call>(expr, target, std::move(args), current_statement_, |
| sem::Constant{}, has_side_effects); |
| |
| target->AddCallSite(call); |
| |
| call->Behaviors() = arg_behaviors + target->Behaviors(); |
| |
| if (!validator_.FunctionCall(call, current_statement_)) { |
| return nullptr; |
| } |
| |
| if (current_function_) { |
| // Note: Requires called functions to be resolved first. |
| // This is currently guaranteed as functions must be declared before |
| // use. |
| current_function_->AddTransitivelyCalledFunction(target); |
| current_function_->AddDirectCall(call); |
| for (auto* transitive_call : target->TransitivelyCalledFunctions()) { |
| current_function_->AddTransitivelyCalledFunction(transitive_call); |
| } |
| |
| // We inherit any referenced variables from the callee. |
| for (auto* var : target->TransitivelyReferencedGlobals()) { |
| current_function_->AddTransitivelyReferencedGlobal(var); |
| } |
| |
| // Note: Validation *must* be performed before calling this method. |
| CollectTextureSamplerPairs(target, call->Arguments()); |
| } |
| |
| return call; |
| } |
| |
| void Resolver::CollectTextureSamplerPairs(sem::Function* func, |
| const std::vector<const sem::Expression*>& args) const { |
| // Map all texture/sampler pairs from the target function to the |
| // current function. These can only be global or parameter |
| // variables. Resolve any parameter variables to the corresponding |
| // argument passed to the current function. Leave global variables |
| // as-is. Then add the mapped pair to the current function's list of |
| // texture/sampler pairs. |
| for (sem::VariablePair pair : func->TextureSamplerPairs()) { |
| const sem::Variable* texture = pair.first; |
| const sem::Variable* sampler = pair.second; |
| if (auto* param = texture->As<sem::Parameter>()) { |
| texture = args[param->Index()]->As<sem::VariableUser>()->Variable(); |
| } |
| if (sampler) { |
| if (auto* param = sampler->As<sem::Parameter>()) { |
| sampler = args[param->Index()]->As<sem::VariableUser>()->Variable(); |
| } |
| } |
| current_function_->AddTextureSamplerPair(texture, sampler); |
| } |
| } |
| |
| sem::Expression* Resolver::Literal(const ast::LiteralExpression* literal) { |
| auto* ty = Switch( |
| literal, |
| [&](const ast::IntLiteralExpression* i) -> sem::Type* { |
| switch (i->suffix) { |
| case ast::IntLiteralExpression::Suffix::kNone: |
| return builder_->create<sem::AbstractInt>(); |
| case ast::IntLiteralExpression::Suffix::kI: |
| return builder_->create<sem::I32>(); |
| case ast::IntLiteralExpression::Suffix::kU: |
| return builder_->create<sem::U32>(); |
| } |
| return nullptr; |
| }, |
| [&](const ast::FloatLiteralExpression* f) -> sem::Type* { |
| switch (f->suffix) { |
| case ast::FloatLiteralExpression::Suffix::kNone: |
| return builder_->create<sem::AbstractFloat>(); |
| case ast::FloatLiteralExpression::Suffix::kF: |
| return builder_->create<sem::F32>(); |
| case ast::FloatLiteralExpression::Suffix::kH: |
| return builder_->create<sem::F16>(); |
| } |
| return nullptr; |
| }, |
| [&](const ast::BoolLiteralExpression*) { return builder_->create<sem::Bool>(); }, |
| [&](Default) { return nullptr; }); |
| |
| if (ty == nullptr) { |
| TINT_UNREACHABLE(Resolver, builder_->Diagnostics()) |
| << "Unhandled literal type: " << literal->TypeInfo().name; |
| return nullptr; |
| } |
| |
| if ((ty->Is<sem::F16>()) && (!enabled_extensions_.contains(tint::ast::Extension::kF16))) { |
| AddError("f16 literal used without 'f16' extension enabled", literal->source); |
| return nullptr; |
| } |
| |
| auto val = EvaluateConstantValue(literal, ty); |
| return builder_->create<sem::Expression>(literal, ty, current_statement_, std::move(val), |
| /* has_side_effects */ false); |
| } |
| |
| sem::Expression* Resolver::Identifier(const ast::IdentifierExpression* expr) { |
| auto symbol = expr->symbol; |
| auto* resolved = sem_.ResolvedSymbol(expr); |
| if (auto* var = As<sem::Variable>(resolved)) { |
| auto* user = builder_->create<sem::VariableUser>(expr, current_statement_, var); |
| |
| if (current_statement_) { |
| // If identifier is part of a loop continuing block, make sure it |
| // doesn't refer to a variable that is bypassed by a continue statement |
| // in the loop's body block. |
| if (auto* continuing_block = |
| current_statement_->FindFirstParent<sem::LoopContinuingBlockStatement>()) { |
| auto* loop_block = continuing_block->FindFirstParent<sem::LoopBlockStatement>(); |
| if (loop_block->FirstContinue()) { |
| auto& decls = loop_block->Decls(); |
| // If our identifier is in loop_block->decls, make sure its index is |
| // less than first_continue |
| auto iter = std::find_if(decls.begin(), decls.end(), |
| [&symbol](auto* v) { return v->symbol == symbol; }); |
| if (iter != decls.end()) { |
| auto var_decl_index = |
| static_cast<size_t>(std::distance(decls.begin(), iter)); |
| if (var_decl_index >= loop_block->NumDeclsAtFirstContinue()) { |
| AddError("continue statement bypasses declaration of '" + |
| builder_->Symbols().NameFor(symbol) + "'", |
| loop_block->FirstContinue()->source); |
| AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + |
| "' declared here", |
| (*iter)->source); |
| AddNote("identifier '" + builder_->Symbols().NameFor(symbol) + |
| "' referenced in continuing block here", |
| expr->source); |
| return nullptr; |
| } |
| } |
| } |
| } |
| } |
| |
| if (current_function_) { |
| if (auto* global = var->As<sem::GlobalVariable>()) { |
| current_function_->AddDirectlyReferencedGlobal(global); |
| } |
| } |
| |
| var->AddUser(user); |
| return user; |
| } |
| |
| if (Is<sem::Function>(resolved)) { |
| AddError("missing '(' for function call", expr->source.End()); |
| return nullptr; |
| } |
| |
| if (IsBuiltin(symbol)) { |
| AddError("missing '(' for builtin call", expr->source.End()); |
| return nullptr; |
| } |
| |
| if (resolved->Is<sem::Type>()) { |
| AddError("missing '(' for type constructor or cast", expr->source.End()); |
| return nullptr; |
| } |
| |
| TINT_ICE(Resolver, diagnostics_) |
| << expr->source << " unresolved identifier:\n" |
| << "resolved: " << (resolved ? resolved->TypeInfo().name : "<null>") << "\n" |
| << "name: " << builder_->Symbols().NameFor(symbol); |
| return nullptr; |
| } |
| |
| sem::Expression* Resolver::MemberAccessor(const ast::MemberAccessorExpression* expr) { |
| auto* structure = sem_.TypeOf(expr->structure); |
| auto* storage_ty = structure->UnwrapRef(); |
| auto* source_var = sem_.Get(expr->structure)->SourceVariable(); |
| |
| const sem::Type* ret = nullptr; |
| std::vector<uint32_t> swizzle; |
| |
| // Structure may be a side-effecting expression (e.g. function call). |
| auto* sem_structure = sem_.Get(expr->structure); |
| bool has_side_effects = sem_structure && sem_structure->HasSideEffects(); |
| |
| if (auto* str = storage_ty->As<sem::Struct>()) { |
| Mark(expr->member); |
| auto symbol = expr->member->symbol; |
| |
| const sem::StructMember* member = nullptr; |
| for (auto* m : str->Members()) { |
| if (m->Name() == symbol) { |
| ret = m->Type(); |
| member = m; |
| break; |
| } |
| } |
| |
| if (ret == nullptr) { |
| AddError("struct member " + builder_->Symbols().NameFor(symbol) + " not found", |
| expr->source); |
| return nullptr; |
| } |
| |
| // If we're extracting from a reference, we return a reference. |
| if (auto* ref = structure->As<sem::Reference>()) { |
| ret = builder_->create<sem::Reference>(ret, ref->StorageClass(), ref->Access()); |
| } |
| |
| return builder_->create<sem::StructMemberAccess>(expr, ret, current_statement_, member, |
| has_side_effects, source_var); |
| } |
| |
| if (auto* vec = storage_ty->As<sem::Vector>()) { |
| Mark(expr->member); |
| std::string s = builder_->Symbols().NameFor(expr->member->symbol); |
| auto size = s.size(); |
| swizzle.reserve(s.size()); |
| |
| for (auto c : s) { |
| switch (c) { |
| case 'x': |
| case 'r': |
| swizzle.emplace_back(0); |
| break; |
| case 'y': |
| case 'g': |
| swizzle.emplace_back(1); |
| break; |
| case 'z': |
| case 'b': |
| swizzle.emplace_back(2); |
| break; |
| case 'w': |
| case 'a': |
| swizzle.emplace_back(3); |
| break; |
| default: |
| AddError("invalid vector swizzle character", |
| expr->member->source.Begin() + swizzle.size()); |
| return nullptr; |
| } |
| |
| if (swizzle.back() >= vec->Width()) { |
| AddError("invalid vector swizzle member", expr->member->source); |
| return nullptr; |
| } |
| } |
| |
| if (size < 1 || size > 4) { |
| AddError("invalid vector swizzle size", expr->member->source); |
| return nullptr; |
| } |
| |
| // All characters are valid, check if they're being mixed |
| auto is_rgba = [](char c) { return c == 'r' || c == 'g' || c == 'b' || c == 'a'; }; |
| auto is_xyzw = [](char c) { return c == 'x' || c == 'y' || c == 'z' || c == 'w'; }; |
| if (!std::all_of(s.begin(), s.end(), is_rgba) && |
| !std::all_of(s.begin(), s.end(), is_xyzw)) { |
| AddError("invalid mixing of vector swizzle characters rgba with xyzw", |
| expr->member->source); |
| return nullptr; |
| } |
| |
| if (size == 1) { |
| // A single element swizzle is just the type of the vector. |
| ret = vec->type(); |
| // If we're extracting from a reference, we return a reference. |
| if (auto* ref = structure->As<sem::Reference>()) { |
| ret = builder_->create<sem::Reference>(ret, ref->StorageClass(), ref->Access()); |
| } |
| } else { |
| // The vector will have a number of components equal to the length of |
| // the swizzle. |
| ret = builder_->create<sem::Vector>(vec->type(), static_cast<uint32_t>(size)); |
| } |
| return builder_->create<sem::Swizzle>(expr, ret, current_statement_, std::move(swizzle), |
| has_side_effects, source_var); |
| } |
| |
| AddError("invalid member accessor expression. Expected vector or struct, got '" + |
| sem_.TypeNameOf(storage_ty) + "'", |
| expr->structure->source); |
| return nullptr; |
| } |
| |
| sem::Expression* Resolver::Binary(const ast::BinaryExpression* expr) { |
| const auto* lhs = sem_.Get(expr->lhs); |
| const auto* rhs = sem_.Get(expr->rhs); |
| auto* lhs_ty = lhs->Type()->UnwrapRef(); |
| auto* rhs_ty = rhs->Type()->UnwrapRef(); |
| |
| auto op = intrinsic_table_->Lookup(expr->op, lhs_ty, rhs_ty, expr->source, false); |
| if (!op.result) { |
| return nullptr; |
| } |
| if (ShouldMaterializeArgument(op.lhs)) { |
| lhs = Materialize(lhs, op.lhs); |
| if (!lhs) { |
| return nullptr; |
| } |
| } |
| if (ShouldMaterializeArgument(op.rhs)) { |
| rhs = Materialize(rhs, op.rhs); |
| if (!rhs) { |
| return nullptr; |
| } |
| } |
| |
| auto val = EvaluateConstantValue(expr, op.result); |
| bool has_side_effects = lhs->HasSideEffects() || rhs->HasSideEffects(); |
| auto* sem = builder_->create<sem::Expression>(expr, op.result, current_statement_, |
| std::move(val), has_side_effects); |
| sem->Behaviors() = lhs->Behaviors() + rhs->Behaviors(); |
| |
| return sem; |
| } |
| |
| sem::Expression* Resolver::UnaryOp(const ast::UnaryOpExpression* unary) { |
| const auto* expr = sem_.Get(unary->expr); |
| auto* expr_ty = expr->Type(); |
| if (!expr_ty) { |
| return nullptr; |
| } |
| |
| const sem::Type* ty = nullptr; |
| const sem::Variable* source_var = nullptr; |
| |
| switch (unary->op) { |
| case ast::UnaryOp::kAddressOf: |
| if (auto* ref = expr_ty->As<sem::Reference>()) { |
| if (ref->StoreType()->UnwrapRef()->is_handle()) { |
| AddError("cannot take the address of expression in handle storage class", |
| unary->expr->source); |
| return nullptr; |
| } |
| |
| auto* array = unary->expr->As<ast::IndexAccessorExpression>(); |
| auto* member = unary->expr->As<ast::MemberAccessorExpression>(); |
| if ((array && sem_.TypeOf(array->object)->UnwrapRef()->Is<sem::Vector>()) || |
| (member && sem_.TypeOf(member->structure)->UnwrapRef()->Is<sem::Vector>())) { |
| AddError("cannot take the address of a vector component", unary->expr->source); |
| return nullptr; |
| } |
| |
| ty = builder_->create<sem::Pointer>(ref->StoreType(), ref->StorageClass(), |
| ref->Access()); |
| |
| source_var = expr->SourceVariable(); |
| } else { |
| AddError("cannot take the address of expression", unary->expr->source); |
| return nullptr; |
| } |
| break; |
| |
| case ast::UnaryOp::kIndirection: |
| if (auto* ptr = expr_ty->As<sem::Pointer>()) { |
| ty = builder_->create<sem::Reference>(ptr->StoreType(), ptr->StorageClass(), |
| ptr->Access()); |
| source_var = expr->SourceVariable(); |
| } else { |
| AddError("cannot dereference expression of type '" + sem_.TypeNameOf(expr_ty) + "'", |
| unary->expr->source); |
| return nullptr; |
| } |
| break; |
| |
| default: { |
| auto op = intrinsic_table_->Lookup(unary->op, expr_ty, unary->source); |
| if (!op.result) { |
| return nullptr; |
| } |
| if (ShouldMaterializeArgument(op.parameter)) { |
| expr = Materialize(expr, op.parameter); |
| if (!expr) { |
| return nullptr; |
| } |
| } |
| ty = op.result; |
| break; |
| } |
| } |
| |
| auto val = EvaluateConstantValue(unary, ty); |
| auto* sem = builder_->create<sem::Expression>(unary, ty, current_statement_, std::move(val), |
| expr->HasSideEffects(), source_var); |
| sem->Behaviors() = expr->Behaviors(); |
| return sem; |
| } |
| |
| bool Resolver::Enable(const ast::Enable* enable) { |
| enabled_extensions_.add(enable->extension); |
| return true; |
| } |
| |
| sem::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) { |
| sem::Type* result = nullptr; |
| if (auto* alias = named_type->As<ast::Alias>()) { |
| result = Alias(alias); |
| } else if (auto* str = named_type->As<ast::Struct>()) { |
| result = Structure(str); |
| } else { |
| TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled TypeDecl"; |
| } |
| |
| if (!result) { |
| return nullptr; |
| } |
| |
| builder_->Sem().Add(named_type, result); |
| return result; |
| } |
| |
| sem::Array* Resolver::Array(const ast::Array* arr) { |
| auto source = arr->source; |
| |
| auto* elem_type = Type(arr->type); |
| if (!elem_type) { |
| return nullptr; |
| } |
| |
| if (!validator_.IsPlain(elem_type)) { // Check must come before GetDefaultAlignAndSize() |
| AddError(sem_.TypeNameOf(elem_type) + " cannot be used as an element type of an array", |
| source); |
| return nullptr; |
| } |
| |
| uint32_t el_align = elem_type->Align(); |
| uint32_t el_size = elem_type->Size(); |
| |
| if (!validator_.NoDuplicateAttributes(arr->attributes)) { |
| return nullptr; |
| } |
| |
| // Look for explicit stride via @stride(n) attribute |
| uint32_t explicit_stride = 0; |
| for (auto* attr : arr->attributes) { |
| Mark(attr); |
| if (auto* sd = attr->As<ast::StrideAttribute>()) { |
| explicit_stride = sd->stride; |
| if (!validator_.ArrayStrideAttribute(sd, el_size, el_align, source)) { |
| return nullptr; |
| } |
| continue; |
| } |
| |
| AddError("attribute is not valid for array types", attr->source); |
| return nullptr; |
| } |
| |
| // Calculate implicit stride |
| uint64_t implicit_stride = utils::RoundUp<uint64_t>(el_align, el_size); |
| |
| uint64_t stride = explicit_stride ? explicit_stride : implicit_stride; |
| |
| // Evaluate the constant array size expression. |
| // sem::Array uses a size of 0 for a runtime-sized array. |
| uint32_t count = 0; |
| if (auto* count_expr = arr->count) { |
| const auto* count_sem = Materialize(Expression(count_expr)); |
| if (!count_sem) { |
| return nullptr; |
| } |
| |
| auto size_source = count_expr->source; |
| |
| auto* ty = count_sem->Type()->UnwrapRef(); |
| if (!ty->is_integer_scalar()) { |
| AddError("array size must be integer scalar", size_source); |
| return nullptr; |
| } |
| |
| constexpr const char* kErrInvalidExpr = |
| "array size identifier must be a literal or a module-scope 'let'"; |
| |
| if (auto* ident = count_expr->As<ast::IdentifierExpression>()) { |
| // Make sure the identifier is a non-overridable module-scope 'let'. |
| auto* global = sem_.ResolvedSymbol<sem::GlobalVariable>(ident); |
| if (!global || !global->Declaration()->Is<ast::Let>()) { |
| AddError(kErrInvalidExpr, size_source); |
| return nullptr; |
| } |
| count_expr = global->Declaration()->constructor; |
| } else if (!count_expr->Is<ast::LiteralExpression>()) { |
| AddError(kErrInvalidExpr, size_source); |
| return nullptr; |
| } |
| |
| auto count_val = count_sem->ConstantValue(); |
| if (!count_val) { |
| TINT_ICE(Resolver, diagnostics_) << "could not resolve array size expression"; |
| return nullptr; |
| } |
| |
| if (count_val.Element<AInt>(0).value < 1) { |
| AddError("array size must be at least 1", size_source); |
| return nullptr; |
| } |
| |
| count = count_val.Element<uint32_t>(0); |
| } |
| |
| auto size = std::max<uint64_t>(count, 1) * stride; |
| if (size > std::numeric_limits<uint32_t>::max()) { |
| std::stringstream msg; |
| msg << "array size in bytes must not exceed 0x" << std::hex |
| << std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex << size; |
| AddError(msg.str(), arr->source); |
| return nullptr; |
| } |
| if (stride > std::numeric_limits<uint32_t>::max() || |
| implicit_stride > std::numeric_limits<uint32_t>::max()) { |
| TINT_ICE(Resolver, diagnostics_) << "calculated array stride exceeds uint32"; |
| return nullptr; |
| } |
| auto* out = builder_->create<sem::Array>( |
| elem_type, count, el_align, static_cast<uint32_t>(size), static_cast<uint32_t>(stride), |
| static_cast<uint32_t>(implicit_stride)); |
| |
| if (!validator_.Array(out, source)) { |
| return nullptr; |
| } |
| |
| if (elem_type->Is<sem::Atomic>()) { |
| atomic_composite_info_.emplace(out, arr->type->source); |
| } else { |
| auto found = atomic_composite_info_.find(elem_type); |
| if (found != atomic_composite_info_.end()) { |
| atomic_composite_info_.emplace(out, found->second); |
| } |
| } |
| |
| return out; |
| } |
| |
| sem::Type* Resolver::Alias(const ast::Alias* alias) { |
| auto* ty = Type(alias->type); |
| if (!ty) { |
| return nullptr; |
| } |
| if (!validator_.Alias(alias)) { |
| return nullptr; |
| } |
| return ty; |
| } |
| |
| sem::Struct* Resolver::Structure(const ast::Struct* str) { |
| if (!validator_.NoDuplicateAttributes(str->attributes)) { |
| return nullptr; |
| } |
| for (auto* attr : str->attributes) { |
| Mark(attr); |
| } |
| |
| sem::StructMemberList sem_members; |
| sem_members.reserve(str->members.size()); |
| |
| // Calculate the effective size and alignment of each field, and the overall |
| // size of the structure. |
| // For size, use the size attribute if provided, otherwise use the default |
| // size for the type. |
| // For alignment, use the alignment attribute if provided, otherwise use the |
| // default alignment for the member type. |
| // Diagnostic errors are raised if a basic rule is violated. |
| // Validation of storage-class rules requires analysing the actual variable |
| // usage of the structure, and so is performed as part of the variable |
| // validation. |
| uint64_t struct_size = 0; |
| uint64_t struct_align = 1; |
| std::unordered_map<Symbol, const ast::StructMember*> member_map; |
| |
| for (auto* member : str->members) { |
| Mark(member); |
| auto result = member_map.emplace(member->symbol, member); |
| if (!result.second) { |
| AddError("redefinition of '" + builder_->Symbols().NameFor(member->symbol) + "'", |
| member->source); |
| AddNote("previous definition is here", result.first->second->source); |
| return nullptr; |
| } |
| |
| // Resolve member type |
| auto* type = Type(member->type); |
| if (!type) { |
| return nullptr; |
| } |
| |
| // validator_.Validate member type |
| if (!validator_.IsPlain(type)) { |
| AddError(sem_.TypeNameOf(type) + " cannot be used as the type of a structure member", |
| member->source); |
| return nullptr; |
| } |
| |
| uint64_t offset = struct_size; |
| uint64_t align = type->Align(); |
| uint64_t size = type->Size(); |
| |
| if (!validator_.NoDuplicateAttributes(member->attributes)) { |
| return nullptr; |
| } |
| |
| bool has_offset_attr = false; |
| bool has_align_attr = false; |
| bool has_size_attr = false; |
| for (auto* attr : member->attributes) { |
| Mark(attr); |
| if (auto* o = attr->As<ast::StructMemberOffsetAttribute>()) { |
| // Offset attributes are not part of the WGSL spec, but are emitted |
| // by the SPIR-V reader. |
| if (o->offset < struct_size) { |
| AddError("offsets must be in ascending order", o->source); |
| return nullptr; |
| } |
| offset = o->offset; |
| align = 1; |
| has_offset_attr = true; |
| } else if (auto* a = attr->As<ast::StructMemberAlignAttribute>()) { |
| if (a->align <= 0 || !utils::IsPowerOfTwo(a->align)) { |
| AddError("align value must be a positive, power-of-two integer", a->source); |
| return nullptr; |
| } |
| align = a->align; |
| has_align_attr = true; |
| } else if (auto* s = attr->As<ast::StructMemberSizeAttribute>()) { |
| if (s->size < size) { |
| AddError("size must be at least as big as the type's size (" + |
| std::to_string(size) + ")", |
| s->source); |
| return nullptr; |
| } |
| size = s->size; |
| has_size_attr = true; |
| } |
| } |
| |
| if (has_offset_attr && (has_align_attr || has_size_attr)) { |
| AddError("offset attributes cannot be used with align or size attributes", |
| member->source); |
| return nullptr; |
| } |
| |
| offset = utils::RoundUp(align, offset); |
| if (offset > std::numeric_limits<uint32_t>::max()) { |
| std::stringstream msg; |
| msg << "struct member has byte offset 0x" << std::hex << offset |
| << ", but must not exceed 0x" << std::hex << std::numeric_limits<uint32_t>::max(); |
| AddError(msg.str(), member->source); |
| return nullptr; |
| } |
| |
| auto* sem_member = builder_->create<sem::StructMember>( |
| member, member->symbol, type, static_cast<uint32_t>(sem_members.size()), |
| static_cast<uint32_t>(offset), static_cast<uint32_t>(align), |
| static_cast<uint32_t>(size)); |
| builder_->Sem().Add(member, sem_member); |
| sem_members.emplace_back(sem_member); |
| |
| struct_size = offset + size; |
| struct_align = std::max(struct_align, align); |
| } |
| |
| uint64_t size_no_padding = struct_size; |
| struct_size = utils::RoundUp(struct_align, struct_size); |
| |
| if (struct_size > std::numeric_limits<uint32_t>::max()) { |
| std::stringstream msg; |
| msg << "struct size in bytes must not exceed 0x" << std::hex |
| << std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex << struct_size; |
| AddError(msg.str(), str->source); |
| return nullptr; |
| } |
| if (struct_align > std::numeric_limits<uint32_t>::max()) { |
| TINT_ICE(Resolver, diagnostics_) << "calculated struct stride exceeds uint32"; |
| return nullptr; |
| } |
| |
| auto* out = builder_->create<sem::Struct>( |
| str, str->name, sem_members, static_cast<uint32_t>(struct_align), |
| static_cast<uint32_t>(struct_size), static_cast<uint32_t>(size_no_padding)); |
| |
| for (size_t i = 0; i < sem_members.size(); i++) { |
| auto* mem_type = sem_members[i]->Type(); |
| if (mem_type->Is<sem::Atomic>()) { |
| atomic_composite_info_.emplace(out, sem_members[i]->Declaration()->source); |
| break; |
| } else { |
| auto found = atomic_composite_info_.find(mem_type); |
| if (found != atomic_composite_info_.end()) { |
| atomic_composite_info_.emplace(out, found->second); |
| break; |
| } |
| } |
| } |
| |
| auto stage = current_function_ ? current_function_->Declaration()->PipelineStage() |
| : ast::PipelineStage::kNone; |
| if (!validator_.Structure(out, stage)) { |
| return nullptr; |
| } |
| |
| return out; |
| } |
| |
| sem::Statement* Resolver::ReturnStatement(const ast::ReturnStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = current_statement_->Behaviors(); |
| behaviors = sem::Behavior::kReturn; |
| |
| const sem::Type* value_ty = nullptr; |
| if (auto* value = stmt->value) { |
| const auto* expr = Expression(value); |
| if (!expr) { |
| return false; |
| } |
| if (auto* ret_ty = current_function_->ReturnType(); !ret_ty->Is<sem::Void>()) { |
| expr = Materialize(expr, ret_ty); |
| if (!expr) { |
| return false; |
| } |
| } |
| behaviors.Add(expr->Behaviors() - sem::Behavior::kNext); |
| value_ty = expr->Type()->UnwrapRef(); |
| } else { |
| value_ty = builder_->create<sem::Void>(); |
| } |
| |
| // Validate after processing the return value expression so that its type |
| // is available for validation. |
| return validator_.Return(stmt, current_function_->ReturnType(), value_ty, |
| current_statement_); |
| }); |
| } |
| |
| sem::SwitchStatement* Resolver::SwitchStatement(const ast::SwitchStatement* stmt) { |
| auto* sem = builder_->create<sem::SwitchStatement>(stmt, current_compound_statement_, |
| current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto& behaviors = sem->Behaviors(); |
| |
| const auto* cond = Expression(stmt->condition); |
| if (!cond) { |
| return false; |
| } |
| behaviors = cond->Behaviors() - sem::Behavior::kNext; |
| |
| auto* cond_ty = cond->Type()->UnwrapRef(); |
| |
| utils::UniqueVector<const sem::Type*> types; |
| types.add(cond_ty); |
| |
| std::vector<sem::CaseStatement*> cases; |
| cases.reserve(stmt->body.size()); |
| for (auto* case_stmt : stmt->body) { |
| Mark(case_stmt); |
| auto* c = CaseStatement(case_stmt); |
| if (!c) { |
| return false; |
| } |
| for (auto* expr : c->Selectors()) { |
| types.add(expr->Type()->UnwrapRef()); |
| } |
| cases.emplace_back(c); |
| behaviors.Add(c->Behaviors()); |
| sem->Cases().emplace_back(c); |
| } |
| |
| // Determine the common type across all selectors and the switch expression |
| // This must materialize to an integer scalar (non-abstract). |
| auto* common_ty = sem::Type::Common(types.data(), types.size()); |
| if (!common_ty || !common_ty->is_integer_scalar()) { |
| // No common type found or the common type was abstract. |
| // Pick i32 and let validation deal with any mismatches. |
| common_ty = builder_->create<sem::I32>(); |
| } |
| cond = Materialize(cond, common_ty); |
| if (!cond) { |
| return false; |
| } |
| for (auto* c : cases) { |
| for (auto*& sel : c->Selectors()) { // Note: pointer reference |
| sel = Materialize(sel, common_ty); |
| if (!sel) { |
| return false; |
| } |
| } |
| } |
| |
| if (behaviors.Contains(sem::Behavior::kBreak)) { |
| behaviors.Add(sem::Behavior::kNext); |
| } |
| behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kFallthrough); |
| |
| return validator_.SwitchStatement(stmt); |
| }); |
| } |
| |
| sem::Statement* Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| Mark(stmt->variable); |
| |
| auto* variable = Variable(stmt->variable, /* is_global */ false); |
| if (!variable) { |
| return false; |
| } |
| |
| for (auto* attr : stmt->variable->attributes) { |
| Mark(attr); |
| if (!attr->Is<ast::InternalAttribute>()) { |
| AddError("attributes are not valid on local variables", attr->source); |
| return false; |
| } |
| } |
| |
| if (current_block_) { // Not all statements are inside a block |
| current_block_->AddDecl(stmt->variable); |
| } |
| |
| if (auto* ctor = variable->Constructor()) { |
| sem->Behaviors() = ctor->Behaviors(); |
| } |
| |
| return validator_.Variable(variable); |
| }); |
| } |
| |
| sem::Statement* Resolver::AssignmentStatement(const ast::AssignmentStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| auto* lhs = Expression(stmt->lhs); |
| if (!lhs) { |
| return false; |
| } |
| |
| const bool is_phony_assignment = stmt->lhs->Is<ast::PhonyExpression>(); |
| |
| const auto* rhs = Expression(stmt->rhs); |
| if (!rhs) { |
| return false; |
| } |
| |
| if (!is_phony_assignment) { |
| rhs = Materialize(rhs, lhs->Type()->UnwrapRef()); |
| if (!rhs) { |
| return false; |
| } |
| } |
| |
| auto& behaviors = sem->Behaviors(); |
| behaviors = rhs->Behaviors(); |
| if (!is_phony_assignment) { |
| behaviors.Add(lhs->Behaviors()); |
| } |
| |
| return validator_.Assignment(stmt, sem_.TypeOf(stmt->rhs)); |
| }); |
| } |
| |
| sem::Statement* Resolver::BreakStatement(const ast::BreakStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| sem->Behaviors() = sem::Behavior::kBreak; |
| |
| return validator_.BreakStatement(sem, current_statement_); |
| }); |
| } |
| |
| sem::Statement* Resolver::CallStatement(const ast::CallStatement* stmt) { |
| auto* sem = |
| builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_); |
| return StatementScope(stmt, sem, [&] { |
| if (auto* expr = Expression(stmt->expr)) { |
| sem->Behaviors() = expr->Behaviors(); |
| return true |