| // Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/tint/lang/wgsl/resolver/resolver.h" |
| |
| #include <tuple> |
| |
| #include "gmock/gmock.h" |
| #include "gtest/gtest-spi.h" |
| #include "src/tint/lang/core/builtin_value.h" |
| #include "src/tint/lang/core/type/reference.h" |
| #include "src/tint/lang/core/type/sampled_texture.h" |
| #include "src/tint/lang/core/type/texture_dimension.h" |
| #include "src/tint/lang/wgsl/ast/assignment_statement.h" |
| #include "src/tint/lang/wgsl/ast/bitcast_expression.h" |
| #include "src/tint/lang/wgsl/ast/break_statement.h" |
| #include "src/tint/lang/wgsl/ast/builtin_texture_helper_test.h" |
| #include "src/tint/lang/wgsl/ast/call_statement.h" |
| #include "src/tint/lang/wgsl/ast/continue_statement.h" |
| #include "src/tint/lang/wgsl/ast/float_literal_expression.h" |
| #include "src/tint/lang/wgsl/ast/id_attribute.h" |
| #include "src/tint/lang/wgsl/ast/if_statement.h" |
| #include "src/tint/lang/wgsl/ast/loop_statement.h" |
| #include "src/tint/lang/wgsl/ast/return_statement.h" |
| #include "src/tint/lang/wgsl/ast/stage_attribute.h" |
| #include "src/tint/lang/wgsl/ast/switch_statement.h" |
| #include "src/tint/lang/wgsl/ast/unary_op_expression.h" |
| #include "src/tint/lang/wgsl/ast/variable_decl_statement.h" |
| #include "src/tint/lang/wgsl/ast/workgroup_attribute.h" |
| #include "src/tint/lang/wgsl/resolver/resolver_helper_test.h" |
| #include "src/tint/lang/wgsl/sem/array.h" |
| #include "src/tint/lang/wgsl/sem/call.h" |
| #include "src/tint/lang/wgsl/sem/function.h" |
| #include "src/tint/lang/wgsl/sem/member_accessor_expression.h" |
| #include "src/tint/lang/wgsl/sem/module.h" |
| #include "src/tint/lang/wgsl/sem/statement.h" |
| #include "src/tint/lang/wgsl/sem/switch_statement.h" |
| #include "src/tint/lang/wgsl/sem/variable.h" |
| #include "src/tint/utils/text/string_stream.h" |
| |
| namespace tint::resolver { |
| namespace { |
| |
| using ::testing::ElementsAre; |
| using ::testing::HasSubstr; |
| |
| using namespace tint::core::fluent_types; // NOLINT |
| using namespace tint::core::number_suffixes; // NOLINT |
| |
| // Helpers and typedefs |
| template <typename T> |
| using DataType = builder::DataType<T>; |
| template <typename T, int ID = 0> |
| using alias = builder::alias<T, ID>; |
| template <typename T> |
| using alias1 = builder::alias1<T>; |
| template <typename T> |
| using alias2 = builder::alias2<T>; |
| template <typename T> |
| using alias3 = builder::alias3<T>; |
| using Op = core::BinaryOp; |
| |
| TEST_F(ResolverTest, Stmt_Assign) { |
| auto* v = Var("v", ty.f32()); |
| auto* lhs = Expr("v"); |
| auto* rhs = Expr(2.3_f); |
| |
| auto* assign = Assign(lhs, rhs); |
| WrapInFunction(v, assign); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(lhs), nullptr); |
| ASSERT_NE(TypeOf(rhs), nullptr); |
| |
| EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_TRUE(TypeOf(rhs)->Is<core::type::F32>()); |
| EXPECT_EQ(StmtOf(lhs), assign); |
| EXPECT_EQ(StmtOf(rhs), assign); |
| } |
| |
| TEST_F(ResolverTest, Stmt_Case) { |
| auto* v = Var("v", ty.f32()); |
| auto* lhs = Expr("v"); |
| auto* rhs = Expr(2.3_f); |
| |
| auto* assign = Assign(lhs, rhs); |
| auto* block = Block(assign); |
| auto* sel = CaseSelector(3_i); |
| auto* cse = Case(sel, block); |
| auto* def = DefaultCase(); |
| auto* cond_var = Var("c", ty.i32()); |
| auto* sw = Switch(cond_var, cse, def); |
| WrapInFunction(v, cond_var, sw); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(lhs), nullptr); |
| ASSERT_NE(TypeOf(rhs), nullptr); |
| EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_TRUE(TypeOf(rhs)->Is<core::type::F32>()); |
| EXPECT_EQ(StmtOf(lhs), assign); |
| EXPECT_EQ(StmtOf(rhs), assign); |
| EXPECT_EQ(BlockOf(assign), block); |
| auto* sem = Sem().Get(sw); |
| ASSERT_EQ(sem->Cases().size(), 2u); |
| EXPECT_EQ(sem->Cases()[0]->Declaration(), cse); |
| ASSERT_EQ(sem->Cases()[0]->Selectors().size(), 1u); |
| EXPECT_EQ(sem->Cases()[1]->Selectors().size(), 1u); |
| } |
| |
| TEST_F(ResolverTest, Stmt_Case_AddressOf_Invalid) { |
| auto* cond_var = Var("i", ty.i32()); |
| WrapInFunction(cond_var, Switch("i", Case(CaseSelector(AddressOf(1_a)), Block()))); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "error: cannot take the address of expression"); |
| } |
| |
| TEST_F(ResolverTest, Stmt_Block) { |
| auto* v = Var("v", ty.f32()); |
| auto* lhs = Expr("v"); |
| auto* rhs = Expr(2.3_f); |
| |
| auto* assign = Assign(lhs, rhs); |
| auto* block = Block(assign); |
| WrapInFunction(v, block); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(lhs), nullptr); |
| ASSERT_NE(TypeOf(rhs), nullptr); |
| EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_TRUE(TypeOf(rhs)->Is<core::type::F32>()); |
| EXPECT_EQ(StmtOf(lhs), assign); |
| EXPECT_EQ(StmtOf(rhs), assign); |
| EXPECT_EQ(BlockOf(lhs), block); |
| EXPECT_EQ(BlockOf(rhs), block); |
| EXPECT_EQ(BlockOf(assign), block); |
| } |
| |
| TEST_F(ResolverTest, Stmt_If) { |
| auto* v = Var("v", ty.f32()); |
| auto* else_lhs = Expr("v"); |
| auto* else_rhs = Expr(2.3_f); |
| |
| auto* else_body = Block(Assign(else_lhs, else_rhs)); |
| |
| auto* else_cond = Expr(true); |
| auto* else_stmt = If(else_cond, else_body); |
| |
| auto* lhs = Expr("v"); |
| auto* rhs = Expr(2.3_f); |
| |
| auto* assign = Assign(lhs, rhs); |
| auto* body = Block(assign); |
| auto* cond = Expr(true); |
| auto* stmt = If(cond, body, Else(else_stmt)); |
| WrapInFunction(v, stmt); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(stmt->condition), nullptr); |
| ASSERT_NE(TypeOf(else_lhs), nullptr); |
| ASSERT_NE(TypeOf(else_rhs), nullptr); |
| ASSERT_NE(TypeOf(lhs), nullptr); |
| ASSERT_NE(TypeOf(rhs), nullptr); |
| EXPECT_TRUE(TypeOf(stmt->condition)->Is<core::type::Bool>()); |
| EXPECT_TRUE(TypeOf(else_lhs)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_TRUE(TypeOf(else_rhs)->Is<core::type::F32>()); |
| EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_TRUE(TypeOf(rhs)->Is<core::type::F32>()); |
| EXPECT_EQ(StmtOf(lhs), assign); |
| EXPECT_EQ(StmtOf(rhs), assign); |
| EXPECT_EQ(StmtOf(cond), stmt); |
| EXPECT_EQ(StmtOf(else_cond), else_stmt); |
| EXPECT_EQ(BlockOf(lhs), body); |
| EXPECT_EQ(BlockOf(rhs), body); |
| EXPECT_EQ(BlockOf(else_lhs), else_body); |
| EXPECT_EQ(BlockOf(else_rhs), else_body); |
| } |
| |
| TEST_F(ResolverTest, Stmt_Loop) { |
| auto* v = Var("v", ty.f32()); |
| auto* body_lhs = Expr("v"); |
| auto* body_rhs = Expr(2.3_f); |
| |
| auto* body = Block(Assign(body_lhs, body_rhs), Break()); |
| auto* continuing_lhs = Expr("v"); |
| auto* continuing_rhs = Expr(2.3_f); |
| |
| auto* break_if = BreakIf(false); |
| auto* continuing = Block(Assign(continuing_lhs, continuing_rhs), break_if); |
| auto* stmt = Loop(body, continuing); |
| WrapInFunction(v, stmt); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(body_lhs), nullptr); |
| ASSERT_NE(TypeOf(body_rhs), nullptr); |
| ASSERT_NE(TypeOf(continuing_lhs), nullptr); |
| ASSERT_NE(TypeOf(continuing_rhs), nullptr); |
| EXPECT_TRUE(TypeOf(body_lhs)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_TRUE(TypeOf(body_rhs)->Is<core::type::F32>()); |
| EXPECT_TRUE(TypeOf(continuing_lhs)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_TRUE(TypeOf(continuing_rhs)->Is<core::type::F32>()); |
| EXPECT_EQ(BlockOf(body_lhs), body); |
| EXPECT_EQ(BlockOf(body_rhs), body); |
| EXPECT_EQ(BlockOf(continuing_lhs), continuing); |
| EXPECT_EQ(BlockOf(continuing_rhs), continuing); |
| EXPECT_EQ(BlockOf(break_if), continuing); |
| } |
| |
| TEST_F(ResolverTest, Stmt_Return) { |
| auto* cond = Expr(2_i); |
| |
| auto* ret = Return(cond); |
| Func("test", tint::Empty, ty.i32(), Vector{ret}, tint::Empty); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(cond), nullptr); |
| EXPECT_TRUE(TypeOf(cond)->Is<core::type::I32>()); |
| } |
| |
| TEST_F(ResolverTest, Stmt_Return_WithoutValue) { |
| auto* ret = Return(); |
| WrapInFunction(ret); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, Stmt_Switch) { |
| auto* v = Var("v", ty.f32()); |
| auto* lhs = Expr("v"); |
| auto* rhs = Expr(2.3_f); |
| auto* case_block = Block(Assign(lhs, rhs)); |
| auto* stmt = Switch(Expr(2_i), Case(CaseSelector(3_i), case_block), DefaultCase()); |
| WrapInFunction(v, stmt); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(stmt->condition), nullptr); |
| ASSERT_NE(TypeOf(lhs), nullptr); |
| ASSERT_NE(TypeOf(rhs), nullptr); |
| |
| EXPECT_TRUE(TypeOf(stmt->condition)->Is<core::type::I32>()); |
| EXPECT_TRUE(TypeOf(lhs)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_TRUE(TypeOf(rhs)->Is<core::type::F32>()); |
| EXPECT_EQ(BlockOf(lhs), case_block); |
| EXPECT_EQ(BlockOf(rhs), case_block); |
| } |
| |
| TEST_F(ResolverTest, Stmt_Call) { |
| Func("my_func", tint::Empty, ty.void_(), |
| Vector{ |
| Return(), |
| }); |
| |
| auto* expr = Call("my_func"); |
| |
| auto* call = CallStmt(expr); |
| WrapInFunction(call); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(expr), nullptr); |
| EXPECT_TRUE(TypeOf(expr)->Is<core::type::Void>()); |
| EXPECT_EQ(StmtOf(expr), call); |
| } |
| |
| TEST_F(ResolverTest, Stmt_VariableDecl) { |
| auto* var = Var("my_var", ty.i32(), Expr(2_i)); |
| auto* init = var->initializer; |
| |
| auto* decl = Decl(var); |
| WrapInFunction(decl); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(init), nullptr); |
| EXPECT_TRUE(TypeOf(init)->Is<core::type::I32>()); |
| } |
| |
| TEST_F(ResolverTest, Stmt_VariableDecl_Alias) { |
| auto* my_int = Alias("MyInt", ty.i32()); |
| auto* var = Var("my_var", ty.Of(my_int), Expr(2_i)); |
| auto* init = var->initializer; |
| |
| auto* decl = Decl(var); |
| WrapInFunction(decl); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(init), nullptr); |
| EXPECT_TRUE(TypeOf(init)->Is<core::type::I32>()); |
| } |
| |
| TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScope) { |
| auto* init = Expr(2_i); |
| GlobalVar("my_var", ty.i32(), core::AddressSpace::kPrivate, init); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(init), nullptr); |
| EXPECT_TRUE(TypeOf(init)->Is<core::type::I32>()); |
| EXPECT_EQ(StmtOf(init), nullptr); |
| } |
| |
| TEST_F(ResolverTest, Stmt_VariableDecl_OuterScopeAfterInnerScope) { |
| // fn func_i32() { |
| // { |
| // var foo : i32 = 2; |
| // var bar : i32 = foo; |
| // } |
| // var foo : f32 = 2.0; |
| // var bar : f32 = foo; |
| // } |
| |
| // Declare i32 "foo" inside a block |
| auto* foo_i32 = Var("foo", ty.i32(), Expr(2_i)); |
| auto* foo_i32_init = foo_i32->initializer; |
| auto* foo_i32_decl = Decl(foo_i32); |
| |
| // Reference "foo" inside the block |
| auto* bar_i32 = Var("bar", ty.i32(), Expr("foo")); |
| auto* bar_i32_init = bar_i32->initializer; |
| auto* bar_i32_decl = Decl(bar_i32); |
| |
| auto* inner = Block(foo_i32_decl, bar_i32_decl); |
| |
| // Declare f32 "foo" at function scope |
| auto* foo_f32 = Var("foo", ty.f32(), Expr(2_f)); |
| auto* foo_f32_init = foo_f32->initializer; |
| auto* foo_f32_decl = Decl(foo_f32); |
| |
| // Reference "foo" at function scope |
| auto* bar_f32 = Var("bar", ty.f32(), Expr("foo")); |
| auto* bar_f32_init = bar_f32->initializer; |
| auto* bar_f32_decl = Decl(bar_f32); |
| |
| Func("func", tint::Empty, ty.void_(), Vector{inner, foo_f32_decl, bar_f32_decl}); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| ASSERT_NE(TypeOf(foo_i32_init), nullptr); |
| EXPECT_TRUE(TypeOf(foo_i32_init)->Is<core::type::I32>()); |
| ASSERT_NE(TypeOf(foo_f32_init), nullptr); |
| EXPECT_TRUE(TypeOf(foo_f32_init)->Is<core::type::F32>()); |
| ASSERT_NE(TypeOf(bar_i32_init), nullptr); |
| EXPECT_TRUE(TypeOf(bar_i32_init)->UnwrapRef()->Is<core::type::I32>()); |
| ASSERT_NE(TypeOf(bar_f32_init), nullptr); |
| EXPECT_TRUE(TypeOf(bar_f32_init)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_EQ(StmtOf(foo_i32_init), foo_i32_decl); |
| EXPECT_EQ(StmtOf(bar_i32_init), bar_i32_decl); |
| EXPECT_EQ(StmtOf(foo_f32_init), foo_f32_decl); |
| EXPECT_EQ(StmtOf(bar_f32_init), bar_f32_decl); |
| EXPECT_TRUE(CheckVarUsers(foo_i32, Vector{bar_i32->initializer})); |
| EXPECT_TRUE(CheckVarUsers(foo_f32, Vector{bar_f32->initializer})); |
| ASSERT_NE(VarOf(bar_i32->initializer), nullptr); |
| EXPECT_EQ(VarOf(bar_i32->initializer)->Declaration(), foo_i32); |
| ASSERT_NE(VarOf(bar_f32->initializer), nullptr); |
| EXPECT_EQ(VarOf(bar_f32->initializer)->Declaration(), foo_f32); |
| } |
| |
| TEST_F(ResolverTest, Stmt_VariableDecl_ModuleScopeAfterFunctionScope) { |
| // fn func_i32() { |
| // var foo : i32 = 2; |
| // } |
| // var foo : f32 = 2.0; |
| // fn func_f32() { |
| // var bar : f32 = foo; |
| // } |
| |
| // Declare i32 "foo" inside a function |
| auto* fn_i32 = Var("foo", ty.i32(), Expr(2_i)); |
| auto* fn_i32_init = fn_i32->initializer; |
| auto* fn_i32_decl = Decl(fn_i32); |
| Func("func_i32", tint::Empty, ty.void_(), Vector{fn_i32_decl}); |
| |
| // Declare f32 "foo" at module scope |
| auto* mod_f32 = Var("foo", ty.f32(), core::AddressSpace::kPrivate, Expr(2_f)); |
| auto* mod_init = mod_f32->initializer; |
| AST().AddGlobalVariable(mod_f32); |
| |
| // Reference "foo" in another function |
| auto* fn_f32 = Var("bar", ty.f32(), Expr("foo")); |
| auto* fn_f32_init = fn_f32->initializer; |
| auto* fn_f32_decl = Decl(fn_f32); |
| Func("func_f32", tint::Empty, ty.void_(), Vector{fn_f32_decl}); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| ASSERT_NE(TypeOf(mod_init), nullptr); |
| EXPECT_TRUE(TypeOf(mod_init)->Is<core::type::F32>()); |
| ASSERT_NE(TypeOf(fn_i32_init), nullptr); |
| EXPECT_TRUE(TypeOf(fn_i32_init)->Is<core::type::I32>()); |
| ASSERT_NE(TypeOf(fn_f32_init), nullptr); |
| EXPECT_TRUE(TypeOf(fn_f32_init)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_EQ(StmtOf(fn_i32_init), fn_i32_decl); |
| EXPECT_EQ(StmtOf(mod_init), nullptr); |
| EXPECT_EQ(StmtOf(fn_f32_init), fn_f32_decl); |
| EXPECT_TRUE(CheckVarUsers(fn_i32, tint::Empty)); |
| EXPECT_TRUE(CheckVarUsers(mod_f32, Vector{fn_f32->initializer})); |
| ASSERT_NE(VarOf(fn_f32->initializer), nullptr); |
| EXPECT_EQ(VarOf(fn_f32->initializer)->Declaration(), mod_f32); |
| } |
| |
| TEST_F(ResolverTest, ArraySize_UnsignedLiteral) { |
| // var<private> a : array<f32, 10u>; |
| auto* a = GlobalVar("a", ty.array(ty.f32(), Expr(10_u)), core::AddressSpace::kPrivate); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(a), nullptr); |
| auto* ref = TypeOf(a)->As<core::type::Reference>(); |
| ASSERT_NE(ref, nullptr); |
| auto* ary = ref->StoreType()->As<sem::Array>(); |
| EXPECT_EQ(ary->Count(), create<core::type::ConstantArrayCount>(10u)); |
| } |
| |
| TEST_F(ResolverTest, ArraySize_SignedLiteral) { |
| // var<private> a : array<f32, 10i>; |
| auto* a = GlobalVar("a", ty.array(ty.f32(), Expr(10_i)), core::AddressSpace::kPrivate); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(a), nullptr); |
| auto* ref = TypeOf(a)->As<core::type::Reference>(); |
| ASSERT_NE(ref, nullptr); |
| auto* ary = ref->StoreType()->As<sem::Array>(); |
| EXPECT_EQ(ary->Count(), create<core::type::ConstantArrayCount>(10u)); |
| } |
| |
| TEST_F(ResolverTest, ArraySize_UnsignedConst) { |
| // const size = 10u; |
| // var<private> a : array<f32, size>; |
| GlobalConst("size", Expr(10_u)); |
| auto* a = GlobalVar("a", ty.array(ty.f32(), Expr("size")), core::AddressSpace::kPrivate); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(a), nullptr); |
| auto* ref = TypeOf(a)->As<core::type::Reference>(); |
| ASSERT_NE(ref, nullptr); |
| auto* ary = ref->StoreType()->As<sem::Array>(); |
| EXPECT_EQ(ary->Count(), create<core::type::ConstantArrayCount>(10u)); |
| } |
| |
| TEST_F(ResolverTest, ArraySize_SignedConst) { |
| // const size = 0; |
| // var<private> a : array<f32, size>; |
| GlobalConst("size", Expr(10_i)); |
| auto* a = GlobalVar("a", ty.array(ty.f32(), Expr("size")), core::AddressSpace::kPrivate); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(a), nullptr); |
| auto* ref = TypeOf(a)->As<core::type::Reference>(); |
| ASSERT_NE(ref, nullptr); |
| auto* ary = ref->StoreType()->As<sem::Array>(); |
| EXPECT_EQ(ary->Count(), create<core::type::ConstantArrayCount>(10u)); |
| } |
| |
| TEST_F(ResolverTest, ArraySize_NamedOverride) { |
| // override size = 10i; |
| // var<workgroup> a : array<f32, size>; |
| auto* override = Override("size", Expr(10_i)); |
| auto* a = GlobalVar("a", ty.array(ty.f32(), Expr("size")), core::AddressSpace::kWorkgroup); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(a), nullptr); |
| auto* ref = TypeOf(a)->As<core::type::Reference>(); |
| ASSERT_NE(ref, nullptr); |
| auto* ary = ref->StoreType()->As<sem::Array>(); |
| auto* sem_override = Sem().Get(override); |
| ASSERT_NE(sem_override, nullptr); |
| EXPECT_EQ(ary->Count(), create<sem::NamedOverrideArrayCount>(sem_override)); |
| } |
| |
| TEST_F(ResolverTest, ArraySize_NamedOverride_Equivalence) { |
| // override size = 10i; |
| // var<workgroup> a : array<f32, size>; |
| // var<workgroup> b : array<f32, size>; |
| auto* override = Override("size", Expr(10_i)); |
| auto* a = GlobalVar("a", ty.array(ty.f32(), Expr("size")), core::AddressSpace::kWorkgroup); |
| auto* b = GlobalVar("b", ty.array(ty.f32(), Expr("size")), core::AddressSpace::kWorkgroup); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(a), nullptr); |
| auto* ref_a = TypeOf(a)->As<core::type::Reference>(); |
| ASSERT_NE(ref_a, nullptr); |
| auto* ary_a = ref_a->StoreType()->As<sem::Array>(); |
| |
| ASSERT_NE(TypeOf(b), nullptr); |
| auto* ref_b = TypeOf(b)->As<core::type::Reference>(); |
| ASSERT_NE(ref_b, nullptr); |
| auto* ary_b = ref_b->StoreType()->As<sem::Array>(); |
| |
| auto* sem_override = Sem().Get(override); |
| ASSERT_NE(sem_override, nullptr); |
| EXPECT_EQ(ary_a->Count(), create<sem::NamedOverrideArrayCount>(sem_override)); |
| EXPECT_EQ(ary_b->Count(), create<sem::NamedOverrideArrayCount>(sem_override)); |
| EXPECT_EQ(ary_a, ary_b); |
| } |
| |
| TEST_F(ResolverTest, ArraySize_UnnamedOverride) { |
| // override size = 10i; |
| // var<workgroup> a : array<f32, size*2>; |
| auto* override = Override("size", Expr(10_i)); |
| auto* cnt = Mul("size", 2_a); |
| auto* a = GlobalVar("a", ty.array(ty.f32(), cnt), core::AddressSpace::kWorkgroup); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(a), nullptr); |
| auto* ref = TypeOf(a)->As<core::type::Reference>(); |
| ASSERT_NE(ref, nullptr); |
| auto* ary = ref->StoreType()->As<sem::Array>(); |
| auto* sem_override = Sem().Get(override); |
| ASSERT_NE(sem_override, nullptr); |
| EXPECT_EQ(ary->Count(), create<sem::UnnamedOverrideArrayCount>(Sem().Get(cnt))); |
| } |
| |
| TEST_F(ResolverTest, ArraySize_UnamedOverride_Equivalence) { |
| // override size = 10i; |
| // var<workgroup> a : array<f32, size>; |
| // var<workgroup> b : array<f32, size>; |
| auto* override = Override("size", Expr(10_i)); |
| auto* a_cnt = Mul("size", 2_a); |
| auto* b_cnt = Mul("size", 2_a); |
| auto* a = GlobalVar("a", ty.array(ty.f32(), a_cnt), core::AddressSpace::kWorkgroup); |
| auto* b = GlobalVar("b", ty.array(ty.f32(), b_cnt), core::AddressSpace::kWorkgroup); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(a), nullptr); |
| auto* ref_a = TypeOf(a)->As<core::type::Reference>(); |
| ASSERT_NE(ref_a, nullptr); |
| auto* ary_a = ref_a->StoreType()->As<sem::Array>(); |
| |
| ASSERT_NE(TypeOf(b), nullptr); |
| auto* ref_b = TypeOf(b)->As<core::type::Reference>(); |
| ASSERT_NE(ref_b, nullptr); |
| auto* ary_b = ref_b->StoreType()->As<sem::Array>(); |
| |
| auto* sem_override = Sem().Get(override); |
| ASSERT_NE(sem_override, nullptr); |
| EXPECT_EQ(ary_a->Count(), create<sem::UnnamedOverrideArrayCount>(Sem().Get(a_cnt))); |
| EXPECT_EQ(ary_b->Count(), create<sem::UnnamedOverrideArrayCount>(Sem().Get(b_cnt))); |
| EXPECT_NE(ary_a, ary_b); |
| } |
| |
| TEST_F(ResolverTest, Expr_Bitcast) { |
| GlobalVar("name", ty.f32(), core::AddressSpace::kPrivate); |
| |
| auto* bitcast = Bitcast<f32>(Expr("name")); |
| WrapInFunction(bitcast); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(bitcast), nullptr); |
| EXPECT_TRUE(TypeOf(bitcast)->Is<core::type::F32>()); |
| } |
| |
| TEST_F(ResolverTest, Expr_Call) { |
| Func("my_func", tint::Empty, ty.f32(), Vector{Return(0_f)}); |
| |
| auto* call = Call("my_func"); |
| WrapInFunction(call); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(call), nullptr); |
| EXPECT_TRUE(TypeOf(call)->Is<core::type::F32>()); |
| } |
| |
| TEST_F(ResolverTest, Expr_Call_InBinaryOp) { |
| Func("func", tint::Empty, ty.f32(), Vector{Return(0_f)}); |
| |
| auto* expr = Add(Call("func"), Call("func")); |
| WrapInFunction(expr); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(expr), nullptr); |
| EXPECT_TRUE(TypeOf(expr)->Is<core::type::F32>()); |
| } |
| |
| TEST_F(ResolverTest, Expr_Call_WithParams) { |
| Func("my_func", Vector{Param(Sym(), ty.f32())}, ty.f32(), |
| Vector{ |
| Return(1.2_f), |
| }); |
| |
| auto* param = Expr(2.4_f); |
| |
| auto* call = Call("my_func", param); |
| WrapInFunction(call); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(param), nullptr); |
| EXPECT_TRUE(TypeOf(param)->Is<core::type::F32>()); |
| } |
| |
| TEST_F(ResolverTest, Expr_Call_Builtin) { |
| auto* call = Call("round", 2.4_f); |
| WrapInFunction(call); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(call), nullptr); |
| EXPECT_TRUE(TypeOf(call)->Is<core::type::F32>()); |
| } |
| |
| TEST_F(ResolverTest, Expr_Cast) { |
| GlobalVar("name", ty.f32(), core::AddressSpace::kPrivate); |
| |
| auto* cast = Call<f32>("name"); |
| WrapInFunction(cast); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(cast), nullptr); |
| EXPECT_TRUE(TypeOf(cast)->Is<core::type::F32>()); |
| } |
| |
| TEST_F(ResolverTest, Expr_Initializer_Scalar) { |
| auto* s = Expr(1_f); |
| WrapInFunction(s); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(s), nullptr); |
| EXPECT_TRUE(TypeOf(s)->Is<core::type::F32>()); |
| } |
| |
| TEST_F(ResolverTest, Expr_Initializer_Type_Vec2) { |
| auto* tc = Call<vec2<f32>>(1_f, 1_f); |
| WrapInFunction(tc); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 2u); |
| } |
| |
| TEST_F(ResolverTest, Expr_Initializer_Type_Vec3) { |
| auto* tc = Call<vec3<f32>>(1_f, 1_f, 1_f); |
| WrapInFunction(tc); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 3u); |
| } |
| |
| TEST_F(ResolverTest, Expr_Initializer_Type_Vec4) { |
| auto* tc = Call<vec4<f32>>(1_f, 1_f, 1_f, 1_f); |
| WrapInFunction(tc); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(tc), nullptr); |
| ASSERT_TRUE(TypeOf(tc)->Is<core::type::Vector>()); |
| EXPECT_TRUE(TypeOf(tc)->As<core::type::Vector>()->type()->Is<core::type::F32>()); |
| EXPECT_EQ(TypeOf(tc)->As<core::type::Vector>()->Width(), 4u); |
| } |
| |
| TEST_F(ResolverTest, Expr_Identifier_GlobalVariable) { |
| auto* my_var = GlobalVar("my_var", ty.f32(), core::AddressSpace::kPrivate); |
| |
| auto* ident = Expr("my_var"); |
| WrapInFunction(ident); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(ident), nullptr); |
| EXPECT_TRUE(TypeOf(ident)->Is<core::type::F32>()); |
| EXPECT_TRUE(CheckVarUsers(my_var, Vector{ident})); |
| ASSERT_NE(VarOf(ident), nullptr); |
| EXPECT_EQ(VarOf(ident)->Declaration(), my_var); |
| } |
| |
| TEST_F(ResolverTest, Expr_Identifier_GlobalConst) { |
| auto* my_var = GlobalConst("my_var", ty.f32(), Call<f32>()); |
| |
| auto* ident = Expr("my_var"); |
| WrapInFunction(ident); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(ident), nullptr); |
| EXPECT_TRUE(TypeOf(ident)->Is<core::type::F32>()); |
| EXPECT_TRUE(CheckVarUsers(my_var, Vector{ident})); |
| ASSERT_NE(VarOf(ident), nullptr); |
| EXPECT_EQ(VarOf(ident)->Declaration(), my_var); |
| } |
| |
| TEST_F(ResolverTest, Expr_Identifier_FunctionVariable_Const) { |
| auto* my_var_a = Expr("my_var"); |
| auto* var = Let("my_var", ty.f32(), Call<f32>()); |
| auto* decl = Decl(Var("b", ty.f32(), my_var_a)); |
| |
| Func("my_func", tint::Empty, ty.void_(), |
| Vector{ |
| Decl(var), |
| decl, |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(my_var_a), nullptr); |
| EXPECT_TRUE(TypeOf(my_var_a)->Is<core::type::F32>()); |
| EXPECT_EQ(StmtOf(my_var_a), decl); |
| EXPECT_TRUE(CheckVarUsers(var, Vector{my_var_a})); |
| ASSERT_NE(VarOf(my_var_a), nullptr); |
| EXPECT_EQ(VarOf(my_var_a)->Declaration(), var); |
| } |
| |
| TEST_F(ResolverTest, IndexAccessor_Dynamic_Ref_F32) { |
| // var a : array<bool, 10u> = 0; |
| // var idx : f32 = f32(); |
| // var f : f32 = a[idx]; |
| auto* a = Var("a", ty.array<bool, 10>(), Call<array<bool, 10>>()); |
| auto* idx = Var("idx", ty.f32(), Call<f32>()); |
| auto* f = Var("f", ty.f32(), IndexAccessor("a", Expr(Source{{12, 34}}, idx))); |
| Func("my_func", tint::Empty, ty.void_(), |
| Vector{ |
| Decl(a), |
| Decl(idx), |
| Decl(f), |
| }); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: index must be of type 'i32' or 'u32', found: 'f32'"); |
| } |
| |
| TEST_F(ResolverTest, Expr_Identifier_FunctionVariable) { |
| auto* my_var_a = Expr("my_var"); |
| auto* my_var_b = Expr("my_var"); |
| auto* assign = Assign(my_var_a, my_var_b); |
| |
| auto* var = Var("my_var", ty.f32()); |
| |
| Func("my_func", tint::Empty, ty.void_(), |
| Vector{ |
| Decl(var), |
| assign, |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(my_var_a), nullptr); |
| ASSERT_TRUE(TypeOf(my_var_a)->Is<core::type::Reference>()); |
| EXPECT_TRUE(TypeOf(my_var_a)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_EQ(StmtOf(my_var_a), assign); |
| ASSERT_NE(TypeOf(my_var_b), nullptr); |
| EXPECT_TRUE(TypeOf(my_var_b)->Is<core::type::F32>()); |
| EXPECT_EQ(StmtOf(my_var_b), assign); |
| EXPECT_TRUE(CheckVarUsers(var, Vector{my_var_a, my_var_b})); |
| ASSERT_NE(VarOf(my_var_a), nullptr); |
| EXPECT_EQ(VarOf(my_var_a)->Declaration(), var); |
| ASSERT_NE(VarOf(my_var_b), nullptr); |
| EXPECT_EQ(VarOf(my_var_b)->Declaration(), var); |
| } |
| |
| TEST_F(ResolverTest, Expr_Identifier_Function_Ptr) { |
| auto* v = Expr("v"); |
| auto* p = Expr("p"); |
| auto* v_decl = Decl(Var("v", ty.f32())); |
| auto* p_decl = Decl(Let("p", ty.ptr<function, f32>(), AddressOf(v))); |
| auto* assign = Assign(Deref(p), 1.23_f); |
| Func("my_func", tint::Empty, ty.void_(), |
| Vector{ |
| v_decl, |
| p_decl, |
| assign, |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(v), nullptr); |
| ASSERT_TRUE(TypeOf(v)->Is<core::type::Reference>()); |
| EXPECT_TRUE(TypeOf(v)->UnwrapRef()->Is<core::type::F32>()); |
| EXPECT_EQ(StmtOf(v), p_decl); |
| ASSERT_NE(TypeOf(p), nullptr); |
| ASSERT_TRUE(TypeOf(p)->Is<core::type::Pointer>()); |
| EXPECT_TRUE(TypeOf(p)->UnwrapPtr()->Is<core::type::F32>()); |
| EXPECT_EQ(StmtOf(p), assign); |
| } |
| |
| TEST_F(ResolverTest, Expr_Call_Function) { |
| Func("my_func", tint::Empty, ty.f32(), |
| Vector{ |
| Return(0_f), |
| }); |
| |
| auto* call = Call("my_func"); |
| WrapInFunction(call); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(call), nullptr); |
| EXPECT_TRUE(TypeOf(call)->Is<core::type::F32>()); |
| } |
| |
| TEST_F(ResolverTest, Expr_Identifier_Unknown) { |
| auto* a = Expr("a"); |
| WrapInFunction(a); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| } |
| |
| TEST_F(ResolverTest, Function_Parameters) { |
| auto* param_a = Param("a", ty.f32()); |
| auto* param_b = Param("b", ty.i32()); |
| auto* param_c = Param("c", ty.u32()); |
| |
| auto* func = Func("my_func", |
| Vector{ |
| param_a, |
| param_b, |
| param_c, |
| }, |
| ty.void_(), tint::Empty); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| EXPECT_EQ(func_sem->Parameters().Length(), 3u); |
| EXPECT_TRUE(func_sem->Parameters()[0]->Type()->Is<core::type::F32>()); |
| EXPECT_TRUE(func_sem->Parameters()[1]->Type()->Is<core::type::I32>()); |
| EXPECT_TRUE(func_sem->Parameters()[2]->Type()->Is<core::type::U32>()); |
| EXPECT_EQ(func_sem->Parameters()[0]->Declaration(), param_a); |
| EXPECT_EQ(func_sem->Parameters()[1]->Declaration(), param_b); |
| EXPECT_EQ(func_sem->Parameters()[2]->Declaration(), param_c); |
| EXPECT_TRUE(func_sem->ReturnType()->Is<core::type::Void>()); |
| } |
| |
| TEST_F(ResolverTest, Function_Parameters_Locations) { |
| auto* param_a = Param("a", ty.f32(), Vector{Location(3_a)}); |
| auto* param_b = Param("b", ty.u32(), Vector{Builtin(core::BuiltinValue::kVertexIndex)}); |
| auto* param_c = Param("c", ty.u32(), Vector{Location(1_a)}); |
| |
| GlobalVar("my_vec", ty.vec4<f32>(), core::AddressSpace::kPrivate); |
| auto* func = Func("my_func", |
| Vector{ |
| param_a, |
| param_b, |
| param_c, |
| }, |
| ty.vec4<f32>(), |
| Vector{ |
| Return("my_vec"), |
| }, |
| Vector{ |
| Stage(ast::PipelineStage::kVertex), |
| }, |
| Vector{ |
| Builtin(core::BuiltinValue::kPosition), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| EXPECT_EQ(func_sem->Parameters().Length(), 3u); |
| EXPECT_EQ(3u, func_sem->Parameters()[0]->Location()); |
| EXPECT_FALSE(func_sem->Parameters()[1]->Location().has_value()); |
| EXPECT_EQ(1u, func_sem->Parameters()[2]->Location()); |
| } |
| |
| TEST_F(ResolverTest, Function_GlobalVariable_Location) { |
| auto* var = |
| GlobalVar("my_vec", ty.vec4<f32>(), core::AddressSpace::kIn, |
| Vector{Location(3_a), Disable(ast::DisabledValidation::kIgnoreAddressSpace)}); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* sem = Sem().Get<sem::GlobalVariable>(var); |
| ASSERT_NE(sem, nullptr); |
| EXPECT_EQ(3u, sem->Location()); |
| } |
| |
| TEST_F(ResolverTest, Function_RegisterInputOutputVariables) { |
| auto* s = Structure("S", Vector{Member("m", ty.u32())}); |
| |
| auto* sb_var = GlobalVar("sb_var", ty.Of(s), core::AddressSpace::kStorage, |
| core::Access::kReadWrite, Binding(0_a), Group(0_a)); |
| auto* wg_var = GlobalVar("wg_var", ty.f32(), core::AddressSpace::kWorkgroup); |
| auto* priv_var = GlobalVar("priv_var", ty.f32(), core::AddressSpace::kPrivate); |
| |
| auto* func = Func("my_func", tint::Empty, ty.void_(), |
| Vector{ |
| Assign("wg_var", "wg_var"), |
| Assign("sb_var", "sb_var"), |
| Assign("priv_var", "priv_var"), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| EXPECT_EQ(func_sem->Parameters().Length(), 0u); |
| EXPECT_TRUE(func_sem->ReturnType()->Is<core::type::Void>()); |
| |
| const auto& vars = func_sem->TransitivelyReferencedGlobals(); |
| ASSERT_EQ(vars.Length(), 3u); |
| EXPECT_EQ(vars[0]->Declaration(), wg_var); |
| EXPECT_EQ(vars[1]->Declaration(), sb_var); |
| EXPECT_EQ(vars[2]->Declaration(), priv_var); |
| } |
| |
| TEST_F(ResolverTest, Function_ReturnType_Location) { |
| auto* func = Func("my_func", tint::Empty, ty.f32(), |
| Vector{ |
| Return(1_f), |
| }, |
| Vector{ |
| Stage(ast::PipelineStage::kFragment), |
| }, |
| Vector{ |
| Location(2_a), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* sem = Sem().Get(func); |
| ASSERT_NE(nullptr, sem); |
| EXPECT_EQ(2u, sem->ReturnLocation()); |
| } |
| |
| TEST_F(ResolverTest, Function_ReturnType_NoLocation) { |
| GlobalVar("my_vec", ty.vec4<f32>(), core::AddressSpace::kPrivate); |
| auto* func = Func("my_func", tint::Empty, ty.vec4<f32>(), |
| Vector{ |
| Return("my_vec"), |
| }, |
| Vector{ |
| Stage(ast::PipelineStage::kVertex), |
| }, |
| Vector{ |
| Builtin(core::BuiltinValue::kPosition), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* sem = Sem().Get(func); |
| ASSERT_NE(nullptr, sem); |
| EXPECT_FALSE(sem->ReturnLocation()); |
| } |
| |
| TEST_F(ResolverTest, Function_RegisterInputOutputVariables_SubFunction) { |
| auto* s = Structure("S", Vector{Member("m", ty.u32())}); |
| |
| auto* sb_var = GlobalVar("sb_var", ty.Of(s), core::AddressSpace::kStorage, |
| core::Access::kReadWrite, Binding(0_a), Group(0_a)); |
| auto* wg_var = GlobalVar("wg_var", ty.f32(), core::AddressSpace::kWorkgroup); |
| auto* priv_var = GlobalVar("priv_var", ty.f32(), core::AddressSpace::kPrivate); |
| |
| Func("my_func", tint::Empty, ty.f32(), |
| Vector{Assign("wg_var", "wg_var"), Assign("sb_var", "sb_var"), |
| Assign("priv_var", "priv_var"), Return(0_f)}); |
| |
| auto* func2 = Func("func", tint::Empty, ty.void_(), |
| Vector{ |
| WrapInStatement(Call("my_func")), |
| }, |
| tint::Empty); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func2_sem = Sem().Get(func2); |
| ASSERT_NE(func2_sem, nullptr); |
| EXPECT_EQ(func2_sem->Parameters().Length(), 0u); |
| |
| const auto& vars = func2_sem->TransitivelyReferencedGlobals(); |
| ASSERT_EQ(vars.Length(), 3u); |
| EXPECT_EQ(vars[0]->Declaration(), wg_var); |
| EXPECT_EQ(vars[1]->Declaration(), sb_var); |
| EXPECT_EQ(vars[2]->Declaration(), priv_var); |
| } |
| |
| TEST_F(ResolverTest, Function_NotRegisterFunctionVariable) { |
| auto* func = Func("my_func", tint::Empty, ty.void_(), |
| Vector{ |
| Decl(Var("var", ty.f32())), |
| Assign("var", 1_f), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| |
| EXPECT_EQ(func_sem->TransitivelyReferencedGlobals().Length(), 0u); |
| EXPECT_TRUE(func_sem->ReturnType()->Is<core::type::Void>()); |
| } |
| |
| TEST_F(ResolverTest, Function_NotRegisterFunctionConstant) { |
| auto* func = Func("my_func", tint::Empty, ty.void_(), |
| Vector{ |
| Decl(Let("var", ty.f32(), Call<f32>())), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| |
| EXPECT_EQ(func_sem->TransitivelyReferencedGlobals().Length(), 0u); |
| EXPECT_TRUE(func_sem->ReturnType()->Is<core::type::Void>()); |
| } |
| |
| TEST_F(ResolverTest, Function_NotRegisterFunctionParams) { |
| auto* func = Func("my_func", Vector{Param("var", ty.f32())}, ty.void_(), tint::Empty); |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| |
| EXPECT_EQ(func_sem->TransitivelyReferencedGlobals().Length(), 0u); |
| EXPECT_TRUE(func_sem->ReturnType()->Is<core::type::Void>()); |
| } |
| |
| TEST_F(ResolverTest, Function_CallSites) { |
| auto* foo = Func("foo", tint::Empty, ty.void_(), tint::Empty); |
| |
| auto* call_1 = Call("foo"); |
| auto* call_2 = Call("foo"); |
| auto* bar = Func("bar", tint::Empty, ty.void_(), |
| Vector{ |
| CallStmt(call_1), |
| CallStmt(call_2), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* foo_sem = Sem().Get(foo); |
| ASSERT_NE(foo_sem, nullptr); |
| ASSERT_EQ(foo_sem->CallSites().size(), 2u); |
| EXPECT_EQ(foo_sem->CallSites()[0]->Declaration(), call_1); |
| EXPECT_EQ(foo_sem->CallSites()[1]->Declaration(), call_2); |
| |
| auto* bar_sem = Sem().Get(bar); |
| ASSERT_NE(bar_sem, nullptr); |
| EXPECT_EQ(bar_sem->CallSites().size(), 0u); |
| } |
| |
| TEST_F(ResolverTest, Function_WorkgroupSize_NotSet) { |
| // @compute @workgroup_size(1) |
| // fn main() {} |
| auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| |
| EXPECT_EQ(func_sem->WorkgroupSize()[0], 1u); |
| EXPECT_EQ(func_sem->WorkgroupSize()[1], 1u); |
| EXPECT_EQ(func_sem->WorkgroupSize()[2], 1u); |
| } |
| |
| TEST_F(ResolverTest, Function_WorkgroupSize_Literals) { |
| // @compute @workgroup_size(8, 2, 3) |
| // fn main() {} |
| auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty, |
| Vector{ |
| Stage(ast::PipelineStage::kCompute), |
| WorkgroupSize(8_i, 2_i, 3_i), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| |
| EXPECT_EQ(func_sem->WorkgroupSize()[0], 8u); |
| EXPECT_EQ(func_sem->WorkgroupSize()[1], 2u); |
| EXPECT_EQ(func_sem->WorkgroupSize()[2], 3u); |
| } |
| |
| TEST_F(ResolverTest, Function_WorkgroupSize_ViaConst) { |
| // const width = 16i; |
| // const height = 8i; |
| // const depth = 2i; |
| // @compute @workgroup_size(width, height, depth) |
| // fn main() {} |
| GlobalConst("width", ty.i32(), Expr(16_i)); |
| GlobalConst("height", ty.i32(), Expr(8_i)); |
| GlobalConst("depth", ty.i32(), Expr(2_i)); |
| auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty, |
| Vector{ |
| Stage(ast::PipelineStage::kCompute), |
| WorkgroupSize("width", "height", "depth"), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| |
| EXPECT_EQ(func_sem->WorkgroupSize()[0], 16u); |
| EXPECT_EQ(func_sem->WorkgroupSize()[1], 8u); |
| EXPECT_EQ(func_sem->WorkgroupSize()[2], 2u); |
| } |
| |
| TEST_F(ResolverTest, Function_WorkgroupSize_ViaConst_NestedInitializer) { |
| // const width = i32(i32(i32(8i))); |
| // const height = i32(i32(i32(4i))); |
| // @compute @workgroup_size(width, height) |
| // fn main() {} |
| GlobalConst("width", ty.i32(), Call<i32>(Call<i32>(Call<i32>(8_i)))); |
| GlobalConst("height", ty.i32(), Call<i32>(Call<i32>(Call<i32>(4_i)))); |
| auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty, |
| Vector{ |
| Stage(ast::PipelineStage::kCompute), |
| WorkgroupSize("width", "height"), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| |
| EXPECT_EQ(func_sem->WorkgroupSize()[0], 8u); |
| EXPECT_EQ(func_sem->WorkgroupSize()[1], 4u); |
| EXPECT_EQ(func_sem->WorkgroupSize()[2], 1u); |
| } |
| |
| TEST_F(ResolverTest, Function_WorkgroupSize_OverridableConsts) { |
| // @id(0) override width = 16i; |
| // @id(1) override height = 8i; |
| // @id(2) override depth = 2i; |
| // @compute @workgroup_size(width, height, depth) |
| // fn main() {} |
| Override("width", ty.i32(), Expr(16_i), Id(0_a)); |
| Override("height", ty.i32(), Expr(8_i), Id(1_a)); |
| Override("depth", ty.i32(), Expr(2_i), Id(2_a)); |
| auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty, |
| Vector{ |
| Stage(ast::PipelineStage::kCompute), |
| WorkgroupSize("width", "height", "depth"), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| |
| EXPECT_EQ(func_sem->WorkgroupSize()[0], std::nullopt); |
| EXPECT_EQ(func_sem->WorkgroupSize()[1], std::nullopt); |
| EXPECT_EQ(func_sem->WorkgroupSize()[2], std::nullopt); |
| } |
| |
| TEST_F(ResolverTest, Function_WorkgroupSize_OverridableConsts_NoInit) { |
| // @id(0) override width : i32; |
| // @id(1) override height : i32; |
| // @id(2) override depth : i32; |
| // @compute @workgroup_size(width, height, depth) |
| // fn main() {} |
| Override("width", ty.i32(), Id(0_a)); |
| Override("height", ty.i32(), Id(1_a)); |
| Override("depth", ty.i32(), Id(2_a)); |
| auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty, |
| Vector{ |
| Stage(ast::PipelineStage::kCompute), |
| WorkgroupSize("width", "height", "depth"), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| |
| EXPECT_EQ(func_sem->WorkgroupSize()[0], std::nullopt); |
| EXPECT_EQ(func_sem->WorkgroupSize()[1], std::nullopt); |
| EXPECT_EQ(func_sem->WorkgroupSize()[2], std::nullopt); |
| } |
| |
| TEST_F(ResolverTest, Function_WorkgroupSize_Mixed) { |
| // @id(1) override height = 2i; |
| // const depth = 3i; |
| // @compute @workgroup_size(8, height, depth) |
| // fn main() {} |
| Override("height", ty.i32(), Expr(2_i), Id(0_a)); |
| GlobalConst("depth", ty.i32(), Expr(3_i)); |
| auto* func = Func("main", tint::Empty, ty.void_(), tint::Empty, |
| Vector{ |
| Stage(ast::PipelineStage::kCompute), |
| WorkgroupSize(8_i, "height", "depth"), |
| }); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_sem = Sem().Get(func); |
| ASSERT_NE(func_sem, nullptr); |
| |
| EXPECT_EQ(func_sem->WorkgroupSize()[0], 8u); |
| EXPECT_EQ(func_sem->WorkgroupSize()[1], std::nullopt); |
| EXPECT_EQ(func_sem->WorkgroupSize()[2], 3u); |
| } |
| |
| TEST_F(ResolverTest, Expr_MemberAccessor_Type) { |
| auto* mem = MemberAccessor(Ident(Source{{12, 34}}, "f32"), "member"); |
| WrapInFunction(mem); |
| |
| EXPECT_FALSE(r()->Resolve()) << r()->error(); |
| EXPECT_EQ(r()->error(), R"(12:34 error: cannot use type 'f32' as value |
| 12:34 note: are you missing '()'?)"); |
| } |
| |
| TEST_F(ResolverTest, Expr_MemberAccessor_Struct) { |
| auto* st = |
| Structure("S", Vector{Member("first_member", ty.i32()), Member("second_member", ty.f32())}); |
| GlobalVar("my_struct", ty.Of(st), core::AddressSpace::kPrivate); |
| |
| auto* mem = MemberAccessor("my_struct", "second_member"); |
| WrapInFunction(mem); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(mem), nullptr); |
| EXPECT_TRUE(TypeOf(mem)->Is<core::type::F32>()); |
| auto* sma = Sem().Get(mem)->UnwrapLoad()->As<sem::StructMemberAccess>(); |
| ASSERT_NE(sma, nullptr); |
| EXPECT_TRUE(sma->Member()->Type()->Is<core::type::F32>()); |
| EXPECT_EQ(sma->Object()->Declaration(), mem->object); |
| EXPECT_EQ(sma->Member()->Index(), 1u); |
| EXPECT_EQ(sma->Member()->Name().Name(), "second_member"); |
| } |
| |
| TEST_F(ResolverTest, Expr_MemberAccessor_Struct_Alias) { |
| auto* st = |
| Structure("S", Vector{Member("first_member", ty.i32()), Member("second_member", ty.f32())}); |
| auto* alias = Alias("alias", ty.Of(st)); |
| GlobalVar("my_struct", ty.Of(alias), core::AddressSpace::kPrivate); |
| |
| auto* mem = MemberAccessor("my_struct", "second_member"); |
| WrapInFunction(mem); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(mem), nullptr); |
| EXPECT_TRUE(TypeOf(mem)->Is<core::type::F32>()); |
| auto* sma = Sem().Get(mem)->UnwrapLoad()->As<sem::StructMemberAccess>(); |
| ASSERT_NE(sma, nullptr); |
| EXPECT_EQ(sma->Object()->Declaration(), mem->object); |
| EXPECT_TRUE(sma->Member()->Type()->Is<core::type::F32>()); |
| EXPECT_EQ(sma->Member()->Index(), 1u); |
| } |
| |
| TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle) { |
| GlobalVar("my_vec", ty.vec4<f32>(), core::AddressSpace::kPrivate); |
| |
| auto* mem = MemberAccessor("my_vec", "xzyw"); |
| WrapInFunction(mem); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(mem), nullptr); |
| ASSERT_TRUE(TypeOf(mem)->Is<core::type::Vector>()); |
| EXPECT_TRUE(TypeOf(mem)->As<core::type::Vector>()->type()->Is<core::type::F32>()); |
| EXPECT_EQ(TypeOf(mem)->As<core::type::Vector>()->Width(), 4u); |
| auto* sma = Sem().Get(mem)->As<sem::Swizzle>(); |
| ASSERT_NE(sma, nullptr); |
| EXPECT_EQ(sma->Object()->Declaration(), mem->object); |
| EXPECT_THAT(sma->Indices(), ElementsAre(0, 2, 1, 3)); |
| } |
| |
| TEST_F(ResolverTest, Expr_MemberAccessor_VectorSwizzle_SingleElement) { |
| GlobalVar("my_vec", ty.vec3<f32>(), core::AddressSpace::kPrivate); |
| |
| auto* mem = MemberAccessor("my_vec", "b"); |
| WrapInFunction(mem); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(mem), nullptr); |
| ASSERT_TRUE(TypeOf(mem)->Is<core::type::F32>()); |
| auto* sma = Sem().Get(mem)->UnwrapLoad()->As<sem::Swizzle>(); |
| ASSERT_NE(sma, nullptr); |
| EXPECT_EQ(sma->Object()->Declaration(), mem->object); |
| EXPECT_THAT(sma->Indices(), ElementsAre(2)); |
| } |
| |
| TEST_F(ResolverTest, Expr_Accessor_MultiLevel) { |
| // struct b { |
| // vec4<f32> foo |
| // } |
| // struct A { |
| // array<b, 3u> mem |
| // } |
| // var c : A |
| // c.mem[0].foo.yx |
| // -> vec2<f32> |
| // |
| // fn f() { |
| // c.mem[0].foo |
| // } |
| // |
| |
| auto* stB = Structure("B", Vector{Member("foo", ty.vec4<f32>())}); |
| auto* stA = Structure("A", Vector{Member("mem", ty.array(ty.Of(stB), 3_i))}); |
| GlobalVar("c", ty.Of(stA), core::AddressSpace::kPrivate); |
| |
| auto* mem = |
| MemberAccessor(MemberAccessor(IndexAccessor(MemberAccessor("c", "mem"), 0_i), "foo"), "yx"); |
| WrapInFunction(mem); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(mem), nullptr); |
| ASSERT_TRUE(TypeOf(mem)->Is<core::type::Vector>()); |
| EXPECT_TRUE(TypeOf(mem)->As<core::type::Vector>()->type()->Is<core::type::F32>()); |
| EXPECT_EQ(TypeOf(mem)->As<core::type::Vector>()->Width(), 2u); |
| ASSERT_TRUE(Sem().Get(mem)->Is<sem::Swizzle>()); |
| } |
| |
| TEST_F(ResolverTest, Expr_MemberAccessor_InBinaryOp) { |
| auto* st = |
| Structure("S", Vector{Member("first_member", ty.f32()), Member("second_member", ty.f32())}); |
| GlobalVar("my_struct", ty.Of(st), core::AddressSpace::kPrivate); |
| |
| auto* expr = Add(MemberAccessor("my_struct", "first_member"), |
| MemberAccessor("my_struct", "second_member")); |
| WrapInFunction(expr); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(expr), nullptr); |
| EXPECT_TRUE(TypeOf(expr)->Is<core::type::F32>()); |
| } |
| |
| namespace ExprBinaryTest { |
| |
| template <typename T, int ID> |
| struct Aliased { |
| using type = alias<T, ID>; |
| }; |
| |
| template <int N, typename T, int ID> |
| struct Aliased<vec<N, T>, ID> { |
| using type = vec<N, alias<T, ID>>; |
| }; |
| |
| template <int N, int M, typename T, int ID> |
| struct Aliased<mat<N, M, T>, ID> { |
| using type = mat<N, M, alias<T, ID>>; |
| }; |
| |
| struct Params { |
| core::BinaryOp op; |
| builder::ast_type_func_ptr create_lhs_type; |
| builder::ast_type_func_ptr create_rhs_type; |
| builder::ast_type_func_ptr create_lhs_alias_type; |
| builder::ast_type_func_ptr create_rhs_alias_type; |
| builder::sem_type_func_ptr create_result_type; |
| }; |
| |
| template <typename LHS, typename RHS, typename RES> |
| constexpr Params ParamsFor(core::BinaryOp op) { |
| return Params{op, |
| DataType<LHS>::AST, |
| DataType<RHS>::AST, |
| DataType<typename Aliased<LHS, 0>::type>::AST, |
| DataType<typename Aliased<RHS, 1>::type>::AST, |
| DataType<RES>::Sem}; |
| } |
| |
| static constexpr core::BinaryOp all_ops[] = { |
| core::BinaryOp::kAnd, |
| core::BinaryOp::kOr, |
| core::BinaryOp::kXor, |
| core::BinaryOp::kLogicalAnd, |
| core::BinaryOp::kLogicalOr, |
| core::BinaryOp::kEqual, |
| core::BinaryOp::kNotEqual, |
| core::BinaryOp::kLessThan, |
| core::BinaryOp::kGreaterThan, |
| core::BinaryOp::kLessThanEqual, |
| core::BinaryOp::kGreaterThanEqual, |
| core::BinaryOp::kShiftLeft, |
| core::BinaryOp::kShiftRight, |
| core::BinaryOp::kAdd, |
| core::BinaryOp::kSubtract, |
| core::BinaryOp::kMultiply, |
| core::BinaryOp::kDivide, |
| core::BinaryOp::kModulo, |
| }; |
| |
| static constexpr builder::ast_type_func_ptr all_create_type_funcs[] = { |
| DataType<bool>::AST, // |
| DataType<u32>::AST, // |
| DataType<i32>::AST, // |
| DataType<f32>::AST, // |
| DataType<vec3<bool>>::AST, // |
| DataType<vec3<i32>>::AST, // |
| DataType<vec3<u32>>::AST, // |
| DataType<vec3<f32>>::AST, // |
| DataType<mat3x3<f32>>::AST, // |
| DataType<mat2x3<f32>>::AST, // |
| DataType<mat3x2<f32>>::AST // |
| }; |
| |
| // A list of all valid test cases for 'lhs op rhs', except that for vecN and |
| // matNxN, we only test N=3. |
| static constexpr Params all_valid_cases[] = { |
| // Logical expressions |
| // https://gpuweb.github.io/gpuweb/wgsl.html#logical-expr |
| |
| // Binary logical expressions |
| ParamsFor<bool, bool, bool>(Op::kLogicalAnd), |
| ParamsFor<bool, bool, bool>(Op::kLogicalOr), |
| |
| ParamsFor<bool, bool, bool>(Op::kAnd), |
| ParamsFor<bool, bool, bool>(Op::kOr), |
| ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kAnd), |
| ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kOr), |
| |
| // Arithmetic expressions |
| // https://gpuweb.github.io/gpuweb/wgsl.html#arithmetic-expr |
| |
| // Binary arithmetic expressions over scalars |
| ParamsFor<i32, i32, i32>(Op::kAdd), |
| ParamsFor<i32, i32, i32>(Op::kSubtract), |
| ParamsFor<i32, i32, i32>(Op::kMultiply), |
| ParamsFor<i32, i32, i32>(Op::kDivide), |
| ParamsFor<i32, i32, i32>(Op::kModulo), |
| |
| ParamsFor<u32, u32, u32>(Op::kAdd), |
| ParamsFor<u32, u32, u32>(Op::kSubtract), |
| ParamsFor<u32, u32, u32>(Op::kMultiply), |
| ParamsFor<u32, u32, u32>(Op::kDivide), |
| ParamsFor<u32, u32, u32>(Op::kModulo), |
| |
| ParamsFor<f32, f32, f32>(Op::kAdd), |
| ParamsFor<f32, f32, f32>(Op::kSubtract), |
| ParamsFor<f32, f32, f32>(Op::kMultiply), |
| ParamsFor<f32, f32, f32>(Op::kDivide), |
| ParamsFor<f32, f32, f32>(Op::kModulo), |
| |
| // Binary arithmetic expressions over vectors |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kAdd), |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kSubtract), |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kMultiply), |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kDivide), |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kModulo), |
| |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kAdd), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kSubtract), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kMultiply), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kDivide), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kModulo), |
| |
| ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kAdd), |
| ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kSubtract), |
| ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kMultiply), |
| ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kDivide), |
| ParamsFor<vec3<f32>, vec3<f32>, vec3<f32>>(Op::kModulo), |
| |
| // Binary arithmetic expressions with mixed scalar and vector operands |
| ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kAdd), |
| ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kSubtract), |
| ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kMultiply), |
| ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kDivide), |
| ParamsFor<vec3<i32>, i32, vec3<i32>>(Op::kModulo), |
| |
| ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kAdd), |
| ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kSubtract), |
| ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kMultiply), |
| ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kDivide), |
| ParamsFor<i32, vec3<i32>, vec3<i32>>(Op::kModulo), |
| |
| ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kAdd), |
| ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kSubtract), |
| ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kMultiply), |
| ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kDivide), |
| ParamsFor<vec3<u32>, u32, vec3<u32>>(Op::kModulo), |
| |
| ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kAdd), |
| ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kSubtract), |
| ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kMultiply), |
| ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kDivide), |
| ParamsFor<u32, vec3<u32>, vec3<u32>>(Op::kModulo), |
| |
| ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kAdd), |
| ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kSubtract), |
| ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kMultiply), |
| ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kDivide), |
| ParamsFor<vec3<f32>, f32, vec3<f32>>(Op::kModulo), |
| |
| ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kAdd), |
| ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kSubtract), |
| ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kMultiply), |
| ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kDivide), |
| ParamsFor<f32, vec3<f32>, vec3<f32>>(Op::kModulo), |
| |
| // Matrix arithmetic |
| ParamsFor<mat2x3<f32>, f32, mat2x3<f32>>(Op::kMultiply), |
| ParamsFor<mat3x2<f32>, f32, mat3x2<f32>>(Op::kMultiply), |
| ParamsFor<mat3x3<f32>, f32, mat3x3<f32>>(Op::kMultiply), |
| |
| ParamsFor<f32, mat2x3<f32>, mat2x3<f32>>(Op::kMultiply), |
| ParamsFor<f32, mat3x2<f32>, mat3x2<f32>>(Op::kMultiply), |
| ParamsFor<f32, mat3x3<f32>, mat3x3<f32>>(Op::kMultiply), |
| |
| ParamsFor<vec3<f32>, mat2x3<f32>, vec2<f32>>(Op::kMultiply), |
| ParamsFor<vec2<f32>, mat3x2<f32>, vec3<f32>>(Op::kMultiply), |
| ParamsFor<vec3<f32>, mat3x3<f32>, vec3<f32>>(Op::kMultiply), |
| |
| ParamsFor<mat3x2<f32>, vec3<f32>, vec2<f32>>(Op::kMultiply), |
| ParamsFor<mat2x3<f32>, vec2<f32>, vec3<f32>>(Op::kMultiply), |
| ParamsFor<mat3x3<f32>, vec3<f32>, vec3<f32>>(Op::kMultiply), |
| |
| ParamsFor<mat2x3<f32>, mat3x2<f32>, mat3x3<f32>>(Op::kMultiply), |
| ParamsFor<mat3x2<f32>, mat2x3<f32>, mat2x2<f32>>(Op::kMultiply), |
| ParamsFor<mat3x2<f32>, mat3x3<f32>, mat3x2<f32>>(Op::kMultiply), |
| ParamsFor<mat3x3<f32>, mat3x3<f32>, mat3x3<f32>>(Op::kMultiply), |
| ParamsFor<mat3x3<f32>, mat2x3<f32>, mat2x3<f32>>(Op::kMultiply), |
| |
| ParamsFor<mat2x3<f32>, mat2x3<f32>, mat2x3<f32>>(Op::kAdd), |
| ParamsFor<mat3x2<f32>, mat3x2<f32>, mat3x2<f32>>(Op::kAdd), |
| ParamsFor<mat3x3<f32>, mat3x3<f32>, mat3x3<f32>>(Op::kAdd), |
| |
| ParamsFor<mat2x3<f32>, mat2x3<f32>, mat2x3<f32>>(Op::kSubtract), |
| ParamsFor<mat3x2<f32>, mat3x2<f32>, mat3x2<f32>>(Op::kSubtract), |
| ParamsFor<mat3x3<f32>, mat3x3<f32>, mat3x3<f32>>(Op::kSubtract), |
| |
| // Comparison expressions |
| // https://gpuweb.github.io/gpuweb/wgsl.html#comparison-expr |
| |
| // Comparisons over scalars |
| ParamsFor<bool, bool, bool>(Op::kEqual), |
| ParamsFor<bool, bool, bool>(Op::kNotEqual), |
| |
| ParamsFor<i32, i32, bool>(Op::kEqual), |
| ParamsFor<i32, i32, bool>(Op::kNotEqual), |
| ParamsFor<i32, i32, bool>(Op::kLessThan), |
| ParamsFor<i32, i32, bool>(Op::kLessThanEqual), |
| ParamsFor<i32, i32, bool>(Op::kGreaterThan), |
| ParamsFor<i32, i32, bool>(Op::kGreaterThanEqual), |
| |
| ParamsFor<u32, u32, bool>(Op::kEqual), |
| ParamsFor<u32, u32, bool>(Op::kNotEqual), |
| ParamsFor<u32, u32, bool>(Op::kLessThan), |
| ParamsFor<u32, u32, bool>(Op::kLessThanEqual), |
| ParamsFor<u32, u32, bool>(Op::kGreaterThan), |
| ParamsFor<u32, u32, bool>(Op::kGreaterThanEqual), |
| |
| ParamsFor<f32, f32, bool>(Op::kEqual), |
| ParamsFor<f32, f32, bool>(Op::kNotEqual), |
| ParamsFor<f32, f32, bool>(Op::kLessThan), |
| ParamsFor<f32, f32, bool>(Op::kLessThanEqual), |
| ParamsFor<f32, f32, bool>(Op::kGreaterThan), |
| ParamsFor<f32, f32, bool>(Op::kGreaterThanEqual), |
| |
| // Comparisons over vectors |
| ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kEqual), |
| ParamsFor<vec3<bool>, vec3<bool>, vec3<bool>>(Op::kNotEqual), |
| |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kEqual), |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kNotEqual), |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kLessThan), |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kLessThanEqual), |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kGreaterThan), |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<bool>>(Op::kGreaterThanEqual), |
| |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kEqual), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kNotEqual), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kLessThan), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kLessThanEqual), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kGreaterThan), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<bool>>(Op::kGreaterThanEqual), |
| |
| ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kEqual), |
| ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kNotEqual), |
| ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kLessThan), |
| ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kLessThanEqual), |
| ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kGreaterThan), |
| ParamsFor<vec3<f32>, vec3<f32>, vec3<bool>>(Op::kGreaterThanEqual), |
| |
| // Binary bitwise operations |
| ParamsFor<i32, i32, i32>(Op::kOr), |
| ParamsFor<i32, i32, i32>(Op::kAnd), |
| ParamsFor<i32, i32, i32>(Op::kXor), |
| |
| ParamsFor<u32, u32, u32>(Op::kOr), |
| ParamsFor<u32, u32, u32>(Op::kAnd), |
| ParamsFor<u32, u32, u32>(Op::kXor), |
| |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kOr), |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kAnd), |
| ParamsFor<vec3<i32>, vec3<i32>, vec3<i32>>(Op::kXor), |
| |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kOr), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kAnd), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kXor), |
| |
| // Bit shift expressions |
| ParamsFor<i32, u32, i32>(Op::kShiftLeft), |
| ParamsFor<vec3<i32>, vec3<u32>, vec3<i32>>(Op::kShiftLeft), |
| |
| ParamsFor<u32, u32, u32>(Op::kShiftLeft), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kShiftLeft), |
| |
| ParamsFor<i32, u32, i32>(Op::kShiftRight), |
| ParamsFor<vec3<i32>, vec3<u32>, vec3<i32>>(Op::kShiftRight), |
| |
| ParamsFor<u32, u32, u32>(Op::kShiftRight), |
| ParamsFor<vec3<u32>, vec3<u32>, vec3<u32>>(Op::kShiftRight), |
| }; |
| |
| using Expr_Binary_Test_Valid = ResolverTestWithParam<Params>; |
| TEST_P(Expr_Binary_Test_Valid, All) { |
| auto& params = GetParam(); |
| |
| ast::Type lhs_type = params.create_lhs_type(*this); |
| ast::Type rhs_type = params.create_rhs_type(*this); |
| auto* result_type = params.create_result_type(*this); |
| |
| StringStream ss; |
| ss << FriendlyName(lhs_type) << " " << params.op << " " << FriendlyName(rhs_type); |
| SCOPED_TRACE(ss.str()); |
| |
| GlobalVar("lhs", lhs_type, core::AddressSpace::kPrivate); |
| GlobalVar("rhs", rhs_type, core::AddressSpace::kPrivate); |
| |
| auto* expr = create<ast::BinaryExpression>(params.op, Expr("lhs"), Expr("rhs")); |
| WrapInFunction(expr); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| ASSERT_NE(TypeOf(expr), nullptr); |
| ASSERT_TRUE(TypeOf(expr) == result_type); |
| } |
| INSTANTIATE_TEST_SUITE_P(ResolverTest, Expr_Binary_Test_Valid, testing::ValuesIn(all_valid_cases)); |
| |
| enum class BinaryExprSide { Left, Right, Both }; |
| using Expr_Binary_Test_WithAlias_Valid = ResolverTestWithParam<std::tuple<Params, BinaryExprSide>>; |
| TEST_P(Expr_Binary_Test_WithAlias_Valid, All) { |
| const Params& params = std::get<0>(GetParam()); |
| BinaryExprSide side = std::get<1>(GetParam()); |
| |
| auto* create_lhs_type = (side == BinaryExprSide::Left || side == BinaryExprSide::Both) |
| ? params.create_lhs_alias_type |
| : params.create_lhs_type; |
| auto* create_rhs_type = (side == BinaryExprSide::Right || side == BinaryExprSide::Both) |
| ? params.create_rhs_alias_type |
| : params.create_rhs_type; |
| |
| ast::Type lhs_type = create_lhs_type(*this); |
| ast::Type rhs_type = create_rhs_type(*this); |
| |
| StringStream ss; |
| ss << FriendlyName(lhs_type) << " " << params.op << " " << FriendlyName(rhs_type); |
| |
| ss << ", After aliasing: " << FriendlyName(lhs_type) << " " << params.op << " " |
| << FriendlyName(rhs_type); |
| SCOPED_TRACE(ss.str()); |
| |
| GlobalVar("lhs", lhs_type, core::AddressSpace::kPrivate); |
| GlobalVar("rhs", rhs_type, core::AddressSpace::kPrivate); |
| |
| auto* expr = create<ast::BinaryExpression>(params.op, Expr("lhs"), Expr("rhs")); |
| WrapInFunction(expr); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| ASSERT_NE(TypeOf(expr), nullptr); |
| // TODO(amaiorano): Bring this back once we have a way to get the canonical |
| // type |
| // auto* *result_type = params.create_result_type(*this); |
| // ASSERT_TRUE(TypeOf(expr) == result_type); |
| } |
| INSTANTIATE_TEST_SUITE_P(ResolverTest, |
| Expr_Binary_Test_WithAlias_Valid, |
| testing::Combine(testing::ValuesIn(all_valid_cases), |
| testing::Values(BinaryExprSide::Left, |
| BinaryExprSide::Right, |
| BinaryExprSide::Both))); |
| |
| // This test works by taking the cartesian product of all possible |
| // (type * type * op), and processing only the triplets that are not found in |
| // the `all_valid_cases` table. |
| using Expr_Binary_Test_Invalid = ResolverTestWithParam< |
| std::tuple<builder::ast_type_func_ptr, builder::ast_type_func_ptr, core::BinaryOp>>; |
| TEST_P(Expr_Binary_Test_Invalid, All) { |
| const builder::ast_type_func_ptr& lhs_create_type_func = std::get<0>(GetParam()); |
| const builder::ast_type_func_ptr& rhs_create_type_func = std::get<1>(GetParam()); |
| const core::BinaryOp op = std::get<2>(GetParam()); |
| |
| // Skip if valid case |
| // TODO(amaiorano): replace linear lookup with O(1) if too slow |
| for (auto& c : all_valid_cases) { |
| if (c.create_lhs_type == lhs_create_type_func && |
| c.create_rhs_type == rhs_create_type_func && c.op == op) { |
| return; |
| } |
| } |
| |
| ast::Type lhs_type = lhs_create_type_func(*this); |
| ast::Type rhs_type = rhs_create_type_func(*this); |
| |
| StringStream ss; |
| ss << FriendlyName(lhs_type) << " " << op << " " << FriendlyName(rhs_type); |
| SCOPED_TRACE(ss.str()); |
| |
| GlobalVar("lhs", lhs_type, core::AddressSpace::kPrivate); |
| GlobalVar("rhs", rhs_type, core::AddressSpace::kPrivate); |
| |
| auto* expr = create<ast::BinaryExpression>(Source{{12, 34}}, op, Expr("lhs"), Expr("rhs")); |
| WrapInFunction(expr); |
| |
| ASSERT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching overload for operator ")); |
| } |
| INSTANTIATE_TEST_SUITE_P(ResolverTest, |
| Expr_Binary_Test_Invalid, |
| testing::Combine(testing::ValuesIn(all_create_type_funcs), |
| testing::ValuesIn(all_create_type_funcs), |
| testing::ValuesIn(all_ops))); |
| |
| using Expr_Binary_Test_Invalid_VectorMatrixMultiply = |
| ResolverTestWithParam<std::tuple<bool, uint32_t, uint32_t, uint32_t>>; |
| TEST_P(Expr_Binary_Test_Invalid_VectorMatrixMultiply, All) { |
| bool vec_by_mat = std::get<0>(GetParam()); |
| uint32_t vec_size = std::get<1>(GetParam()); |
| uint32_t mat_rows = std::get<2>(GetParam()); |
| uint32_t mat_cols = std::get<3>(GetParam()); |
| |
| ast::Type lhs_type; |
| ast::Type rhs_type; |
| const core::type::Type* result_type = nullptr; |
| bool is_valid_expr; |
| |
| if (vec_by_mat) { |
| lhs_type = ty.vec<f32>(vec_size); |
| rhs_type = ty.mat<f32>(mat_cols, mat_rows); |
| result_type = create<core::type::Vector>(create<core::type::F32>(), mat_cols); |
| is_valid_expr = vec_size == mat_rows; |
| } else { |
| lhs_type = ty.mat<f32>(mat_cols, mat_rows); |
| rhs_type = ty.vec<f32>(vec_size); |
| result_type = create<core::type::Vector>(create<core::type::F32>(), mat_rows); |
| is_valid_expr = vec_size == mat_cols; |
| } |
| |
| GlobalVar("lhs", lhs_type, core::AddressSpace::kPrivate); |
| GlobalVar("rhs", rhs_type, core::AddressSpace::kPrivate); |
| |
| auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs")); |
| WrapInFunction(expr); |
| |
| if (is_valid_expr) { |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| ASSERT_TRUE(TypeOf(expr) == result_type); |
| } else { |
| ASSERT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), HasSubstr("no matching overload for operator *")); |
| } |
| } |
| auto all_dimension_values = testing::Values(2u, 3u, 4u); |
| INSTANTIATE_TEST_SUITE_P(ResolverTest, |
| Expr_Binary_Test_Invalid_VectorMatrixMultiply, |
| testing::Combine(testing::Values(true, false), |
| all_dimension_values, |
| all_dimension_values, |
| all_dimension_values)); |
| |
| using Expr_Binary_Test_Invalid_MatrixMatrixMultiply = |
| ResolverTestWithParam<std::tuple<uint32_t, uint32_t, uint32_t, uint32_t>>; |
| TEST_P(Expr_Binary_Test_Invalid_MatrixMatrixMultiply, All) { |
| uint32_t lhs_mat_rows = std::get<0>(GetParam()); |
| uint32_t lhs_mat_cols = std::get<1>(GetParam()); |
| uint32_t rhs_mat_rows = std::get<2>(GetParam()); |
| uint32_t rhs_mat_cols = std::get<3>(GetParam()); |
| |
| auto lhs_type = ty.mat<f32>(lhs_mat_cols, lhs_mat_rows); |
| auto rhs_type = ty.mat<f32>(rhs_mat_cols, rhs_mat_rows); |
| |
| auto* f32 = create<core::type::F32>(); |
| auto* col = create<core::type::Vector>(f32, lhs_mat_rows); |
| auto* result_type = create<core::type::Matrix>(col, rhs_mat_cols); |
| |
| GlobalVar("lhs", lhs_type, core::AddressSpace::kPrivate); |
| GlobalVar("rhs", rhs_type, core::AddressSpace::kPrivate); |
| |
| auto* expr = Mul(Source{{12, 34}}, Expr("lhs"), Expr("rhs")); |
| WrapInFunction(expr); |
| |
| bool is_valid_expr = lhs_mat_cols == rhs_mat_rows; |
| if (is_valid_expr) { |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| ASSERT_TRUE(TypeOf(expr) == result_type); |
| } else { |
| ASSERT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), HasSubstr("12:34 error: no matching overload for operator * ")); |
| } |
| } |
| INSTANTIATE_TEST_SUITE_P(ResolverTest, |
| Expr_Binary_Test_Invalid_MatrixMatrixMultiply, |
| testing::Combine(all_dimension_values, |
| all_dimension_values, |
| all_dimension_values, |
| all_dimension_values)); |
| |
| } // namespace ExprBinaryTest |
| |
| using UnaryOpExpressionTest = ResolverTestWithParam<core::UnaryOp>; |
| TEST_P(UnaryOpExpressionTest, Expr_UnaryOp) { |
| auto op = GetParam(); |
| |
| if (op == core::UnaryOp::kNot) { |
| GlobalVar("ident", ty.vec4<bool>(), core::AddressSpace::kPrivate); |
| } else if (op == core::UnaryOp::kNegation || op == core::UnaryOp::kComplement) { |
| GlobalVar("ident", ty.vec4<i32>(), core::AddressSpace::kPrivate); |
| } else { |
| GlobalVar("ident", ty.vec4<f32>(), core::AddressSpace::kPrivate); |
| } |
| auto* der = create<ast::UnaryOpExpression>(op, Expr("ident")); |
| WrapInFunction(der); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(TypeOf(der), nullptr); |
| ASSERT_TRUE(TypeOf(der)->Is<core::type::Vector>()); |
| if (op == core::UnaryOp::kNot) { |
| EXPECT_TRUE(TypeOf(der)->As<core::type::Vector>()->type()->Is<core::type::Bool>()); |
| } else if (op == core::UnaryOp::kNegation || op == core::UnaryOp::kComplement) { |
| EXPECT_TRUE(TypeOf(der)->As<core::type::Vector>()->type()->Is<core::type::I32>()); |
| } else { |
| EXPECT_TRUE(TypeOf(der)->As<core::type::Vector>()->type()->Is<core::type::F32>()); |
| } |
| EXPECT_EQ(TypeOf(der)->As<core::type::Vector>()->Width(), 4u); |
| } |
| INSTANTIATE_TEST_SUITE_P(ResolverTest, |
| UnaryOpExpressionTest, |
| testing::Values(core::UnaryOp::kComplement, |
| core::UnaryOp::kNegation, |
| core::UnaryOp::kNot)); |
| |
| TEST_F(ResolverTest, AddressSpace_SetsIfMissing) { |
| auto* var = Var("var", ty.i32()); |
| |
| auto* stmt = Decl(var); |
| Func("func", tint::Empty, ty.void_(), Vector{stmt}); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| EXPECT_EQ(Sem().Get(var)->AddressSpace(), core::AddressSpace::kFunction); |
| } |
| |
| TEST_F(ResolverTest, AddressSpace_SetForSampler) { |
| auto t = ty.sampler(core::type::SamplerKind::kSampler); |
| auto* var = GlobalVar("var", t, Binding(0_a), Group(0_a)); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| EXPECT_EQ(Sem().Get(var)->AddressSpace(), core::AddressSpace::kHandle); |
| } |
| |
| TEST_F(ResolverTest, AddressSpace_SetForTexture) { |
| auto t = ty.sampled_texture(core::type::TextureDimension::k1d, ty.f32()); |
| auto* var = GlobalVar("var", t, Binding(0_a), Group(0_a)); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| EXPECT_EQ(Sem().Get(var)->AddressSpace(), core::AddressSpace::kHandle); |
| } |
| |
| TEST_F(ResolverTest, AddressSpace_DoesNotSetOnConst) { |
| auto* var = Let("var", ty.i32(), Call<i32>()); |
| auto* stmt = Decl(var); |
| Func("func", tint::Empty, ty.void_(), Vector{stmt}); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| EXPECT_EQ(Sem().Get(var)->AddressSpace(), core::AddressSpace::kUndefined); |
| } |
| |
| TEST_F(ResolverTest, Access_SetForStorageBuffer) { |
| // struct S { x : i32 }; |
| // var<storage> g : S; |
| auto* s = Structure("S", Vector{Member(Source{{12, 34}}, "x", ty.i32())}); |
| auto* var = GlobalVar(Source{{56, 78}}, "g", ty.Of(s), core::AddressSpace::kStorage, |
| Binding(0_a), Group(0_a)); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| EXPECT_EQ(Sem().Get(var)->Access(), core::Access::kRead); |
| } |
| |
| TEST_F(ResolverTest, BindingPoint_SetForResources) { |
| // @group(1) @binding(2) var s1 : sampler; |
| // @group(3) @binding(4) var s2 : sampler; |
| auto* s1 = |
| GlobalVar(Sym(), ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(2_a)); |
| auto* s2 = |
| GlobalVar(Sym(), ty.sampler(core::type::SamplerKind::kSampler), Group(3_a), Binding(4_a)); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| EXPECT_EQ(Sem().Get<sem::GlobalVariable>(s1)->BindingPoint(), (BindingPoint{1u, 2u})); |
| EXPECT_EQ(Sem().Get<sem::GlobalVariable>(s2)->BindingPoint(), (BindingPoint{3u, 4u})); |
| } |
| |
| TEST_F(ResolverTest, Function_EntryPoints_StageAttribute) { |
| // fn b() {} |
| // fn c() { b(); } |
| // fn a() { c(); } |
| // fn ep_1() { a(); b(); } |
| // fn ep_2() { c();} |
| // |
| // c -> {ep_1, ep_2} |
| // a -> {ep_1} |
| // b -> {ep_1, ep_2} |
| // ep_1 -> {} |
| // ep_2 -> {} |
| |
| GlobalVar("first", ty.f32(), core::AddressSpace::kPrivate); |
| GlobalVar("second", ty.f32(), core::AddressSpace::kPrivate); |
| GlobalVar("call_a", ty.f32(), core::AddressSpace::kPrivate); |
| GlobalVar("call_b", ty.f32(), core::AddressSpace::kPrivate); |
| GlobalVar("call_c", ty.f32(), core::AddressSpace::kPrivate); |
| |
| auto* func_b = Func("b", tint::Empty, ty.f32(), |
| Vector{ |
| Return(0_f), |
| }); |
| auto* func_c = Func("c", tint::Empty, ty.f32(), |
| Vector{ |
| Assign("second", Call("b")), |
| Return(0_f), |
| }); |
| |
| auto* func_a = Func("a", tint::Empty, ty.f32(), |
| Vector{ |
| Assign("first", Call("c")), |
| Return(0_f), |
| }); |
| |
| auto* ep_1 = Func("ep_1", tint::Empty, ty.void_(), |
| Vector{ |
| Assign("call_a", Call("a")), |
| Assign("call_b", Call("b")), |
| }, |
| Vector{ |
| Stage(ast::PipelineStage::kCompute), |
| WorkgroupSize(1_i), |
| }); |
| |
| auto* ep_2 = Func("ep_2", tint::Empty, ty.void_(), |
| Vector{ |
| Assign("call_c", Call("c")), |
| }, |
| Vector{ |
| Stage(ast::PipelineStage::kCompute), |
| WorkgroupSize(1_i), |
| }); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto* func_b_sem = Sem().Get(func_b); |
| auto* func_a_sem = Sem().Get(func_a); |
| auto* func_c_sem = Sem().Get(func_c); |
| auto* ep_1_sem = Sem().Get(ep_1); |
| auto* ep_2_sem = Sem().Get(ep_2); |
| ASSERT_NE(func_b_sem, nullptr); |
| ASSERT_NE(func_a_sem, nullptr); |
| ASSERT_NE(func_c_sem, nullptr); |
| ASSERT_NE(ep_1_sem, nullptr); |
| ASSERT_NE(ep_2_sem, nullptr); |
| |
| EXPECT_EQ(func_b_sem->Parameters().Length(), 0u); |
| EXPECT_EQ(func_a_sem->Parameters().Length(), 0u); |
| EXPECT_EQ(func_c_sem->Parameters().Length(), 0u); |
| |
| const auto& b_eps = func_b_sem->AncestorEntryPoints(); |
| ASSERT_EQ(2u, b_eps.size()); |
| EXPECT_EQ(Symbols().Register("ep_1"), b_eps[0]->Declaration()->name->symbol); |
| EXPECT_EQ(Symbols().Register("ep_2"), b_eps[1]->Declaration()->name->symbol); |
| |
| const auto& a_eps = func_a_sem->AncestorEntryPoints(); |
| ASSERT_EQ(1u, a_eps.size()); |
| EXPECT_EQ(Symbols().Register("ep_1"), a_eps[0]->Declaration()->name->symbol); |
| |
| const auto& c_eps = func_c_sem->AncestorEntryPoints(); |
| ASSERT_EQ(2u, c_eps.size()); |
| EXPECT_EQ(Symbols().Register("ep_1"), c_eps[0]->Declaration()->name->symbol); |
| EXPECT_EQ(Symbols().Register("ep_2"), c_eps[1]->Declaration()->name->symbol); |
| |
| EXPECT_TRUE(ep_1_sem->AncestorEntryPoints().empty()); |
| EXPECT_TRUE(ep_2_sem->AncestorEntryPoints().empty()); |
| } |
| |
| // Check for linear-time traversal of functions reachable from entry points. |
| // See: crbug.com/tint/245 |
| TEST_F(ResolverTest, Function_EntryPoints_LinearTime) { |
| // fn lNa() { } |
| // fn lNb() { } |
| // ... |
| // fn l2a() { l3a(); l3b(); } |
| // fn l2b() { l3a(); l3b(); } |
| // fn l1a() { l2a(); l2b(); } |
| // fn l1b() { l2a(); l2b(); } |
| // fn main() { l1a(); l1b(); } |
| |
| static constexpr int levels = 64; |
| |
| auto fn_a = [](int level) { return "l" + std::to_string(level + 1) + "a"; }; |
| auto fn_b = [](int level) { return "l" + std::to_string(level + 1) + "b"; }; |
| |
| Func(fn_a(levels), tint::Empty, ty.void_(), tint::Empty); |
| Func(fn_b(levels), tint::Empty, ty.void_(), tint::Empty); |
| |
| for (int i = levels - 1; i >= 0; i--) { |
| Func(fn_a(i), tint::Empty, ty.void_(), |
| Vector{ |
| CallStmt(Call(fn_a(i + 1))), |
| CallStmt(Call(fn_b(i + 1))), |
| }, |
| tint::Empty); |
| Func(fn_b(i), tint::Empty, ty.void_(), |
| Vector{ |
| CallStmt(Call(fn_a(i + 1))), |
| CallStmt(Call(fn_b(i + 1))), |
| }, |
| tint::Empty); |
| } |
| |
| Func("main", tint::Empty, ty.void_(), |
| Vector{ |
| CallStmt(Call(fn_a(0))), |
| CallStmt(Call(fn_b(0))), |
| }, |
| Vector{Stage(ast::PipelineStage::kCompute), WorkgroupSize(1_i)}); |
| |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| // Test for crbug.com/tint/728 |
| TEST_F(ResolverTest, ASTNodesAreReached) { |
| Structure("A", Vector{Member("x", ty.array<f32, 4>(Vector{Stride(4)}))}); |
| Structure("B", Vector{Member("x", ty.array<f32, 4>(Vector{Stride(4)}))}); |
| ASSERT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, ASTNodeNotReached) { |
| EXPECT_FATAL_FAILURE( |
| { |
| ProgramBuilder b; |
| b.Ident("ident"); |
| Resolver(&b).Resolve(); |
| }, |
| "internal compiler error: AST node 'tint::ast::Identifier' was not reached by the " |
| "resolver"); |
| } |
| |
| TEST_F(ResolverTest, ASTNodeReachedTwice) { |
| EXPECT_FATAL_FAILURE( |
| { |
| ProgramBuilder b; |
| auto* expr = b.Expr(1_i); |
| b.GlobalVar("a", b.ty.i32(), core::AddressSpace::kPrivate, expr); |
| b.GlobalVar("b", b.ty.i32(), core::AddressSpace::kPrivate, expr); |
| Resolver(&b).Resolve(); |
| }, |
| "internal compiler error: AST node 'tint::ast::IntLiteralExpression' was encountered twice " |
| "in the same AST of a Program"); |
| } |
| |
| TEST_F(ResolverTest, UnaryOp_Not) { |
| GlobalVar("ident", ty.vec4<f32>(), core::AddressSpace::kPrivate); |
| auto* der = |
| create<ast::UnaryOpExpression>(core::UnaryOp::kNot, Expr(Source{{12, 34}}, "ident")); |
| WrapInFunction(der); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), HasSubstr("error: no matching overload for operator ! (vec4<f32>)")); |
| } |
| |
| TEST_F(ResolverTest, UnaryOp_Complement) { |
| GlobalVar("ident", ty.vec4<f32>(), core::AddressSpace::kPrivate); |
| auto* der = |
| create<ast::UnaryOpExpression>(core::UnaryOp::kComplement, Expr(Source{{12, 34}}, "ident")); |
| WrapInFunction(der); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), HasSubstr("error: no matching overload for operator ~ (vec4<f32>)")); |
| } |
| |
| TEST_F(ResolverTest, UnaryOp_Negation) { |
| GlobalVar("ident", ty.u32(), core::AddressSpace::kPrivate); |
| auto* der = |
| create<ast::UnaryOpExpression>(core::UnaryOp::kNegation, Expr(Source{{12, 34}}, "ident")); |
| WrapInFunction(der); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), HasSubstr("error: no matching overload for operator - (u32)")); |
| } |
| |
| TEST_F(ResolverTest, TextureSampler_TextureSample) { |
| GlobalVar("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a), |
| Binding(1_a)); |
| GlobalVar("s", ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(2_a)); |
| |
| auto* call = Call("textureSample", "t", "s", Call<vec2<f32>>(1_f, 2_f)); |
| const ast::Function* f = |
| Func("test_function", tint::Empty, ty.void_(), Vector{Assign(Phony(), call)}, |
| Vector{Stage(ast::PipelineStage::kFragment)}); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| const sem::Function* sf = Sem().Get(f); |
| auto pairs = sf->TextureSamplerPairs(); |
| ASSERT_EQ(pairs.Length(), 1u); |
| EXPECT_TRUE(pairs[0].first != nullptr); |
| EXPECT_TRUE(pairs[0].second != nullptr); |
| } |
| |
| TEST_F(ResolverTest, TextureSampler_TextureSampleInFunction) { |
| GlobalVar("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a), |
| Binding(1_a)); |
| GlobalVar("s", ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(2_a)); |
| |
| auto* inner_call = Assign(Phony(), Call("textureSample", "t", "s", Call<vec2<f32>>(1_f, 2_f))); |
| const ast::Function* inner_func = |
| Func("inner_func", tint::Empty, ty.void_(), Vector{inner_call}); |
| auto* outer_call = CallStmt(Call("inner_func")); |
| const ast::Function* outer_func = |
| Func("outer_func", tint::Empty, ty.void_(), Vector{outer_call}, |
| Vector{Stage(ast::PipelineStage::kFragment)}); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto inner_pairs = Sem().Get(inner_func)->TextureSamplerPairs(); |
| ASSERT_EQ(inner_pairs.Length(), 1u); |
| EXPECT_TRUE(inner_pairs[0].first != nullptr); |
| EXPECT_TRUE(inner_pairs[0].second != nullptr); |
| |
| auto outer_pairs = Sem().Get(outer_func)->TextureSamplerPairs(); |
| ASSERT_EQ(outer_pairs.Length(), 1u); |
| EXPECT_TRUE(outer_pairs[0].first != nullptr); |
| EXPECT_TRUE(outer_pairs[0].second != nullptr); |
| } |
| |
| TEST_F(ResolverTest, TextureSampler_TextureSampleFunctionDiamondSameVariables) { |
| GlobalVar("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a), |
| Binding(1_a)); |
| GlobalVar("s", ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(2_a)); |
| |
| auto* inner_call_1 = |
| Assign(Phony(), Call("textureSample", "t", "s", Call<vec2<f32>>(1_f, 2_f))); |
| const ast::Function* inner_func_1 = |
| Func("inner_func_1", tint::Empty, ty.void_(), Vector{inner_call_1}); |
| auto* inner_call_2 = |
| Assign(Phony(), Call("textureSample", "t", "s", Call<vec2<f32>>(3_f, 4_f))); |
| const ast::Function* inner_func_2 = |
| Func("inner_func_2", tint::Empty, ty.void_(), Vector{inner_call_2}); |
| auto* outer_call_1 = CallStmt(Call("inner_func_1")); |
| auto* outer_call_2 = CallStmt(Call("inner_func_2")); |
| const ast::Function* outer_func = |
| Func("outer_func", tint::Empty, ty.void_(), Vector{outer_call_1, outer_call_2}, |
| Vector{Stage(ast::PipelineStage::kFragment)}); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto inner_pairs_1 = Sem().Get(inner_func_1)->TextureSamplerPairs(); |
| ASSERT_EQ(inner_pairs_1.Length(), 1u); |
| EXPECT_TRUE(inner_pairs_1[0].first != nullptr); |
| EXPECT_TRUE(inner_pairs_1[0].second != nullptr); |
| |
| auto inner_pairs_2 = Sem().Get(inner_func_2)->TextureSamplerPairs(); |
| ASSERT_EQ(inner_pairs_1.Length(), 1u); |
| EXPECT_TRUE(inner_pairs_2[0].first != nullptr); |
| EXPECT_TRUE(inner_pairs_2[0].second != nullptr); |
| |
| auto outer_pairs = Sem().Get(outer_func)->TextureSamplerPairs(); |
| ASSERT_EQ(outer_pairs.Length(), 1u); |
| EXPECT_TRUE(outer_pairs[0].first != nullptr); |
| EXPECT_TRUE(outer_pairs[0].second != nullptr); |
| } |
| |
| TEST_F(ResolverTest, TextureSampler_TextureSampleFunctionDiamondDifferentVariables) { |
| GlobalVar("t1", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a), |
| Binding(1_a)); |
| GlobalVar("t2", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a), |
| Binding(2_a)); |
| GlobalVar("s", ty.sampler(core::type::SamplerKind::kSampler), Group(1_a), Binding(3_a)); |
| |
| auto* inner_call_1 = |
| Assign(Phony(), Call("textureSample", "t1", "s", Call<vec2<f32>>(1_f, 2_f))); |
| const ast::Function* inner_func_1 = |
| Func("inner_func_1", tint::Empty, ty.void_(), Vector{inner_call_1}); |
| auto* inner_call_2 = |
| Assign(Phony(), Call("textureSample", "t2", "s", Call<vec2<f32>>(3_f, 4_f))); |
| const ast::Function* inner_func_2 = |
| Func("inner_func_2", tint::Empty, ty.void_(), Vector{inner_call_2}); |
| auto* outer_call_1 = CallStmt(Call("inner_func_1")); |
| auto* outer_call_2 = CallStmt(Call("inner_func_2")); |
| const ast::Function* outer_func = |
| Func("outer_func", tint::Empty, ty.void_(), Vector{outer_call_1, outer_call_2}, |
| Vector{Stage(ast::PipelineStage::kFragment)}); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| auto inner_pairs_1 = Sem().Get(inner_func_1)->TextureSamplerPairs(); |
| ASSERT_EQ(inner_pairs_1.Length(), 1u); |
| EXPECT_TRUE(inner_pairs_1[0].first != nullptr); |
| EXPECT_TRUE(inner_pairs_1[0].second != nullptr); |
| |
| auto inner_pairs_2 = Sem().Get(inner_func_2)->TextureSamplerPairs(); |
| ASSERT_EQ(inner_pairs_2.Length(), 1u); |
| EXPECT_TRUE(inner_pairs_2[0].first != nullptr); |
| EXPECT_TRUE(inner_pairs_2[0].second != nullptr); |
| |
| auto outer_pairs = Sem().Get(outer_func)->TextureSamplerPairs(); |
| ASSERT_EQ(outer_pairs.Length(), 2u); |
| EXPECT_TRUE(outer_pairs[0].first == inner_pairs_1[0].first); |
| EXPECT_TRUE(outer_pairs[0].second == inner_pairs_1[0].second); |
| EXPECT_TRUE(outer_pairs[1].first == inner_pairs_2[0].first); |
| EXPECT_TRUE(outer_pairs[1].second == inner_pairs_2[0].second); |
| } |
| |
| TEST_F(ResolverTest, TextureSampler_TextureDimensions) { |
| GlobalVar("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(1_a), |
| Binding(2_a)); |
| |
| auto* call = Call("textureDimensions", "t"); |
| const ast::Function* f = WrapInFunction(call); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| const sem::Function* sf = Sem().Get(f); |
| auto pairs = sf->TextureSamplerPairs(); |
| ASSERT_EQ(pairs.Length(), 1u); |
| EXPECT_TRUE(pairs[0].first != nullptr); |
| EXPECT_TRUE(pairs[0].second == nullptr); |
| } |
| |
| TEST_F(ResolverTest, TextureSampler_Bug1715) { // crbug.com/tint/1715 |
| // @binding(0) @group(0) var s: sampler; |
| // @binding(1) @group(0) var t: texture_2d<f32>; |
| // @binding(2) @group(0) var<uniform> c: vec2<f32>; |
| // |
| // @fragment |
| // fn main() -> @location(0) vec4<f32> { |
| // return helper(&s, &t); |
| // } |
| // |
| // fn helper(sl: ptr<function, sampler>, tl: ptr<function, texture_2d<f32>>) -> vec4<f32> { |
| // return textureSampleLevel(*tl, *sl, c, 0.0); |
| // } |
| GlobalVar("s", ty.sampler(core::type::SamplerKind::kSampler), Group(0_a), Binding(0_a)); |
| GlobalVar("t", ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()), Group(0_a), |
| Binding(1_a)); |
| GlobalVar("c", ty.vec2<f32>(), core::AddressSpace::kUniform, Group(0_a), Binding(2_a)); |
| |
| Func("main", tint::Empty, ty.vec4<f32>(), |
| Vector{ |
| Return(Call("helper", AddressOf("s"), AddressOf("t"))), |
| }, |
| Vector{ |
| Stage(ast::PipelineStage::kFragment), |
| }, |
| Vector{ |
| Location(0_u), |
| }); |
| |
| Func("helper", |
| Vector{ |
| Param("sl", ty.ptr<function>(ty.sampler(core::type::SamplerKind::kSampler))), |
| Param("tl", ty.ptr<function>( |
| ty.sampled_texture(core::type::TextureDimension::k2d, ty.f32()))), |
| }, |
| ty.vec4<f32>(), |
| Vector{ |
| Return(Call("textureSampleLevel", Deref("tl"), Deref("sl"), "c", 0.0_a)), |
| }); |
| |
| ASSERT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "error: cannot take the address of expression in handle address space"); |
| } |
| |
| TEST_F(ResolverTest, ModuleDependencyOrderedDeclarations) { |
| auto* f0 = Func("f0", tint::Empty, ty.void_(), tint::Empty); |
| auto* v0 = GlobalVar("v0", ty.i32(), core::AddressSpace::kPrivate); |
| auto* a0 = Alias("a0", ty.i32()); |
| auto* s0 = Structure("s0", Vector{Member("m", ty.i32())}); |
| auto* f1 = Func("f1", tint::Empty, ty.void_(), tint::Empty); |
| auto* v1 = GlobalVar("v1", ty.i32(), core::AddressSpace::kPrivate); |
| auto* a1 = Alias("a1", ty.i32()); |
| auto* s1 = Structure("s1", Vector{Member("m", ty.i32())}); |
| auto* f2 = Func("f2", tint::Empty, ty.void_(), tint::Empty); |
| auto* v2 = GlobalVar("v2", ty.i32(), core::AddressSpace::kPrivate); |
| auto* a2 = Alias("a2", ty.i32()); |
| auto* s2 = Structure("s2", Vector{Member("m", ty.i32())}); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| |
| ASSERT_NE(Sem().Module(), nullptr); |
| EXPECT_THAT(Sem().Module()->DependencyOrderedDeclarations(), |
| ElementsAre(f0, v0, a0, s0, f1, v1, a1, s1, f2, v2, a2, s2)); |
| } |
| |
| constexpr size_t kMaxExpressionDepth = 512U; |
| |
| TEST_F(ResolverTest, MaxExpressionDepth_Pass) { |
| auto* b = Var("b", ty.i32()); |
| const ast::Expression* chain = nullptr; |
| for (size_t i = 0; i < kMaxExpressionDepth; ++i) { |
| chain = Add(chain ? chain : Expr("b"), Expr("b")); |
| } |
| auto* a = Let("a", chain); |
| WrapInFunction(b, a); |
| |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, MaxExpressionDepth_Fail) { |
| auto* b = Var("b", ty.i32()); |
| const ast::Expression* chain = nullptr; |
| for (size_t i = 0; i < kMaxExpressionDepth + 1; ++i) { |
| chain = Add(chain ? chain : Expr("b"), Expr("b")); |
| } |
| auto* a = Let("a", chain); |
| WrapInFunction(b, a); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_THAT(r()->error(), HasSubstr("error: reached max expression depth of " + |
| std::to_string(kMaxExpressionDepth))); |
| } |
| |
| // Windows debug builds have significantly smaller stack than other builds, and these tests will |
| // stack overflow. |
| #if !defined(NDEBUG) |
| |
| TEST_F(ResolverTest, ScopeDepth_NestedBlocks) { |
| const ast::Statement* stmt = Return(); |
| for (size_t i = 0; i < 150; i++) { |
| stmt = Block(Source{{i, 1}}, stmt); |
| } |
| WrapInFunction(stmt); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "23:1 error: statement nesting depth / chaining length exceeds limit of 127"); |
| } |
| |
| TEST_F(ResolverTest, ScopeDepth_NestedIf) { |
| const ast::Statement* stmt = Return(); |
| for (size_t i = 0; i < 150; i++) { |
| stmt = If(Source{{i, 1}}, false, Block(Source{{i, 2}}, stmt)); |
| } |
| WrapInFunction(stmt); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "86:1 error: statement nesting depth / chaining length exceeds limit of 127"); |
| } |
| |
| TEST_F(ResolverTest, ScopeDepth_IfElseChain) { |
| const ast::Statement* stmt = nullptr; |
| for (size_t i = 0; i < 150; i++) { |
| stmt = If(Source{{i, 1}}, false, Block(Source{{i, 2}}), Else(stmt)); |
| } |
| WrapInFunction(stmt); |
| |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), |
| "24:2 error: statement nesting depth / chaining length exceeds limit of 127"); |
| } |
| |
| #endif // !defined(NDEBUG) |
| |
| const size_t kMaxNumStructMembers = 16383; |
| |
| TEST_F(ResolverTest, MaxNumStructMembers_Valid) { |
| Vector<const ast::StructMember*, 0> members; |
| members.Reserve(kMaxNumStructMembers); |
| for (size_t i = 0; i < kMaxNumStructMembers; ++i) { |
| members.Push(Member("m" + std::to_string(i), ty.i32())); |
| } |
| Structure("S", std::move(members)); |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, MaxNumStructMembers_Invalid) { |
| Vector<const ast::StructMember*, 0> members; |
| members.Reserve(kMaxNumStructMembers + 1); |
| for (size_t i = 0; i < kMaxNumStructMembers + 1; ++i) { |
| members.Push(Member("m" + std::to_string(i), ty.i32())); |
| } |
| Structure(Source{{12, 34}}, "S", std::move(members)); |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: struct 'S' has 16384 members, maximum is 16383"); |
| } |
| |
| TEST_F(ResolverTest, MaxNumStructMembers_WithIgnoreStructMemberLimit_Valid) { |
| Vector<const ast::StructMember*, 0> members; |
| members.Reserve(kMaxNumStructMembers); |
| for (size_t i = 0; i < kMaxNumStructMembers; ++i) { |
| members.Push(Member("m" + std::to_string(i), ty.i32())); |
| } |
| |
| // Add 10 more members, but we set the limit to be ignored on the struct |
| for (size_t i = 0; i < 10; ++i) { |
| members.Push(Member("ignored" + std::to_string(i), ty.i32())); |
| } |
| |
| Structure("S", std::move(members), |
| Vector{Disable(ast::DisabledValidation::kIgnoreStructMemberLimit)}); |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| size_t kMaxNestDepthOfCompositeType = 255; |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_Structs_Valid) { |
| auto* s = Structure("S", Vector{Member("m", ty.i32())}); |
| size_t depth = 1; // Depth of struct |
| size_t iterations = kMaxNestDepthOfCompositeType - depth; |
| for (size_t i = 0; i < iterations; ++i) { |
| s = Structure("S" + std::to_string(i), Vector{Member("m", ty.Of(s))}); |
| } |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_Structs_Invalid) { |
| auto* s = Structure("S", Vector{Member("m", ty.i32())}); |
| size_t depth = 1; // Depth of struct |
| size_t iterations = kMaxNestDepthOfCompositeType - depth + 1; |
| for (size_t i = 0; i < iterations; ++i) { |
| auto source = i == iterations - 1 ? Source{{12, 34}} : Source{{0, i}}; |
| s = Structure(source, "S" + std::to_string(i), Vector{Member("m", ty.Of(s))}); |
| } |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: struct 'S254' has nesting depth of 256, maximum is 255"); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsWithVector_Valid) { |
| auto* s = Structure("S", Vector{Member("m", ty.vec3<i32>())}); |
| size_t depth = 2; // Despth of struct + vector |
| size_t iterations = kMaxNestDepthOfCompositeType - depth; |
| for (size_t i = 0; i < iterations; ++i) { |
| s = Structure("S" + std::to_string(i), Vector{Member("m", ty.Of(s))}); |
| } |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsWithVector_Invalid) { |
| auto* s = Structure("S", Vector{Member("m", ty.vec3<i32>())}); |
| size_t depth = 2; // Despth of struct + vector |
| size_t iterations = kMaxNestDepthOfCompositeType - depth + 1; |
| for (size_t i = 0; i < iterations; ++i) { |
| auto source = i == iterations - 1 ? Source{{12, 34}} : Source{{0, i}}; |
| s = Structure(source, "S" + std::to_string(i), Vector{Member("m", ty.Of(s))}); |
| } |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: struct 'S253' has nesting depth of 256, maximum is 255"); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsWithMatrix_Valid) { |
| auto* s = Structure("S", Vector{Member("m", ty.mat3x3<f32>())}); |
| size_t depth = 3; // Depth of struct + matrix |
| size_t iterations = kMaxNestDepthOfCompositeType - depth; |
| for (size_t i = 0; i < iterations; ++i) { |
| s = Structure("S" + std::to_string(i), Vector{Member("m", ty.Of(s))}); |
| } |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsWithMatrix_Invalid) { |
| auto* s = Structure("S", Vector{Member("m", ty.mat3x3<f32>())}); |
| size_t depth = 3; // Depth of struct + matrix |
| size_t iterations = kMaxNestDepthOfCompositeType - depth + 1; |
| for (size_t i = 0; i < iterations; ++i) { |
| auto source = i == iterations - 1 ? Source{{12, 34}} : Source{{0, i}}; |
| s = Structure(source, "S" + std::to_string(i), Vector{Member("m", ty.Of(s))}); |
| } |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: struct 'S252' has nesting depth of 256, maximum is 255"); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_Arrays_Valid) { |
| auto a = ty.array(ty.i32(), 10_u); |
| size_t depth = 1; // Depth of array |
| size_t iterations = kMaxNestDepthOfCompositeType - depth; |
| for (size_t i = 0; i < iterations; ++i) { |
| a = ty.array(a, 1_u); |
| } |
| Alias("a", a); |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_Arrays_Invalid) { |
| auto a = ty.array(Source{{99, 88}}, ty.i32(), 10_u); |
| size_t depth = 1; // Depth of array |
| size_t iterations = kMaxNestDepthOfCompositeType - depth + 1; |
| for (size_t i = 0; i < iterations; ++i) { |
| auto source = (i == iterations - 1) ? Source{{12, 34}} : Source{{0, i}}; |
| a = ty.array(source, a, 1_u); |
| } |
| Alias("a", a); |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: array has nesting depth of 256, maximum is 255"); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfVector_Valid) { |
| auto a = ty.array<vec3<i32>, 10>(); |
| size_t depth = 2; // Depth of array + vector |
| size_t iterations = kMaxNestDepthOfCompositeType - depth; |
| for (size_t i = 0; i < iterations; ++i) { |
| a = ty.array(a, 1_u); |
| } |
| Alias("a", a); |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfVector_Invalid) { |
| auto a = ty.array(Source{{99, 88}}, ty.vec3<i32>(), 10_u); |
| size_t depth = 2; // Depth of array + vector |
| size_t iterations = kMaxNestDepthOfCompositeType - depth + 1; |
| for (size_t i = 0; i < iterations; ++i) { |
| auto source = (i == iterations - 1) ? Source{{12, 34}} : Source{{0, i}}; |
| a = ty.array(source, a, 1_u); |
| } |
| Alias("a", a); |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: array has nesting depth of 256, maximum is 255"); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfMatrix_Valid) { |
| auto a = ty.array(ty.mat3x3<f32>(), 10_u); |
| size_t depth = 3; // Depth of array + matrix |
| size_t iterations = kMaxNestDepthOfCompositeType - depth; |
| for (size_t i = 0; i < iterations; ++i) { |
| a = ty.array(a, 1_u); |
| } |
| Alias("a", a); |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfMatrix_Invalid) { |
| auto a = ty.array(ty.mat3x3<f32>(), 10_u); |
| size_t depth = 3; // Depth of array + matrix |
| size_t iterations = kMaxNestDepthOfCompositeType - depth + 1; |
| for (size_t i = 0; i < iterations; ++i) { |
| auto source = (i == iterations - 1) ? Source{{12, 34}} : Source{{0, i}}; |
| a = ty.array(source, a, 1_u); |
| } |
| Alias("a", a); |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: array has nesting depth of 256, maximum is 255"); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsOfArray_Valid) { |
| auto a = ty.array(ty.mat3x3<f32>(), 10_u); |
| auto* s = Structure("S", Vector{Member("m", a)}); |
| size_t depth = 4; // Depth of struct + array + matrix |
| size_t iterations = kMaxNestDepthOfCompositeType - depth; |
| for (size_t i = 0; i < iterations; ++i) { |
| s = Structure("S" + std::to_string(i), Vector{Member("m", ty.Of(s))}); |
| } |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_StructsOfArray_Invalid) { |
| auto a = ty.array(ty.mat3x3<f32>(), 10_u); |
| auto* s = Structure("S", Vector{Member("m", a)}); |
| size_t depth = 4; // Depth of struct + array + matrix |
| size_t iterations = kMaxNestDepthOfCompositeType - depth + 1; |
| for (size_t i = 0; i < iterations; ++i) { |
| auto source = i == iterations - 1 ? Source{{12, 34}} : Source{{0, i}}; |
| s = Structure(source, "S" + std::to_string(i), Vector{Member("m", ty.Of(s))}); |
| } |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: struct 'S251' has nesting depth of 256, maximum is 255"); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfStruct_Valid) { |
| auto* s = Structure("S", Vector{Member("m", ty.mat3x3<f32>())}); |
| auto a = ty.array(ty.Of(s), 10_u); |
| size_t depth = 4; // Depth of array + struct + matrix |
| size_t iterations = kMaxNestDepthOfCompositeType - depth; |
| for (size_t i = 0; i < iterations; ++i) { |
| a = ty.array(a, 1_u); |
| } |
| Alias("a", a); |
| EXPECT_TRUE(r()->Resolve()) << r()->error(); |
| } |
| |
| TEST_F(ResolverTest, MaxNestDepthOfCompositeType_ArraysOfStruct_Invalid) { |
| auto* s = Structure("S", Vector{Member("m", ty.mat3x3<f32>())}); |
| auto a = ty.array(ty.Of(s), 10_u); |
| size_t depth = 4; // Depth of array + struct + matrix |
| size_t iterations = kMaxNestDepthOfCompositeType - depth + 1; |
| for (size_t i = 0; i < iterations; ++i) { |
| auto source = (i == iterations - 1) ? Source{{12, 34}} : Source{{0, i}}; |
| a = ty.array(source, a, 1_u); |
| } |
| Alias("a", a); |
| EXPECT_FALSE(r()->Resolve()); |
| EXPECT_EQ(r()->error(), "12:34 error: array has nesting depth of 256, maximum is 255"); |
| } |
| |
| } // namespace |
| } // namespace tint::resolver |