| // Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/tint/writer/msl/generator_impl.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <iomanip> |
| #include <limits> |
| #include <utility> |
| #include <vector> |
| |
| #include "src/tint/ast/alias.h" |
| #include "src/tint/ast/bool_literal_expression.h" |
| #include "src/tint/ast/call_statement.h" |
| #include "src/tint/ast/disable_validation_attribute.h" |
| #include "src/tint/ast/fallthrough_statement.h" |
| #include "src/tint/ast/float_literal_expression.h" |
| #include "src/tint/ast/id_attribute.h" |
| #include "src/tint/ast/interpolate_attribute.h" |
| #include "src/tint/ast/module.h" |
| #include "src/tint/ast/variable_decl_statement.h" |
| #include "src/tint/ast/void.h" |
| #include "src/tint/sem/array.h" |
| #include "src/tint/sem/atomic.h" |
| #include "src/tint/sem/bool.h" |
| #include "src/tint/sem/call.h" |
| #include "src/tint/sem/constant.h" |
| #include "src/tint/sem/depth_multisampled_texture.h" |
| #include "src/tint/sem/depth_texture.h" |
| #include "src/tint/sem/f16.h" |
| #include "src/tint/sem/f32.h" |
| #include "src/tint/sem/function.h" |
| #include "src/tint/sem/i32.h" |
| #include "src/tint/sem/matrix.h" |
| #include "src/tint/sem/member_accessor_expression.h" |
| #include "src/tint/sem/module.h" |
| #include "src/tint/sem/multisampled_texture.h" |
| #include "src/tint/sem/pointer.h" |
| #include "src/tint/sem/reference.h" |
| #include "src/tint/sem/sampled_texture.h" |
| #include "src/tint/sem/storage_texture.h" |
| #include "src/tint/sem/struct.h" |
| #include "src/tint/sem/type_constructor.h" |
| #include "src/tint/sem/type_conversion.h" |
| #include "src/tint/sem/u32.h" |
| #include "src/tint/sem/variable.h" |
| #include "src/tint/sem/vector.h" |
| #include "src/tint/sem/void.h" |
| #include "src/tint/transform/array_length_from_uniform.h" |
| #include "src/tint/transform/builtin_polyfill.h" |
| #include "src/tint/transform/canonicalize_entry_point_io.h" |
| #include "src/tint/transform/disable_uniformity_analysis.h" |
| #include "src/tint/transform/expand_compound_assignment.h" |
| #include "src/tint/transform/manager.h" |
| #include "src/tint/transform/module_scope_var_to_entry_point_param.h" |
| #include "src/tint/transform/promote_initializers_to_let.h" |
| #include "src/tint/transform/promote_side_effects_to_decl.h" |
| #include "src/tint/transform/remove_phonies.h" |
| #include "src/tint/transform/simplify_pointers.h" |
| #include "src/tint/transform/unshadow.h" |
| #include "src/tint/transform/unwind_discard_functions.h" |
| #include "src/tint/transform/vectorize_scalar_matrix_constructors.h" |
| #include "src/tint/transform/zero_init_workgroup_memory.h" |
| #include "src/tint/utils/defer.h" |
| #include "src/tint/utils/map.h" |
| #include "src/tint/utils/scoped_assignment.h" |
| #include "src/tint/writer/float_to_string.h" |
| #include "src/tint/writer/generate_external_texture_bindings.h" |
| |
| namespace tint::writer::msl { |
| namespace { |
| |
| bool last_is_break_or_fallthrough(const ast::BlockStatement* stmts) { |
| return IsAnyOf<ast::BreakStatement, ast::FallthroughStatement>(stmts->Last()); |
| } |
| |
| void PrintF32(std::ostream& out, float value) { |
| // Note: Currently inf and nan should not be constructable, but this is implemented for the day |
| // we support them. |
| if (std::isinf(value)) { |
| out << (value >= 0 ? "INFINITY" : "-INFINITY"); |
| } else if (std::isnan(value)) { |
| out << "NAN"; |
| } else { |
| out << FloatToString(value) << "f"; |
| } |
| } |
| |
| void PrintF16(std::ostream& out, float value) { |
| // Note: Currently inf and nan should not be constructable, but this is implemented for the day |
| // we support them. |
| if (std::isinf(value)) { |
| // HUGE_VALH evaluates to +infinity. |
| out << (value >= 0 ? "HUGE_VALH" : "-HUGE_VALH"); |
| } else if (std::isnan(value)) { |
| // There is no NaN expr for half in MSL, "NAN" is of float type. |
| out << "NAN"; |
| } else { |
| out << FloatToString(value) << "h"; |
| } |
| } |
| |
| void PrintI32(std::ostream& out, int32_t value) { |
| // MSL (and C++) parse `-2147483648` as a `long` because it parses unary minus and `2147483648` |
| // as separate tokens, and the latter doesn't fit into an (32-bit) `int`. |
| // WGSL, on the other hand, parses this as an `i32`. |
| // To avoid issues with `long` to `int` casts, emit `(-2147483647 - 1)` instead, which ensures |
| // the expression type is `int`. |
| if (auto int_min = std::numeric_limits<int32_t>::min(); value == int_min) { |
| out << "(" << int_min + 1 << " - 1)"; |
| } else { |
| out << value; |
| } |
| } |
| |
| class ScopedBitCast { |
| public: |
| ScopedBitCast(GeneratorImpl* generator, |
| std::ostream& stream, |
| const sem::Type* curr_type, |
| const sem::Type* target_type) |
| : s(stream) { |
| auto* target_vec_type = target_type->As<sem::Vector>(); |
| |
| // If we need to promote from scalar to vector, bitcast the scalar to the |
| // vector element type. |
| if (curr_type->is_scalar() && target_vec_type) { |
| target_type = target_vec_type->type(); |
| } |
| |
| // Bit cast |
| s << "as_type<"; |
| generator->EmitType(s, target_type, ""); |
| s << ">("; |
| } |
| |
| ~ScopedBitCast() { s << ")"; } |
| |
| private: |
| std::ostream& s; |
| }; |
| |
| } // namespace |
| |
| SanitizedResult::SanitizedResult() = default; |
| SanitizedResult::~SanitizedResult() = default; |
| SanitizedResult::SanitizedResult(SanitizedResult&&) = default; |
| |
| SanitizedResult Sanitize(const Program* in, const Options& options) { |
| transform::Manager manager; |
| transform::DataMap data; |
| |
| manager.Add<transform::DisableUniformityAnalysis>(); |
| |
| { // Builtin polyfills |
| transform::BuiltinPolyfill::Builtins polyfills; |
| polyfills.acosh = transform::BuiltinPolyfill::Level::kRangeCheck; |
| polyfills.atanh = transform::BuiltinPolyfill::Level::kRangeCheck; |
| polyfills.extract_bits = transform::BuiltinPolyfill::Level::kClampParameters; |
| polyfills.first_leading_bit = true; |
| polyfills.first_trailing_bit = true; |
| polyfills.insert_bits = transform::BuiltinPolyfill::Level::kClampParameters; |
| data.Add<transform::BuiltinPolyfill::Config>(polyfills); |
| manager.Add<transform::BuiltinPolyfill>(); |
| } |
| |
| // Build the config for the internal ArrayLengthFromUniform transform. |
| auto& array_length_from_uniform = options.array_length_from_uniform; |
| transform::ArrayLengthFromUniform::Config array_length_from_uniform_cfg( |
| array_length_from_uniform.ubo_binding); |
| if (!array_length_from_uniform.bindpoint_to_size_index.empty()) { |
| // If |array_length_from_uniform| bindings are provided, use that config. |
| array_length_from_uniform_cfg.bindpoint_to_size_index = |
| array_length_from_uniform.bindpoint_to_size_index; |
| } else { |
| // If the binding map is empty, use the deprecated |buffer_size_ubo_index| |
| // and automatically choose indices using the binding numbers. |
| array_length_from_uniform_cfg = transform::ArrayLengthFromUniform::Config( |
| sem::BindingPoint{0, options.buffer_size_ubo_index}); |
| // Use the SSBO binding numbers as the indices for the buffer size lookups. |
| for (auto* var : in->AST().GlobalVariables()) { |
| auto* global = in->Sem().Get<sem::GlobalVariable>(var); |
| if (global && global->StorageClass() == ast::StorageClass::kStorage) { |
| array_length_from_uniform_cfg.bindpoint_to_size_index.emplace( |
| global->BindingPoint(), global->BindingPoint().binding); |
| } |
| } |
| } |
| |
| // Build the configs for the internal CanonicalizeEntryPointIO transform. |
| auto entry_point_io_cfg = transform::CanonicalizeEntryPointIO::Config( |
| transform::CanonicalizeEntryPointIO::ShaderStyle::kMsl, options.fixed_sample_mask, |
| options.emit_vertex_point_size); |
| |
| if (options.generate_external_texture_bindings) { |
| auto new_bindings_map = GenerateExternalTextureBindings(in); |
| data.Add<transform::MultiplanarExternalTexture::NewBindingPoints>(new_bindings_map); |
| } |
| manager.Add<transform::MultiplanarExternalTexture>(); |
| |
| manager.Add<transform::Unshadow>(); |
| |
| if (!options.disable_workgroup_init) { |
| // ZeroInitWorkgroupMemory must come before CanonicalizeEntryPointIO as |
| // ZeroInitWorkgroupMemory may inject new builtin parameters. |
| manager.Add<transform::ZeroInitWorkgroupMemory>(); |
| } |
| manager.Add<transform::CanonicalizeEntryPointIO>(); |
| manager.Add<transform::ExpandCompoundAssignment>(); |
| manager.Add<transform::PromoteSideEffectsToDecl>(); |
| manager.Add<transform::UnwindDiscardFunctions>(); |
| manager.Add<transform::PromoteInitializersToLet>(); |
| |
| manager.Add<transform::VectorizeScalarMatrixConstructors>(); |
| manager.Add<transform::RemovePhonies>(); |
| manager.Add<transform::SimplifyPointers>(); |
| // ArrayLengthFromUniform must come after SimplifyPointers, as |
| // it assumes that the form of the array length argument is &var.array. |
| manager.Add<transform::ArrayLengthFromUniform>(); |
| manager.Add<transform::ModuleScopeVarToEntryPointParam>(); |
| data.Add<transform::ArrayLengthFromUniform::Config>(std::move(array_length_from_uniform_cfg)); |
| data.Add<transform::CanonicalizeEntryPointIO::Config>(std::move(entry_point_io_cfg)); |
| auto out = manager.Run(in, data); |
| |
| SanitizedResult result; |
| result.program = std::move(out.program); |
| if (!result.program.IsValid()) { |
| return result; |
| } |
| if (auto* res = out.data.Get<transform::ArrayLengthFromUniform::Result>()) { |
| result.used_array_length_from_uniform_indices = std::move(res->used_size_indices); |
| } |
| result.needs_storage_buffer_sizes = !result.used_array_length_from_uniform_indices.empty(); |
| return result; |
| } |
| |
| GeneratorImpl::GeneratorImpl(const Program* program) : TextGenerator(program) {} |
| |
| GeneratorImpl::~GeneratorImpl() = default; |
| |
| bool GeneratorImpl::Generate() { |
| line() << "#include <metal_stdlib>"; |
| line(); |
| line() << "using namespace metal;"; |
| |
| auto helpers_insertion_point = current_buffer_->lines.size(); |
| |
| auto* mod = builder_.Sem().Module(); |
| for (auto* decl : mod->DependencyOrderedDeclarations()) { |
| bool ok = Switch( |
| decl, // |
| [&](const ast::Struct* str) { |
| TINT_DEFER(line()); |
| return EmitTypeDecl(TypeOf(str)); |
| }, |
| [&](const ast::Alias*) { |
| return true; // folded away by the writer |
| }, |
| [&](const ast::Const*) { |
| return true; // Constants are embedded at their use |
| }, |
| [&](const ast::Override* override) { |
| TINT_DEFER(line()); |
| return EmitOverride(override); |
| }, |
| [&](const ast::Function* func) { |
| TINT_DEFER(line()); |
| if (func->IsEntryPoint()) { |
| return EmitEntryPointFunction(func); |
| } |
| return EmitFunction(func); |
| }, |
| [&](const ast::Enable*) { |
| // Do nothing for enabling extension in MSL |
| return true; |
| }, |
| [&](const ast::StaticAssert*) { |
| return true; // Not emitted |
| }, |
| [&](Default) { |
| // These are pushed into the entry point by sanitizer transforms. |
| TINT_ICE(Writer, diagnostics_) << "unhandled type: " << decl->TypeInfo().name; |
| return false; |
| }); |
| if (!ok) { |
| return false; |
| } |
| } |
| |
| if (!invariant_define_name_.empty()) { |
| // 'invariant' attribute requires MSL 2.1 or higher. |
| // WGSL can ignore the invariant attribute on pre MSL 2.1 devices. |
| // See: https://github.com/gpuweb/gpuweb/issues/893#issuecomment-745537465 |
| line(&helpers_) << "#if __METAL_VERSION__ >= 210"; |
| line(&helpers_) << "#define " << invariant_define_name_ << " @invariant"; |
| line(&helpers_) << "#else"; |
| line(&helpers_) << "#define " << invariant_define_name_; |
| line(&helpers_) << "#endif"; |
| line(&helpers_); |
| } |
| |
| if (!helpers_.lines.empty()) { |
| current_buffer_->Insert("", helpers_insertion_point++, 0); |
| current_buffer_->Insert(helpers_, helpers_insertion_point++, 0); |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitTypeDecl(const sem::Type* ty) { |
| if (auto* str = ty->As<sem::Struct>()) { |
| if (!EmitStructType(current_buffer_, str)) { |
| return false; |
| } |
| } else { |
| diagnostics_.add_error(diag::System::Writer, |
| "unknown alias type: " + ty->FriendlyName(builder_.Symbols())); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitIndexAccessor(std::ostream& out, const ast::IndexAccessorExpression* expr) { |
| bool paren_lhs = |
| !expr->object->IsAnyOf<ast::IndexAccessorExpression, ast::CallExpression, |
| ast::IdentifierExpression, ast::MemberAccessorExpression>(); |
| |
| if (paren_lhs) { |
| out << "("; |
| } |
| if (!EmitExpression(out, expr->object)) { |
| return false; |
| } |
| if (paren_lhs) { |
| out << ")"; |
| } |
| |
| out << "["; |
| |
| if (!EmitExpression(out, expr->index)) { |
| return false; |
| } |
| out << "]"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBitcast(std::ostream& out, const ast::BitcastExpression* expr) { |
| out << "as_type<"; |
| if (!EmitType(out, TypeOf(expr)->UnwrapRef(), "")) { |
| return false; |
| } |
| |
| out << ">("; |
| if (!EmitExpression(out, expr->expr)) { |
| return false; |
| } |
| |
| out << ")"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitAssign(const ast::AssignmentStatement* stmt) { |
| auto out = line(); |
| |
| if (!EmitExpression(out, stmt->lhs)) { |
| return false; |
| } |
| |
| out << " = "; |
| |
| if (!EmitExpression(out, stmt->rhs)) { |
| return false; |
| } |
| |
| out << ";"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBinary(std::ostream& out, const ast::BinaryExpression* expr) { |
| auto emit_op = [&] { |
| out << " "; |
| |
| switch (expr->op) { |
| case ast::BinaryOp::kAnd: |
| out << "&"; |
| break; |
| case ast::BinaryOp::kOr: |
| out << "|"; |
| break; |
| case ast::BinaryOp::kXor: |
| out << "^"; |
| break; |
| case ast::BinaryOp::kLogicalAnd: |
| out << "&&"; |
| break; |
| case ast::BinaryOp::kLogicalOr: |
| out << "||"; |
| break; |
| case ast::BinaryOp::kEqual: |
| out << "=="; |
| break; |
| case ast::BinaryOp::kNotEqual: |
| out << "!="; |
| break; |
| case ast::BinaryOp::kLessThan: |
| out << "<"; |
| break; |
| case ast::BinaryOp::kGreaterThan: |
| out << ">"; |
| break; |
| case ast::BinaryOp::kLessThanEqual: |
| out << "<="; |
| break; |
| case ast::BinaryOp::kGreaterThanEqual: |
| out << ">="; |
| break; |
| case ast::BinaryOp::kShiftLeft: |
| out << "<<"; |
| break; |
| case ast::BinaryOp::kShiftRight: |
| // TODO(dsinclair): MSL is based on C++14, and >> in C++14 has |
| // implementation-defined behaviour for negative LHS. We may have to |
| // generate extra code to implement WGSL-specified behaviour for |
| // negative LHS. |
| out << R"(>>)"; |
| break; |
| |
| case ast::BinaryOp::kAdd: |
| out << "+"; |
| break; |
| case ast::BinaryOp::kSubtract: |
| out << "-"; |
| break; |
| case ast::BinaryOp::kMultiply: |
| out << "*"; |
| break; |
| case ast::BinaryOp::kDivide: |
| out << "/"; |
| break; |
| case ast::BinaryOp::kModulo: |
| out << "%"; |
| break; |
| case ast::BinaryOp::kNone: |
| diagnostics_.add_error(diag::System::Writer, "missing binary operation type"); |
| return false; |
| } |
| out << " "; |
| return true; |
| }; |
| |
| auto signed_type_of = [&](const sem::Type* ty) -> const sem::Type* { |
| if (ty->is_integer_scalar()) { |
| return builder_.create<sem::I32>(); |
| } else if (auto* v = ty->As<sem::Vector>()) { |
| return builder_.create<sem::Vector>(builder_.create<sem::I32>(), v->Width()); |
| } |
| return {}; |
| }; |
| |
| auto unsigned_type_of = [&](const sem::Type* ty) -> const sem::Type* { |
| if (ty->is_integer_scalar()) { |
| return builder_.create<sem::U32>(); |
| } else if (auto* v = ty->As<sem::Vector>()) { |
| return builder_.create<sem::Vector>(builder_.create<sem::U32>(), v->Width()); |
| } |
| return {}; |
| }; |
| |
| auto* lhs_type = TypeOf(expr->lhs)->UnwrapRef(); |
| auto* rhs_type = TypeOf(expr->rhs)->UnwrapRef(); |
| |
| // Handle fmod |
| if (expr->op == ast::BinaryOp::kModulo && lhs_type->is_float_scalar_or_vector()) { |
| out << "fmod"; |
| ScopedParen sp(out); |
| if (!EmitExpression(out, expr->lhs)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, expr->rhs)) { |
| return false; |
| } |
| return true; |
| } |
| |
| // Handle +/-/* of signed values |
| if ((expr->IsAdd() || expr->IsSubtract() || expr->IsMultiply()) && |
| lhs_type->is_signed_scalar_or_vector() && rhs_type->is_signed_scalar_or_vector()) { |
| // If lhs or rhs is a vector, use that type (support implicit scalar to |
| // vector promotion) |
| auto* target_type = lhs_type->Is<sem::Vector>() |
| ? lhs_type |
| : (rhs_type->Is<sem::Vector>() ? rhs_type : lhs_type); |
| |
| // WGSL defines behaviour for signed overflow, MSL does not. For these |
| // cases, bitcast operands to unsigned, then cast result to signed. |
| ScopedBitCast outer_int_cast(this, out, target_type, signed_type_of(target_type)); |
| ScopedParen sp(out); |
| { |
| ScopedBitCast lhs_uint_cast(this, out, lhs_type, unsigned_type_of(target_type)); |
| if (!EmitExpression(out, expr->lhs)) { |
| return false; |
| } |
| } |
| if (!emit_op()) { |
| return false; |
| } |
| { |
| ScopedBitCast rhs_uint_cast(this, out, rhs_type, unsigned_type_of(target_type)); |
| if (!EmitExpression(out, expr->rhs)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Handle left bit shifting a signed value |
| // TODO(crbug.com/tint/1077): This may not be necessary. The MSL spec |
| // seems to imply that left shifting a signed value is treated the same as |
| // left shifting an unsigned value, but we need to make sure. |
| if (expr->IsShiftLeft() && lhs_type->is_signed_scalar_or_vector()) { |
| // Shift left: discards top bits, so convert first operand to unsigned |
| // first, then convert result back to signed |
| ScopedBitCast outer_int_cast(this, out, lhs_type, signed_type_of(lhs_type)); |
| ScopedParen sp(out); |
| { |
| ScopedBitCast lhs_uint_cast(this, out, lhs_type, unsigned_type_of(lhs_type)); |
| if (!EmitExpression(out, expr->lhs)) { |
| return false; |
| } |
| } |
| if (!emit_op()) { |
| return false; |
| } |
| if (!EmitExpression(out, expr->rhs)) { |
| return false; |
| } |
| return true; |
| } |
| |
| // Handle '&' and '|' of booleans. |
| if ((expr->IsAnd() || expr->IsOr()) && lhs_type->Is<sem::Bool>()) { |
| out << "bool"; |
| ScopedParen sp(out); |
| if (!EmitExpression(out, expr->lhs)) { |
| return false; |
| } |
| if (!emit_op()) { |
| return false; |
| } |
| if (!EmitExpression(out, expr->rhs)) { |
| return false; |
| } |
| return true; |
| } |
| |
| // Emit as usual |
| ScopedParen sp(out); |
| if (!EmitExpression(out, expr->lhs)) { |
| return false; |
| } |
| if (!emit_op()) { |
| return false; |
| } |
| if (!EmitExpression(out, expr->rhs)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBreak(const ast::BreakStatement*) { |
| line() << "break;"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitCall(std::ostream& out, const ast::CallExpression* expr) { |
| auto* call = program_->Sem().Get<sem::Call>(expr); |
| auto* target = call->Target(); |
| return Switch( |
| target, [&](const sem::Function* func) { return EmitFunctionCall(out, call, func); }, |
| [&](const sem::Builtin* builtin) { return EmitBuiltinCall(out, call, builtin); }, |
| [&](const sem::TypeConversion* conv) { return EmitTypeConversion(out, call, conv); }, |
| [&](const sem::TypeConstructor* ctor) { return EmitTypeConstructor(out, call, ctor); }, |
| [&](Default) { |
| TINT_ICE(Writer, diagnostics_) << "unhandled call target: " << target->TypeInfo().name; |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitFunctionCall(std::ostream& out, |
| const sem::Call* call, |
| const sem::Function*) { |
| auto* ident = call->Declaration()->target.name; |
| out << program_->Symbols().NameFor(ident->symbol) << "("; |
| |
| bool first = true; |
| for (auto* arg : call->Arguments()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitExpression(out, arg->Declaration())) { |
| return false; |
| } |
| } |
| |
| out << ")"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBuiltinCall(std::ostream& out, |
| const sem::Call* call, |
| const sem::Builtin* builtin) { |
| auto* expr = call->Declaration(); |
| if (builtin->IsAtomic()) { |
| return EmitAtomicCall(out, expr, builtin); |
| } |
| if (builtin->IsTexture()) { |
| return EmitTextureCall(out, call, builtin); |
| } |
| |
| auto name = generate_builtin_name(builtin); |
| |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kDot: |
| return EmitDotCall(out, expr, builtin); |
| case sem::BuiltinType::kModf: |
| return EmitModfCall(out, expr, builtin); |
| case sem::BuiltinType::kFrexp: |
| return EmitFrexpCall(out, expr, builtin); |
| case sem::BuiltinType::kDegrees: |
| return EmitDegreesCall(out, expr, builtin); |
| case sem::BuiltinType::kRadians: |
| return EmitRadiansCall(out, expr, builtin); |
| |
| case sem::BuiltinType::kPack2x16float: |
| case sem::BuiltinType::kUnpack2x16float: { |
| if (builtin->Type() == sem::BuiltinType::kPack2x16float) { |
| out << "as_type<uint>(half2("; |
| } else { |
| out << "float2(as_type<half2>("; |
| } |
| if (!EmitExpression(out, expr->args[0])) { |
| return false; |
| } |
| out << "))"; |
| return true; |
| } |
| // TODO(crbug.com/tint/661): Combine sequential barriers to a single |
| // instruction. |
| case sem::BuiltinType::kStorageBarrier: { |
| out << "threadgroup_barrier(mem_flags::mem_device)"; |
| return true; |
| } |
| case sem::BuiltinType::kWorkgroupBarrier: { |
| out << "threadgroup_barrier(mem_flags::mem_threadgroup)"; |
| return true; |
| } |
| |
| case sem::BuiltinType::kLength: { |
| auto* sem = builder_.Sem().Get(expr->args[0]); |
| if (sem->Type()->UnwrapRef()->is_scalar()) { |
| // Emulate scalar overload using fabs(x). |
| name = "fabs"; |
| } |
| break; |
| } |
| |
| case sem::BuiltinType::kDistance: { |
| auto* sem = builder_.Sem().Get(expr->args[0]); |
| if (sem->Type()->UnwrapRef()->is_scalar()) { |
| // Emulate scalar overload using fabs(x - y); |
| out << "fabs"; |
| ScopedParen sp(out); |
| if (!EmitExpression(out, expr->args[0])) { |
| return false; |
| } |
| out << " - "; |
| if (!EmitExpression(out, expr->args[1])) { |
| return false; |
| } |
| return true; |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| if (name.empty()) { |
| return false; |
| } |
| |
| out << name << "("; |
| |
| bool first = true; |
| for (auto* arg : expr->args) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitExpression(out, arg)) { |
| return false; |
| } |
| } |
| |
| out << ")"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitTypeConversion(std::ostream& out, |
| const sem::Call* call, |
| const sem::TypeConversion* conv) { |
| if (!EmitType(out, conv->Target(), "")) { |
| return false; |
| } |
| out << "("; |
| |
| if (!EmitExpression(out, call->Arguments()[0]->Declaration())) { |
| return false; |
| } |
| |
| out << ")"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitTypeConstructor(std::ostream& out, |
| const sem::Call* call, |
| const sem::TypeConstructor* ctor) { |
| auto* type = ctor->ReturnType(); |
| |
| const char* terminator = ")"; |
| TINT_DEFER(out << terminator); |
| |
| bool ok = Switch( |
| type, |
| [&](const sem::Array*) { |
| if (!EmitType(out, type, "")) { |
| return false; |
| } |
| out << "{"; |
| terminator = "}"; |
| return true; |
| }, |
| [&](const sem::Struct*) { |
| out << "{"; |
| terminator = "}"; |
| return true; |
| }, |
| [&](Default) { |
| if (!EmitType(out, type, "")) { |
| return false; |
| } |
| out << "("; |
| return true; |
| }); |
| if (!ok) { |
| return false; |
| } |
| |
| size_t i = 0; |
| for (auto* arg : call->Arguments()) { |
| if (i > 0) { |
| out << ", "; |
| } |
| |
| if (auto* struct_ty = type->As<sem::Struct>()) { |
| // Emit field designators for structures to account for padding members. |
| auto* member = struct_ty->Members()[i]->Declaration(); |
| auto name = program_->Symbols().NameFor(member->symbol); |
| out << "." << name << "="; |
| } |
| |
| if (!EmitExpression(out, arg->Declaration())) { |
| return false; |
| } |
| |
| i++; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitAtomicCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| auto call = [&](const std::string& name, bool append_memory_order_relaxed) { |
| out << name; |
| { |
| ScopedParen sp(out); |
| for (size_t i = 0; i < expr->args.Length(); i++) { |
| auto* arg = expr->args[i]; |
| if (i > 0) { |
| out << ", "; |
| } |
| if (!EmitExpression(out, arg)) { |
| return false; |
| } |
| } |
| if (append_memory_order_relaxed) { |
| out << ", memory_order_relaxed"; |
| } |
| } |
| return true; |
| }; |
| |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kAtomicLoad: |
| return call("atomic_load_explicit", true); |
| |
| case sem::BuiltinType::kAtomicStore: |
| return call("atomic_store_explicit", true); |
| |
| case sem::BuiltinType::kAtomicAdd: |
| return call("atomic_fetch_add_explicit", true); |
| |
| case sem::BuiltinType::kAtomicSub: |
| return call("atomic_fetch_sub_explicit", true); |
| |
| case sem::BuiltinType::kAtomicMax: |
| return call("atomic_fetch_max_explicit", true); |
| |
| case sem::BuiltinType::kAtomicMin: |
| return call("atomic_fetch_min_explicit", true); |
| |
| case sem::BuiltinType::kAtomicAnd: |
| return call("atomic_fetch_and_explicit", true); |
| |
| case sem::BuiltinType::kAtomicOr: |
| return call("atomic_fetch_or_explicit", true); |
| |
| case sem::BuiltinType::kAtomicXor: |
| return call("atomic_fetch_xor_explicit", true); |
| |
| case sem::BuiltinType::kAtomicExchange: |
| return call("atomic_exchange_explicit", true); |
| |
| case sem::BuiltinType::kAtomicCompareExchangeWeak: { |
| auto* ptr_ty = TypeOf(expr->args[0])->UnwrapRef()->As<sem::Pointer>(); |
| auto sc = ptr_ty->StorageClass(); |
| auto* str = builtin->ReturnType()->As<sem::Struct>(); |
| |
| auto func = utils::GetOrCreate( |
| atomicCompareExchangeWeak_, ACEWKeyType{{sc, str}}, [&]() -> std::string { |
| // Emit the builtin return type unique to this overload. This does not |
| // exist in the AST, so it will not be generated in Generate(). |
| if (!EmitStructTypeOnce(&helpers_, builtin->ReturnType()->As<sem::Struct>())) { |
| return ""; |
| } |
| |
| auto name = UniqueIdentifier("atomicCompareExchangeWeak"); |
| auto& buf = helpers_; |
| auto* atomic_ty = builtin->Parameters()[0]->Type(); |
| auto* arg_ty = builtin->Parameters()[1]->Type(); |
| |
| { |
| auto f = line(&buf); |
| auto str_name = StructName(builtin->ReturnType()->As<sem::Struct>()); |
| f << str_name << " " << name << "("; |
| if (!EmitTypeAndName(f, atomic_ty, "atomic")) { |
| return ""; |
| } |
| f << ", "; |
| if (!EmitTypeAndName(f, arg_ty, "compare")) { |
| return ""; |
| } |
| f << ", "; |
| if (!EmitTypeAndName(f, arg_ty, "value")) { |
| return ""; |
| } |
| f << ") {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| line(&buf) << "}"; |
| line(&buf); |
| }); |
| |
| { |
| auto f = line(&buf); |
| if (!EmitTypeAndName(f, arg_ty, "old_value")) { |
| return ""; |
| } |
| f << " = compare;"; |
| } |
| line(&buf) << "bool exchanged = " |
| "atomic_compare_exchange_weak_explicit(atomic, " |
| "&old_value, value, memory_order_relaxed, " |
| "memory_order_relaxed);"; |
| line(&buf) << "return {old_value, exchanged};"; |
| return name; |
| }); |
| |
| if (func.empty()) { |
| return false; |
| } |
| return call(func, false); |
| } |
| |
| default: |
| break; |
| } |
| |
| TINT_UNREACHABLE(Writer, diagnostics_) << "unsupported atomic builtin: " << builtin->Type(); |
| return false; |
| } |
| |
| bool GeneratorImpl::EmitTextureCall(std::ostream& out, |
| const sem::Call* call, |
| const sem::Builtin* builtin) { |
| using Usage = sem::ParameterUsage; |
| |
| auto& signature = builtin->Signature(); |
| auto* expr = call->Declaration(); |
| auto& arguments = call->Arguments(); |
| |
| // Returns the argument with the given usage |
| auto arg = [&](Usage usage) { |
| int idx = signature.IndexOf(usage); |
| return (idx >= 0) ? arguments[static_cast<size_t>(idx)] : nullptr; |
| }; |
| |
| auto* texture = arg(Usage::kTexture)->Declaration(); |
| if (!texture) { |
| TINT_ICE(Writer, diagnostics_) << "missing texture arg"; |
| return false; |
| } |
| |
| auto* texture_type = TypeOf(texture)->UnwrapRef()->As<sem::Texture>(); |
| |
| // Helper to emit the texture expression, wrapped in parentheses if the |
| // expression includes an operator with lower precedence than the member |
| // accessor used for the function calls. |
| auto texture_expr = [&]() { |
| bool paren_lhs = |
| !texture->IsAnyOf<ast::IndexAccessorExpression, ast::CallExpression, |
| ast::IdentifierExpression, ast::MemberAccessorExpression>(); |
| if (paren_lhs) { |
| out << "("; |
| } |
| if (!EmitExpression(out, texture)) { |
| return false; |
| } |
| if (paren_lhs) { |
| out << ")"; |
| } |
| return true; |
| }; |
| |
| // MSL requires that `lod` is a constant 0 for 1D textures. |
| bool level_is_constant_zero = texture_type->dim() == ast::TextureDimension::k1d; |
| |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kTextureDimensions: { |
| std::vector<const char*> dims; |
| switch (texture_type->dim()) { |
| case ast::TextureDimension::kNone: |
| diagnostics_.add_error(diag::System::Writer, "texture dimension is kNone"); |
| return false; |
| case ast::TextureDimension::k1d: |
| dims = {"width"}; |
| break; |
| case ast::TextureDimension::k2d: |
| case ast::TextureDimension::k2dArray: |
| case ast::TextureDimension::kCube: |
| case ast::TextureDimension::kCubeArray: |
| dims = {"width", "height"}; |
| break; |
| case ast::TextureDimension::k3d: |
| dims = {"width", "height", "depth"}; |
| break; |
| } |
| |
| auto get_dim = [&](const char* name) { |
| if (!texture_expr()) { |
| return false; |
| } |
| out << ".get_" << name << "("; |
| if (level_is_constant_zero) { |
| out << "0"; |
| } else { |
| if (auto* level = arg(Usage::kLevel)) { |
| if (!EmitExpression(out, level->Declaration())) { |
| return false; |
| } |
| } |
| } |
| out << ")"; |
| return true; |
| }; |
| |
| if (dims.size() == 1) { |
| out << "int("; |
| get_dim(dims[0]); |
| out << ")"; |
| } else { |
| EmitType(out, TypeOf(expr)->UnwrapRef(), ""); |
| out << "("; |
| for (size_t i = 0; i < dims.size(); i++) { |
| if (i > 0) { |
| out << ", "; |
| } |
| get_dim(dims[i]); |
| } |
| out << ")"; |
| } |
| return true; |
| } |
| case sem::BuiltinType::kTextureNumLayers: { |
| out << "int("; |
| if (!texture_expr()) { |
| return false; |
| } |
| out << ".get_array_size())"; |
| return true; |
| } |
| case sem::BuiltinType::kTextureNumLevels: { |
| out << "int("; |
| if (!texture_expr()) { |
| return false; |
| } |
| out << ".get_num_mip_levels())"; |
| return true; |
| } |
| case sem::BuiltinType::kTextureNumSamples: { |
| out << "int("; |
| if (!texture_expr()) { |
| return false; |
| } |
| out << ".get_num_samples())"; |
| return true; |
| } |
| default: |
| break; |
| } |
| |
| if (!texture_expr()) { |
| return false; |
| } |
| |
| bool lod_param_is_named = true; |
| |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kTextureSample: |
| case sem::BuiltinType::kTextureSampleBias: |
| case sem::BuiltinType::kTextureSampleLevel: |
| case sem::BuiltinType::kTextureSampleGrad: |
| out << ".sample("; |
| break; |
| case sem::BuiltinType::kTextureSampleCompare: |
| case sem::BuiltinType::kTextureSampleCompareLevel: |
| out << ".sample_compare("; |
| break; |
| case sem::BuiltinType::kTextureGather: |
| out << ".gather("; |
| break; |
| case sem::BuiltinType::kTextureGatherCompare: |
| out << ".gather_compare("; |
| break; |
| case sem::BuiltinType::kTextureLoad: |
| out << ".read("; |
| lod_param_is_named = false; |
| break; |
| case sem::BuiltinType::kTextureStore: |
| out << ".write("; |
| break; |
| default: |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "Unhandled texture builtin '" << builtin->str() << "'"; |
| return false; |
| } |
| |
| bool first_arg = true; |
| auto maybe_write_comma = [&] { |
| if (!first_arg) { |
| out << ", "; |
| } |
| first_arg = false; |
| }; |
| |
| for (auto usage : {Usage::kValue, Usage::kSampler, Usage::kCoords, Usage::kArrayIndex, |
| Usage::kDepthRef, Usage::kSampleIndex}) { |
| if (auto* e = arg(usage)) { |
| maybe_write_comma(); |
| |
| // Cast the coordinates to unsigned integers if necessary. |
| bool casted = false; |
| if (usage == Usage::kCoords && e->Type()->UnwrapRef()->is_integer_scalar_or_vector()) { |
| casted = true; |
| switch (texture_type->dim()) { |
| case ast::TextureDimension::k1d: |
| out << "uint("; |
| break; |
| case ast::TextureDimension::k2d: |
| case ast::TextureDimension::k2dArray: |
| out << "uint2("; |
| break; |
| case ast::TextureDimension::k3d: |
| out << "uint3("; |
| break; |
| default: |
| TINT_ICE(Writer, diagnostics_) << "unhandled texture dimensionality"; |
| break; |
| } |
| } |
| |
| if (!EmitExpression(out, e->Declaration())) { |
| return false; |
| } |
| |
| if (casted) { |
| out << ")"; |
| } |
| } |
| } |
| |
| if (auto* bias = arg(Usage::kBias)) { |
| maybe_write_comma(); |
| out << "bias("; |
| if (!EmitExpression(out, bias->Declaration())) { |
| return false; |
| } |
| out << ")"; |
| } |
| if (auto* level = arg(Usage::kLevel)) { |
| maybe_write_comma(); |
| if (lod_param_is_named) { |
| out << "level("; |
| } |
| if (level_is_constant_zero) { |
| out << "0"; |
| } else { |
| if (!EmitExpression(out, level->Declaration())) { |
| return false; |
| } |
| } |
| if (lod_param_is_named) { |
| out << ")"; |
| } |
| } |
| if (builtin->Type() == sem::BuiltinType::kTextureSampleCompareLevel) { |
| maybe_write_comma(); |
| out << "level(0)"; |
| } |
| if (auto* ddx = arg(Usage::kDdx)) { |
| auto dim = texture_type->dim(); |
| switch (dim) { |
| case ast::TextureDimension::k2d: |
| case ast::TextureDimension::k2dArray: |
| maybe_write_comma(); |
| out << "gradient2d("; |
| break; |
| case ast::TextureDimension::k3d: |
| maybe_write_comma(); |
| out << "gradient3d("; |
| break; |
| case ast::TextureDimension::kCube: |
| case ast::TextureDimension::kCubeArray: |
| maybe_write_comma(); |
| out << "gradientcube("; |
| break; |
| default: { |
| std::stringstream err; |
| err << "MSL does not support gradients for " << dim << " textures"; |
| diagnostics_.add_error(diag::System::Writer, err.str()); |
| return false; |
| } |
| } |
| if (!EmitExpression(out, ddx->Declaration())) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, arg(Usage::kDdy)->Declaration())) { |
| return false; |
| } |
| out << ")"; |
| } |
| |
| bool has_offset = false; |
| if (auto* offset = arg(Usage::kOffset)) { |
| has_offset = true; |
| maybe_write_comma(); |
| if (!EmitExpression(out, offset->Declaration())) { |
| return false; |
| } |
| } |
| |
| if (auto* component = arg(Usage::kComponent)) { |
| maybe_write_comma(); |
| if (!has_offset) { |
| // offset argument may need to be provided if we have a component. |
| switch (texture_type->dim()) { |
| case ast::TextureDimension::k2d: |
| case ast::TextureDimension::k2dArray: |
| out << "int2(0), "; |
| break; |
| default: |
| break; // Other texture dimensions don't have an offset |
| } |
| } |
| auto c = component->ConstantValue()->As<AInt>(); |
| switch (c.value) { |
| case 0: |
| out << "component::x"; |
| break; |
| case 1: |
| out << "component::y"; |
| break; |
| case 2: |
| out << "component::z"; |
| break; |
| case 3: |
| out << "component::w"; |
| break; |
| default: |
| TINT_ICE(Writer, diagnostics_) << "invalid textureGather component: " << c; |
| break; |
| } |
| } |
| |
| out << ")"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitDotCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| auto* vec_ty = builtin->Parameters()[0]->Type()->As<sem::Vector>(); |
| std::string fn = "dot"; |
| if (vec_ty->type()->is_integer_scalar()) { |
| // MSL does not have a builtin for dot() with integer vector types. |
| // Generate the helper function if it hasn't been created already |
| fn = utils::GetOrCreate(int_dot_funcs_, vec_ty->Width(), [&]() -> std::string { |
| TextBuffer b; |
| TINT_DEFER(helpers_.Append(b)); |
| |
| auto fn_name = UniqueIdentifier("tint_dot" + std::to_string(vec_ty->Width())); |
| auto v = "vec<T," + std::to_string(vec_ty->Width()) + ">"; |
| |
| line(&b) << "template<typename T>"; |
| line(&b) << "T " << fn_name << "(" << v << " a, " << v << " b) {"; |
| { |
| auto l = line(&b); |
| l << " return "; |
| for (uint32_t i = 0; i < vec_ty->Width(); i++) { |
| if (i > 0) { |
| l << " + "; |
| } |
| l << "a[" << i << "]*b[" << i << "]"; |
| } |
| l << ";"; |
| } |
| line(&b) << "}"; |
| return fn_name; |
| }); |
| } |
| |
| out << fn << "("; |
| if (!EmitExpression(out, expr->args[0])) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, expr->args[1])) { |
| return false; |
| } |
| out << ")"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitModfCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| auto* ty = builtin->Parameters()[0]->Type(); |
| auto in = params[0]; |
| |
| std::string width; |
| if (auto* vec = ty->As<sem::Vector>()) { |
| width = std::to_string(vec->Width()); |
| } |
| |
| // Emit the builtin return type unique to this overload. This does not |
| // exist in the AST, so it will not be generated in Generate(). |
| if (!EmitStructType(&helpers_, builtin->ReturnType()->As<sem::Struct>())) { |
| return false; |
| } |
| |
| line(b) << StructName(builtin->ReturnType()->As<sem::Struct>()) << " result;"; |
| line(b) << "result.fract = modf(" << in << ", result.whole);"; |
| line(b) << "return result;"; |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitFrexpCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| auto* ty = builtin->Parameters()[0]->Type(); |
| auto in = params[0]; |
| |
| std::string width; |
| if (auto* vec = ty->As<sem::Vector>()) { |
| width = std::to_string(vec->Width()); |
| } |
| |
| // Emit the builtin return type unique to this overload. This does not |
| // exist in the AST, so it will not be generated in Generate(). |
| if (!EmitStructType(&helpers_, builtin->ReturnType()->As<sem::Struct>())) { |
| return false; |
| } |
| |
| line(b) << StructName(builtin->ReturnType()->As<sem::Struct>()) << " result;"; |
| line(b) << "result.sig = frexp(" << in << ", result.exp);"; |
| line(b) << "return result;"; |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitDegreesCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper(out, expr, builtin, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| line(b) << "return " << params[0] << " * " << std::setprecision(20) |
| << sem::kRadToDeg << ";"; |
| return true; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitRadiansCall(std::ostream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper(out, expr, builtin, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| line(b) << "return " << params[0] << " * " << std::setprecision(20) |
| << sem::kDegToRad << ";"; |
| return true; |
| }); |
| } |
| |
| std::string GeneratorImpl::generate_builtin_name(const sem::Builtin* builtin) { |
| std::string out = ""; |
| switch (builtin->Type()) { |
| case sem::BuiltinType::kAcos: |
| case sem::BuiltinType::kAcosh: |
| case sem::BuiltinType::kAll: |
| case sem::BuiltinType::kAny: |
| case sem::BuiltinType::kAsin: |
| case sem::BuiltinType::kAsinh: |
| case sem::BuiltinType::kAtanh: |
| case sem::BuiltinType::kAtan: |
| case sem::BuiltinType::kAtan2: |
| case sem::BuiltinType::kCeil: |
| case sem::BuiltinType::kCos: |
| case sem::BuiltinType::kCosh: |
| case sem::BuiltinType::kCross: |
| case sem::BuiltinType::kDeterminant: |
| case sem::BuiltinType::kDistance: |
| case sem::BuiltinType::kDot: |
| case sem::BuiltinType::kExp: |
| case sem::BuiltinType::kExp2: |
| case sem::BuiltinType::kFloor: |
| case sem::BuiltinType::kFma: |
| case sem::BuiltinType::kFract: |
| case sem::BuiltinType::kFrexp: |
| case sem::BuiltinType::kLength: |
| case sem::BuiltinType::kLdexp: |
| case sem::BuiltinType::kLog: |
| case sem::BuiltinType::kLog2: |
| case sem::BuiltinType::kMix: |
| case sem::BuiltinType::kModf: |
| case sem::BuiltinType::kNormalize: |
| case sem::BuiltinType::kPow: |
| case sem::BuiltinType::kReflect: |
| case sem::BuiltinType::kRefract: |
| case sem::BuiltinType::kSelect: |
| case sem::BuiltinType::kSin: |
| case sem::BuiltinType::kSinh: |
| case sem::BuiltinType::kSqrt: |
| case sem::BuiltinType::kStep: |
| case sem::BuiltinType::kTan: |
| case sem::BuiltinType::kTanh: |
| case sem::BuiltinType::kTranspose: |
| case sem::BuiltinType::kTrunc: |
| case sem::BuiltinType::kSign: |
| case sem::BuiltinType::kClamp: |
| out += builtin->str(); |
| break; |
| case sem::BuiltinType::kAbs: |
| if (builtin->ReturnType()->is_float_scalar_or_vector()) { |
| out += "fabs"; |
| } else { |
| out += "abs"; |
| } |
| break; |
| case sem::BuiltinType::kCountLeadingZeros: |
| out += "clz"; |
| break; |
| case sem::BuiltinType::kCountOneBits: |
| out += "popcount"; |
| break; |
| case sem::BuiltinType::kCountTrailingZeros: |
| out += "ctz"; |
| break; |
| case sem::BuiltinType::kDpdx: |
| case sem::BuiltinType::kDpdxCoarse: |
| case sem::BuiltinType::kDpdxFine: |
| out += "dfdx"; |
| break; |
| case sem::BuiltinType::kDpdy: |
| case sem::BuiltinType::kDpdyCoarse: |
| case sem::BuiltinType::kDpdyFine: |
| out += "dfdy"; |
| break; |
| case sem::BuiltinType::kExtractBits: |
| out += "extract_bits"; |
| break; |
| case sem::BuiltinType::kInsertBits: |
| out += "insert_bits"; |
| break; |
| case sem::BuiltinType::kFwidth: |
| case sem::BuiltinType::kFwidthCoarse: |
| case sem::BuiltinType::kFwidthFine: |
| out += "fwidth"; |
| break; |
| case sem::BuiltinType::kMax: |
| if (builtin->ReturnType()->is_float_scalar_or_vector()) { |
| out += "fmax"; |
| } else { |
| out += "max"; |
| } |
| break; |
| case sem::BuiltinType::kMin: |
| if (builtin->ReturnType()->is_float_scalar_or_vector()) { |
| out += "fmin"; |
| } else { |
| out += "min"; |
| } |
| break; |
| case sem::BuiltinType::kFaceForward: |
| out += "faceforward"; |
| break; |
| case sem::BuiltinType::kPack4x8snorm: |
| out += "pack_float_to_snorm4x8"; |
| break; |
| case sem::BuiltinType::kPack4x8unorm: |
| out += "pack_float_to_unorm4x8"; |
| break; |
| case sem::BuiltinType::kPack2x16snorm: |
| out += "pack_float_to_snorm2x16"; |
| break; |
| case sem::BuiltinType::kPack2x16unorm: |
| out += "pack_float_to_unorm2x16"; |
| break; |
| case sem::BuiltinType::kReverseBits: |
| out += "reverse_bits"; |
| break; |
| case sem::BuiltinType::kRound: |
| out += "rint"; |
| break; |
| case sem::BuiltinType::kSmoothstep: |
| out += "smoothstep"; |
| break; |
| case sem::BuiltinType::kInverseSqrt: |
| out += "rsqrt"; |
| break; |
| case sem::BuiltinType::kUnpack4x8snorm: |
| out += "unpack_snorm4x8_to_float"; |
| break; |
| case sem::BuiltinType::kUnpack4x8unorm: |
| out += "unpack_unorm4x8_to_float"; |
| break; |
| case sem::BuiltinType::kUnpack2x16snorm: |
| out += "unpack_snorm2x16_to_float"; |
| break; |
| case sem::BuiltinType::kUnpack2x16unorm: |
| out += "unpack_unorm2x16_to_float"; |
| break; |
| case sem::BuiltinType::kArrayLength: |
| diagnostics_.add_error( |
| diag::System::Writer, |
| "Unable to translate builtin: " + std::string(builtin->str()) + |
| "\nDid you forget to pass array_length_from_uniform generator " |
| "options?"); |
| return ""; |
| default: |
| diagnostics_.add_error(diag::System::Writer, |
| "Unknown import method: " + std::string(builtin->str())); |
| return ""; |
| } |
| return out; |
| } |
| |
| bool GeneratorImpl::EmitCase(const ast::CaseStatement* stmt) { |
| if (stmt->IsDefault()) { |
| line() << "default: {"; |
| } else { |
| for (auto* selector : stmt->selectors) { |
| auto out = line(); |
| out << "case "; |
| if (!EmitLiteral(out, selector)) { |
| return false; |
| } |
| out << ":"; |
| if (selector == stmt->selectors.Back()) { |
| out << " {"; |
| } |
| } |
| } |
| |
| { |
| ScopedIndent si(this); |
| |
| for (auto* s : stmt->body->statements) { |
| if (!EmitStatement(s)) { |
| return false; |
| } |
| } |
| |
| if (!last_is_break_or_fallthrough(stmt->body)) { |
| line() << "break;"; |
| } |
| } |
| |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitContinue(const ast::ContinueStatement*) { |
| if (!emit_continuing_ || !emit_continuing_()) { |
| return false; |
| } |
| |
| line() << "continue;"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitZeroValue(std::ostream& out, const sem::Type* type) { |
| return Switch( |
| type, |
| [&](const sem::Bool*) { |
| out << "false"; |
| return true; |
| }, |
| [&](const sem::F16*) { |
| out << "0.0h"; |
| return true; |
| }, |
| [&](const sem::F32*) { |
| out << "0.0f"; |
| return true; |
| }, |
| [&](const sem::I32*) { |
| out << "0"; |
| return true; |
| }, |
| [&](const sem::U32*) { |
| out << "0u"; |
| return true; |
| }, |
| [&](const sem::Vector* vec) { // |
| return EmitZeroValue(out, vec->type()); |
| }, |
| [&](const sem::Matrix* mat) { |
| if (!EmitType(out, mat, "")) { |
| return false; |
| } |
| ScopedParen sp(out); |
| return EmitZeroValue(out, mat->type()); |
| }, |
| [&](const sem::Array*) { |
| out << "{}"; |
| return true; |
| }, |
| [&](const sem::Struct*) { |
| out << "{}"; |
| return true; |
| }, |
| [&](Default) { |
| diagnostics_.add_error( |
| diag::System::Writer, |
| "Invalid type for zero emission: " + type->FriendlyName(builder_.Symbols())); |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitConstant(std::ostream& out, const sem::Constant* constant) { |
| return Switch( |
| constant->Type(), // |
| [&](const sem::Bool*) { |
| out << (constant->As<AInt>() ? "true" : "false"); |
| return true; |
| }, |
| [&](const sem::F32*) { |
| PrintF32(out, constant->As<float>()); |
| return true; |
| }, |
| [&](const sem::F16*) { |
| PrintF16(out, constant->As<float>()); |
| return true; |
| }, |
| [&](const sem::I32*) { |
| PrintI32(out, constant->As<int32_t>()); |
| return true; |
| }, |
| [&](const sem::U32*) { |
| out << constant->As<AInt>() << "u"; |
| return true; |
| }, |
| [&](const sem::Vector* v) { |
| if (!EmitType(out, v, "")) { |
| return false; |
| } |
| |
| ScopedParen sp(out); |
| |
| if (constant->AllEqual()) { |
| if (!EmitConstant(out, constant->Index(0))) { |
| return false; |
| } |
| return true; |
| } |
| |
| for (size_t i = 0; i < v->Width(); i++) { |
| if (i > 0) { |
| out << ", "; |
| } |
| if (!EmitConstant(out, constant->Index(i))) { |
| return false; |
| } |
| } |
| return true; |
| }, |
| [&](const sem::Matrix* m) { |
| if (!EmitType(out, m, "")) { |
| return false; |
| } |
| |
| ScopedParen sp(out); |
| |
| for (size_t i = 0; i < m->columns(); i++) { |
| if (i > 0) { |
| out << ", "; |
| } |
| if (!EmitConstant(out, constant->Index(i))) { |
| return false; |
| } |
| } |
| return true; |
| }, |
| [&](const sem::Array* a) { |
| if (!EmitType(out, a, "")) { |
| return false; |
| } |
| |
| out << "{"; |
| TINT_DEFER(out << "}"); |
| |
| if (constant->AllZero()) { |
| return true; |
| } |
| |
| for (size_t i = 0; i < a->Count(); i++) { |
| if (i > 0) { |
| out << ", "; |
| } |
| if (!EmitConstant(out, constant->Index(i))) { |
| return false; |
| } |
| } |
| |
| return true; |
| }, |
| [&](const sem::Struct* s) { |
| out << program_->Symbols().NameFor(s->Name()) << "{"; |
| TINT_DEFER(out << "}"); |
| |
| if (constant->AllZero()) { |
| return true; |
| } |
| |
| auto& members = s->Members(); |
| for (size_t i = 0; i < members.size(); i++) { |
| if (i > 0) { |
| out << ", "; |
| } |
| out << "." << program_->Symbols().NameFor(members[i]->Name()) << "="; |
| if (!EmitConstant(out, constant->Index(i))) { |
| return false; |
| } |
| } |
| |
| return true; |
| }, |
| [&](Default) { |
| diagnostics_.add_error( |
| diag::System::Writer, |
| "unhandled constant type: " + builder_.FriendlyName(constant->Type())); |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitLiteral(std::ostream& out, const ast::LiteralExpression* lit) { |
| return Switch( |
| lit, |
| [&](const ast::BoolLiteralExpression* l) { |
| out << (l->value ? "true" : "false"); |
| return true; |
| }, |
| [&](const ast::FloatLiteralExpression* l) { |
| if (l->suffix == ast::FloatLiteralExpression::Suffix::kH) { |
| PrintF16(out, static_cast<float>(l->value)); |
| } else { |
| PrintF32(out, static_cast<float>(l->value)); |
| } |
| return true; |
| }, |
| [&](const ast::IntLiteralExpression* i) { |
| switch (i->suffix) { |
| case ast::IntLiteralExpression::Suffix::kNone: |
| case ast::IntLiteralExpression::Suffix::kI: { |
| PrintI32(out, static_cast<int32_t>(i->value)); |
| return true; |
| } |
| case ast::IntLiteralExpression::Suffix::kU: { |
| out << i->value << "u"; |
| return true; |
| } |
| } |
| diagnostics_.add_error(diag::System::Writer, "unknown integer literal suffix type"); |
| return false; |
| }, |
| [&](Default) { |
| diagnostics_.add_error(diag::System::Writer, "unknown literal type"); |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitExpression(std::ostream& out, const ast::Expression* expr) { |
| if (auto* sem = builder_.Sem().Get(expr)) { |
| if (auto* user = sem->As<sem::VariableUser>(); |
| !user || !user->Variable()->Declaration()->Is<ast::Let>()) { |
| // Disable constant inlining if the constant expression is from a 'let' declaration. |
| // TODO(crbug.com/tint/1580): Once 'const' is implemented, 'let' will no longer resolve |
| // to a shader-creation time constant value, and this can be removed. |
| if (auto constant = sem->ConstantValue()) { |
| return EmitConstant(out, constant); |
| } |
| } |
| } |
| return Switch( |
| expr, |
| [&](const ast::IndexAccessorExpression* a) { // |
| return EmitIndexAccessor(out, a); |
| }, |
| [&](const ast::BinaryExpression* b) { // |
| return EmitBinary(out, b); |
| }, |
| [&](const ast::BitcastExpression* b) { // |
| return EmitBitcast(out, b); |
| }, |
| [&](const ast::CallExpression* c) { // |
| return EmitCall(out, c); |
| }, |
| [&](const ast::IdentifierExpression* i) { // |
| return EmitIdentifier(out, i); |
| }, |
| [&](const ast::LiteralExpression* l) { // |
| return EmitLiteral(out, l); |
| }, |
| [&](const ast::MemberAccessorExpression* m) { // |
| return EmitMemberAccessor(out, m); |
| }, |
| [&](const ast::UnaryOpExpression* u) { // |
| return EmitUnaryOp(out, u); |
| }, |
| [&](Default) { // |
| diagnostics_.add_error(diag::System::Writer, "unknown expression type: " + |
| std::string(expr->TypeInfo().name)); |
| return false; |
| }); |
| } |
| |
| void GeneratorImpl::EmitStage(std::ostream& out, ast::PipelineStage stage) { |
| switch (stage) { |
| case ast::PipelineStage::kFragment: |
| out << "fragment"; |
| break; |
| case ast::PipelineStage::kVertex: |
| out << "vertex"; |
| break; |
| case ast::PipelineStage::kCompute: |
| out << "kernel"; |
| break; |
| case ast::PipelineStage::kNone: |
| break; |
| } |
| return; |
| } |
| |
| bool GeneratorImpl::EmitFunction(const ast::Function* func) { |
| auto* func_sem = program_->Sem().Get(func); |
| |
| { |
| auto out = line(); |
| if (!EmitType(out, func_sem->ReturnType(), "")) { |
| return false; |
| } |
| out << " " << program_->Symbols().NameFor(func->symbol) << "("; |
| |
| bool first = true; |
| for (auto* v : func->params) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| auto* type = program_->Sem().Get(v)->Type(); |
| |
| std::string param_name = "const " + program_->Symbols().NameFor(v->symbol); |
| if (!EmitType(out, type, param_name)) { |
| return false; |
| } |
| // Parameter name is output as part of the type for pointers. |
| if (!type->Is<sem::Pointer>()) { |
| out << " " << program_->Symbols().NameFor(v->symbol); |
| } |
| } |
| |
| out << ") {"; |
| } |
| |
| if (!EmitStatementsWithIndent(func->body->statements)) { |
| return false; |
| } |
| |
| line() << "}"; |
| |
| return true; |
| } |
| |
| std::string GeneratorImpl::builtin_to_attribute(ast::BuiltinValue builtin) const { |
| switch (builtin) { |
| case ast::BuiltinValue::kPosition: |
| return "position"; |
| case ast::BuiltinValue::kVertexIndex: |
| return "vertex_id"; |
| case ast::BuiltinValue::kInstanceIndex: |
| return "instance_id"; |
| case ast::BuiltinValue::kFrontFacing: |
| return "front_facing"; |
| case ast::BuiltinValue::kFragDepth: |
| return "depth(any)"; |
| case ast::BuiltinValue::kLocalInvocationId: |
| return "thread_position_in_threadgroup"; |
| case ast::BuiltinValue::kLocalInvocationIndex: |
| return "thread_index_in_threadgroup"; |
| case ast::BuiltinValue::kGlobalInvocationId: |
| return "thread_position_in_grid"; |
| case ast::BuiltinValue::kWorkgroupId: |
| return "threadgroup_position_in_grid"; |
| case ast::BuiltinValue::kNumWorkgroups: |
| return "threadgroups_per_grid"; |
| case ast::BuiltinValue::kSampleIndex: |
| return "sample_id"; |
| case ast::BuiltinValue::kSampleMask: |
| return "sample_mask"; |
| case ast::BuiltinValue::kPointSize: |
| return "point_size"; |
| default: |
| break; |
| } |
| return ""; |
| } |
| |
| std::string GeneratorImpl::interpolation_to_attribute(ast::InterpolationType type, |
| ast::InterpolationSampling sampling) const { |
| std::string attr; |
| switch (sampling) { |
| case ast::InterpolationSampling::kCenter: |
| attr = "center_"; |
| break; |
| case ast::InterpolationSampling::kCentroid: |
| attr = "centroid_"; |
| break; |
| case ast::InterpolationSampling::kSample: |
| attr = "sample_"; |
| break; |
| case ast::InterpolationSampling::kNone: |
| break; |
| } |
| switch (type) { |
| case ast::InterpolationType::kPerspective: |
| attr += "perspective"; |
| break; |
| case ast::InterpolationType::kLinear: |
| attr += "no_perspective"; |
| break; |
| case ast::InterpolationType::kFlat: |
| attr += "flat"; |
| break; |
| } |
| return attr; |
| } |
| |
| bool GeneratorImpl::EmitEntryPointFunction(const ast::Function* func) { |
| auto func_name = program_->Symbols().NameFor(func->symbol); |
| |
| // Returns the binding index of a variable, requiring that the group |
| // attribute have a value of zero. |
| const uint32_t kInvalidBindingIndex = std::numeric_limits<uint32_t>::max(); |
| auto get_binding_index = [&](const ast::Parameter* param) -> uint32_t { |
| auto bp = param->BindingPoint(); |
| if (bp.group == nullptr || bp.binding == nullptr) { |
| TINT_ICE(Writer, diagnostics_) |
| << "missing binding attributes for entry point parameter"; |
| return kInvalidBindingIndex; |
| } |
| if (bp.group->value != 0) { |
| TINT_ICE(Writer, diagnostics_) << "encountered non-zero resource group index (use " |
| "BindingRemapper to fix)"; |
| return kInvalidBindingIndex; |
| } |
| return bp.binding->value; |
| }; |
| |
| { |
| auto out = line(); |
| |
| EmitStage(out, func->PipelineStage()); |
| out << " " << func->return_type->FriendlyName(program_->Symbols()); |
| out << " " << func_name << "("; |
| |
| // Emit entry point parameters. |
| bool first = true; |
| for (auto* param : func->params) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| auto* type = program_->Sem().Get(param)->Type()->UnwrapRef(); |
| |
| auto param_name = program_->Symbols().NameFor(param->symbol); |
| if (!EmitType(out, type, param_name)) { |
| return false; |
| } |
| // Parameter name is output as part of the type for pointers. |
| if (!type->Is<sem::Pointer>()) { |
| out << " " << param_name; |
| } |
| |
| if (type->Is<sem::Struct>()) { |
| out << " [[stage_in]]"; |
| } else if (type->is_handle()) { |
| uint32_t binding = get_binding_index(param); |
| if (binding == kInvalidBindingIndex) { |
| return false; |
| } |
| if (param->type->Is<ast::Sampler>()) { |
| out << " [[sampler(" << binding << ")]]"; |
| } else if (param->type->Is<ast::Texture>()) { |
| out << " [[texture(" << binding << ")]]"; |
| } else { |
| TINT_ICE(Writer, diagnostics_) << "invalid handle type entry point parameter"; |
| return false; |
| } |
| } else if (auto* ptr = param->type->As<ast::Pointer>()) { |
| auto sc = ptr->storage_class; |
| if (sc == ast::StorageClass::kWorkgroup) { |
| auto& allocations = workgroup_allocations_[func_name]; |
| out << " [[threadgroup(" << allocations.size() << ")]]"; |
| allocations.push_back(program_->Sem().Get(ptr->type)->Size()); |
| } else if (sc == ast::StorageClass::kStorage || sc == ast::StorageClass::kUniform) { |
| uint32_t binding = get_binding_index(param); |
| if (binding == kInvalidBindingIndex) { |
| return false; |
| } |
| out << " [[buffer(" << binding << ")]]"; |
| } else { |
| TINT_ICE(Writer, diagnostics_) |
| << "invalid pointer storage class for entry point parameter"; |
| return false; |
| } |
| } else { |
| auto& attrs = param->attributes; |
| bool builtin_found = false; |
| for (auto* attr : attrs) { |
| auto* builtin = attr->As<ast::BuiltinAttribute>(); |
| if (!builtin) { |
| continue; |
| } |
| |
| builtin_found = true; |
| |
| auto name = builtin_to_attribute(builtin->builtin); |
| if (name.empty()) { |
| diagnostics_.add_error(diag::System::Writer, "unknown builtin"); |
| return false; |
| } |
| out << " [[" << name << "]]"; |
| } |
| if (!builtin_found) { |
| TINT_ICE(Writer, diagnostics_) << "Unsupported entry point parameter"; |
| } |
| } |
| } |
| out << ") {"; |
| } |
| |
| { |
| ScopedIndent si(this); |
| |
| if (!EmitStatements(func->body->statements)) { |
| return false; |
| } |
| |
| if (!Is<ast::ReturnStatement>(func->body->Last())) { |
| ast::ReturnStatement ret(ProgramID{}, ast::NodeID{}, Source{}); |
| if (!EmitStatement(&ret)) { |
| return false; |
| } |
| } |
| } |
| |
| line() << "}"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitIdentifier(std::ostream& out, const ast::IdentifierExpression* expr) { |
| out << program_->Symbols().NameFor(expr->symbol); |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitLoop(const ast::LoopStatement* stmt) { |
| auto emit_continuing = [this, stmt]() { |
| if (stmt->continuing && !stmt->continuing->Empty()) { |
| if (!EmitBlock(stmt->continuing)) { |
| return false; |
| } |
| } |
| return true; |
| }; |
| |
| TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); |
| line() << "while (true) {"; |
| { |
| ScopedIndent si(this); |
| if (!EmitStatements(stmt->body->statements)) { |
| return false; |
| } |
| if (!emit_continuing_()) { |
| return false; |
| } |
| } |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitForLoop(const ast::ForLoopStatement* stmt) { |
| TextBuffer init_buf; |
| if (auto* init = stmt->initializer) { |
| TINT_SCOPED_ASSIGNMENT(current_buffer_, &init_buf); |
| if (!EmitStatement(init)) { |
| return false; |
| } |
| } |
| |
| TextBuffer cond_pre; |
| std::stringstream cond_buf; |
| if (auto* cond = stmt->condition) { |
| TINT_SCOPED_ASSIGNMENT(current_buffer_, &cond_pre); |
| if (!EmitExpression(cond_buf, cond)) { |
| return false; |
| } |
| } |
| |
| TextBuffer cont_buf; |
| if (auto* cont = stmt->continuing) { |
| TINT_SCOPED_ASSIGNMENT(current_buffer_, &cont_buf); |
| if (!EmitStatement(cont)) { |
| return false; |
| } |
| } |
| |
| // If the for-loop has a multi-statement conditional and / or continuing, |
| // then we cannot emit this as a regular for-loop in MSL. Instead we need to |
| // generate a `while(true)` loop. |
| bool emit_as_loop = cond_pre.lines.size() > 0 || cont_buf.lines.size() > 1; |
| |
| // If the for-loop has multi-statement initializer, or is going to be |
| // emitted as a `while(true)` loop, then declare the initializer |
| // statement(s) before the loop in a new block. |
| bool nest_in_block = init_buf.lines.size() > 1 || (stmt->initializer && emit_as_loop); |
| if (nest_in_block) { |
| line() << "{"; |
| increment_indent(); |
| current_buffer_->Append(init_buf); |
| init_buf.lines.clear(); // Don't emit the initializer again in the 'for' |
| } |
| TINT_DEFER({ |
| if (nest_in_block) { |
| decrement_indent(); |
| line() << "}"; |
| } |
| }); |
| |
| if (emit_as_loop) { |
| auto emit_continuing = [&]() { |
| current_buffer_->Append(cont_buf); |
| return true; |
| }; |
| |
| TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); |
| line() << "while (true) {"; |
| increment_indent(); |
| TINT_DEFER({ |
| decrement_indent(); |
| line() << "}"; |
| }); |
| |
| if (stmt->condition) { |
| current_buffer_->Append(cond_pre); |
| line() << "if (!(" << cond_buf.str() << ")) { break; }"; |
| } |
| |
| if (!EmitStatements(stmt->body->statements)) { |
| return false; |
| } |
| |
| if (!emit_continuing_()) { |
| return false; |
| } |
| } else { |
| // For-loop can be generated. |
| { |
| auto out = line(); |
| out << "for"; |
| { |
| ScopedParen sp(out); |
| |
| if (!init_buf.lines.empty()) { |
| out << init_buf.lines[0].content << " "; |
| } else { |
| out << "; "; |
| } |
| |
| out << cond_buf.str() << "; "; |
| |
| if (!cont_buf.lines.empty()) { |
| out << TrimSuffix(cont_buf.lines[0].content, ";"); |
| } |
| } |
| out << " {"; |
| } |
| { |
| auto emit_continuing = [] { return true; }; |
| TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); |
| if (!EmitStatementsWithIndent(stmt->body->statements)) { |
| return false; |
| } |
| } |
| line() << "}"; |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitWhile(const ast::WhileStatement* stmt) { |
| TextBuffer cond_pre; |
| std::stringstream cond_buf; |
| |
| { |
| auto* cond = stmt->condition; |
| TINT_SCOPED_ASSIGNMENT(current_buffer_, &cond_pre); |
| if (!EmitExpression(cond_buf, cond)) { |
| return false; |
| } |
| } |
| |
| auto emit_continuing = [&]() { return true; }; |
| TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); |
| |
| // If the while has a multi-statement conditional, then we cannot emit this |
| // as a regular while in MSL. Instead we need to generate a `while(true)` loop. |
| bool emit_as_loop = cond_pre.lines.size() > 0; |
| if (emit_as_loop) { |
| line() << "while (true) {"; |
| increment_indent(); |
| TINT_DEFER({ |
| decrement_indent(); |
| line() << "}"; |
| }); |
| |
| current_buffer_->Append(cond_pre); |
| line() << "if (!(" << cond_buf.str() << ")) { break; }"; |
| if (!EmitStatements(stmt->body->statements)) { |
| return false; |
| } |
| } else { |
| // While can be generated. |
| { |
| auto out = line(); |
| out << "while"; |
| { |
| ScopedParen sp(out); |
| out << cond_buf.str(); |
| } |
| out << " {"; |
| } |
| if (!EmitStatementsWithIndent(stmt->body->statements)) { |
| return false; |
| } |
| line() << "}"; |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitDiscard(const ast::DiscardStatement*) { |
| // TODO(dsinclair): Verify this is correct when the discard semantics are |
| // defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361) |
| line() << "discard_fragment();"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitIf(const ast::IfStatement* stmt) { |
| { |
| auto out = line(); |
| out << "if ("; |
| if (!EmitExpression(out, stmt->condition)) { |
| return false; |
| } |
| out << ") {"; |
| } |
| |
| if (!EmitStatementsWithIndent(stmt->body->statements)) { |
| return false; |
| } |
| |
| if (stmt->else_statement) { |
| line() << "} else {"; |
| if (auto* block = stmt->else_statement->As<ast::BlockStatement>()) { |
| if (!EmitStatementsWithIndent(block->statements)) { |
| return false; |
| } |
| } else { |
| if (!EmitStatementsWithIndent(utils::Vector{stmt->else_statement})) { |
| return false; |
| } |
| } |
| } |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitMemberAccessor(std::ostream& out, |
| const ast::MemberAccessorExpression* expr) { |
| auto write_lhs = [&] { |
| bool paren_lhs = |
| !expr->structure->IsAnyOf<ast::IndexAccessorExpression, ast::CallExpression, |
| ast::IdentifierExpression, ast::MemberAccessorExpression>(); |
| if (paren_lhs) { |
| out << "("; |
| } |
| if (!EmitExpression(out, expr->structure)) { |
| return false; |
| } |
| if (paren_lhs) { |
| out << ")"; |
| } |
| return true; |
| }; |
| |
| auto& sem = program_->Sem(); |
| |
| if (auto* swizzle = sem.Get(expr)->As<sem::Swizzle>()) { |
| // Metal 1.x does not support swizzling of packed vector types. |
| // For single element swizzles, we can use the index operator. |
| // For multi-element swizzles, we need to cast to a regular vector type |
| // first. Note that we do not currently allow assignments to swizzles, so |
| // the casting which will convert the l-value to r-value is fine. |
| if (swizzle->Indices().Length() == 1) { |
| if (!write_lhs()) { |
| return false; |
| } |
| out << "[" << swizzle->Indices()[0] << "]"; |
| } else { |
| if (!EmitType(out, sem.Get(expr->structure)->Type()->UnwrapRef(), "")) { |
| return false; |
| } |
| out << "("; |
| if (!write_lhs()) { |
| return false; |
| } |
| out << ")." << program_->Symbols().NameFor(expr->member->symbol); |
| } |
| } else { |
| if (!write_lhs()) { |
| return false; |
| } |
| out << "."; |
| if (!EmitExpression(out, expr->member)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitReturn(const ast::ReturnStatement* stmt) { |
| auto out = line(); |
| out << "return"; |
| if (stmt->value) { |
| out << " "; |
| if (!EmitExpression(out, stmt->value)) { |
| return false; |
| } |
| } |
| out << ";"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitBlock(const ast::BlockStatement* stmt) { |
| line() << "{"; |
| |
| if (!EmitStatementsWithIndent(stmt->statements)) { |
| return false; |
| } |
| |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStatement(const ast::Statement* stmt) { |
| return Switch( |
| stmt, |
| [&](const ast::AssignmentStatement* a) { // |
| return EmitAssign(a); |
| }, |
| [&](const ast::BlockStatement* b) { // |
| return EmitBlock(b); |
| }, |
| [&](const ast::BreakStatement* b) { // |
| return EmitBreak(b); |
| }, |
| [&](const ast::CallStatement* c) { // |
| auto out = line(); |
| if (!EmitCall(out, c->expr)) { // |
| return false; |
| } |
| out << ";"; |
| return true; |
| }, |
| [&](const ast::ContinueStatement* c) { // |
| return EmitContinue(c); |
| }, |
| [&](const ast::DiscardStatement* d) { // |
| return EmitDiscard(d); |
| }, |
| [&](const ast::FallthroughStatement*) { // |
| line() << "/* fallthrough */"; |
| return true; |
| }, |
| [&](const ast::IfStatement* i) { // |
| return EmitIf(i); |
| }, |
| [&](const ast::LoopStatement* l) { // |
| return EmitLoop(l); |
| }, |
| [&](const ast::ForLoopStatement* l) { // |
| return EmitForLoop(l); |
| }, |
| [&](const ast::WhileStatement* l) { // |
| return EmitWhile(l); |
| }, |
| [&](const ast::ReturnStatement* r) { // |
| return EmitReturn(r); |
| }, |
| [&](const ast::SwitchStatement* s) { // |
| return EmitSwitch(s); |
| }, |
| [&](const ast::VariableDeclStatement* v) { // |
| return Switch( |
| v->variable, // |
| [&](const ast::Var* var) { return EmitVar(var); }, |
| [&](const ast::Let* let) { return EmitLet(let); }, |
| [&](const ast::Const*) { |
| return true; // Constants are embedded at their use |
| }, |
| [&](Default) { // |
| TINT_ICE(Writer, diagnostics_) |
| << "unknown statement type: " << stmt->TypeInfo().name; |
| return false; |
| }); |
| }, |
| [&](const ast::StaticAssert*) { |
| return true; // Not emitted |
| }, |
| [&](Default) { |
| diagnostics_.add_error(diag::System::Writer, |
| "unknown statement type: " + std::string(stmt->TypeInfo().name)); |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitStatements(utils::VectorRef<const ast::Statement*> stmts) { |
| for (auto* s : stmts) { |
| if (!EmitStatement(s)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStatementsWithIndent(utils::VectorRef<const ast::Statement*> stmts) { |
| ScopedIndent si(this); |
| return EmitStatements(stmts); |
| } |
| |
| bool GeneratorImpl::EmitSwitch(const ast::SwitchStatement* stmt) { |
| { |
| auto out = line(); |
| out << "switch("; |
| if (!EmitExpression(out, stmt->condition)) { |
| return false; |
| } |
| out << ") {"; |
| } |
| |
| { |
| ScopedIndent si(this); |
| for (auto* s : stmt->body) { |
| if (!EmitCase(s)) { |
| return false; |
| } |
| } |
| } |
| |
| line() << "}"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitType(std::ostream& out, |
| const sem::Type* type, |
| const std::string& name, |
| bool* name_printed /* = nullptr */) { |
| if (name_printed) { |
| *name_printed = false; |
| } |
| |
| return Switch( |
| type, |
| [&](const sem::Atomic* atomic) { |
| if (atomic->Type()->Is<sem::I32>()) { |
| out << "atomic_int"; |
| return true; |
| } |
| if (atomic->Type()->Is<sem::U32>()) { |
| out << "atomic_uint"; |
| return true; |
| } |
| TINT_ICE(Writer, diagnostics_) |
| << "unhandled atomic type " << atomic->Type()->FriendlyName(builder_.Symbols()); |
| return false; |
| }, |
| [&](const sem::Array* arr) { |
| out << ArrayType() << "<"; |
| if (!EmitType(out, arr->ElemType(), "")) { |
| return false; |
| } |
| out << ", " << (arr->IsRuntimeSized() ? 1u : arr->Count()) << ">"; |
| return true; |
| }, |
| [&](const sem::Bool*) { |
| out << "bool"; |
| return true; |
| }, |
| [&](const sem::F16*) { |
| out << "half"; |
| return true; |
| }, |
| [&](const sem::F32*) { |
| out << "float"; |
| return true; |
| }, |
| [&](const sem::I32*) { |
| out << "int"; |
| return true; |
| }, |
| [&](const sem::Matrix* mat) { |
| if (!EmitType(out, mat->type(), "")) { |
| return false; |
| } |
| out << mat->columns() << "x" << mat->rows(); |
| return true; |
| }, |
| [&](const sem::Pointer* ptr) { |
| if (ptr->Access() == ast::Access::kRead) { |
| out << "const "; |
| } |
| if (!EmitStorageClass(out, ptr->StorageClass())) { |
| return false; |
| } |
| out << " "; |
| if (!EmitType(out, ptr->StoreType(), "")) { |
| return false; |
| } |
| out << "* " << name; |
| if (name_printed) { |
| *name_printed = true; |
| } |
| return true; |
| }, |
| [&](const sem::Sampler*) { |
| out << "sampler"; |
| return true; |
| }, |
| [&](const sem::Struct* str) { |
| // The struct type emits as just the name. The declaration would be |
| // emitted as part of emitting the declared types. |
| out << StructName(str); |
| return true; |
| }, |
| [&](const sem::Texture* tex) { |
| if (tex->Is<sem::ExternalTexture>()) { |
| TINT_ICE(Writer, diagnostics_) |
| << "Multiplanar external texture transform was not run."; |
| return false; |
| } |
| |
| if (tex->IsAnyOf<sem::DepthTexture, sem::DepthMultisampledTexture>()) { |
| out << "depth"; |
| } else { |
| out << "texture"; |
| } |
| |
| switch (tex->dim()) { |
| case ast::TextureDimension::k1d: |
| out << "1d"; |
| break; |
| case ast::TextureDimension::k2d: |
| out << "2d"; |
| break; |
| case ast::TextureDimension::k2dArray: |
| out << "2d_array"; |
| break; |
| case ast::TextureDimension::k3d: |
| out << "3d"; |
| break; |
| case ast::TextureDimension::kCube: |
| out << "cube"; |
| break; |
| case ast::TextureDimension::kCubeArray: |
| out << "cube_array"; |
| break; |
| default: |
| diagnostics_.add_error(diag::System::Writer, "Invalid texture dimensions"); |
| return false; |
| } |
| if (tex->IsAnyOf<sem::MultisampledTexture, sem::DepthMultisampledTexture>()) { |
| out << "_ms"; |
| } |
| out << "<"; |
| TINT_DEFER(out << ">"); |
| |
| return Switch( |
| tex, |
| [&](const sem::DepthTexture*) { |
| out << "float, access::sample"; |
| return true; |
| }, |
| [&](const sem::DepthMultisampledTexture*) { |
| out << "float, access::read"; |
| return true; |
| }, |
| [&](const sem::StorageTexture* storage) { |
| if (!EmitType(out, storage->type(), "")) { |
| return false; |
| } |
| |
| std::string access_str; |
| if (storage->access() == ast::Access::kRead) { |
| out << ", access::read"; |
| } else if (storage->access() == ast::Access::kWrite) { |
| out << ", access::write"; |
| } else { |
| diagnostics_.add_error(diag::System::Writer, |
| "Invalid access control for storage texture"); |
| return false; |
| } |
| return true; |
| }, |
| [&](const sem::MultisampledTexture* ms) { |
| if (!EmitType(out, ms->type(), "")) { |
| return false; |
| } |
| out << ", access::read"; |
| return true; |
| }, |
| [&](const sem::SampledTexture* sampled) { |
| if (!EmitType(out, sampled->type(), "")) { |
| return false; |
| } |
| out << ", access::sample"; |
| return true; |
| }, |
| [&](Default) { |
| diagnostics_.add_error(diag::System::Writer, "invalid texture type"); |
| return false; |
| }); |
| }, |
| [&](const sem::U32*) { |
| out << "uint"; |
| return true; |
| }, |
| [&](const sem::Vector* vec) { |
| if (!EmitType(out, vec->type(), "")) { |
| return false; |
| } |
| out << vec->Width(); |
| return true; |
| }, |
| [&](const sem::Void*) { |
| out << "void"; |
| return true; |
| }, |
| [&](Default) { |
| diagnostics_.add_error( |
| diag::System::Writer, |
| "unknown type in EmitType: " + type->FriendlyName(builder_.Symbols())); |
| return false; |
| }); |
| } |
| |
| bool GeneratorImpl::EmitTypeAndName(std::ostream& out, |
| const sem::Type* type, |
| const std::string& name) { |
| bool name_printed = false; |
| if (!EmitType(out, type, name, &name_printed)) { |
| return false; |
| } |
| if (!name_printed) { |
| out << " " << name; |
| } |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStorageClass(std::ostream& out, ast::StorageClass sc) { |
| switch (sc) { |
| case ast::StorageClass::kFunction: |
| case ast::StorageClass::kPrivate: |
| case ast::StorageClass::kHandle: |
| out << "thread"; |
| return true; |
| case ast::StorageClass::kWorkgroup: |
| out << "threadgroup"; |
| return true; |
| case ast::StorageClass::kStorage: |
| out << "device"; |
| return true; |
| case ast::StorageClass::kUniform: |
| out << "constant"; |
| return true; |
| default: |
| break; |
| } |
| TINT_ICE(Writer, diagnostics_) << "unhandled storage class: " << sc; |
| return false; |
| } |
| |
| bool GeneratorImpl::EmitPackedType(std::ostream& out, |
| const sem::Type* type, |
| const std::string& name) { |
| auto* vec = type->As<sem::Vector>(); |
| if (vec && vec->Width() == 3) { |
| out << "packed_"; |
| if (!EmitType(out, vec, "")) { |
| return false; |
| } |
| |
| if (vec->is_float_vector() && !matrix_packed_vector_overloads_) { |
| // Overload operators for matrix-vector arithmetic where the vector |
| // operand is packed, as these overloads to not exist in the metal |
| // namespace. |
| TextBuffer b; |
| TINT_DEFER(helpers_.Append(b)); |
| line(&b) << R"(template<typename T, int N, int M> |
| inline vec<T, M> operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) { |
| return lhs * vec<T, N>(rhs); |
| } |
| |
| template<typename T, int N, int M> |
| inline vec<T, N> operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) { |
| return vec<T, M>(lhs) * rhs; |
| } |
| )"; |
| matrix_packed_vector_overloads_ = true; |
| } |
| |
| return true; |
| } |
| |
| return EmitType(out, type, name); |
| } |
| |
| bool GeneratorImpl::EmitStructType(TextBuffer* b, const sem::Struct* str) { |
| line(b) << "struct " << StructName(str) << " {"; |
| |
| bool is_host_shareable = str->IsHostShareable(); |
| |
| // Emits a `/* 0xnnnn */` byte offset comment for a struct member. |
| auto add_byte_offset_comment = [&](std::ostream& out, uint32_t offset) { |
| std::ios_base::fmtflags saved_flag_state(out.flags()); |
| out << "/* 0x" << std::hex << std::setfill('0') << std::setw(4) << offset << " */ "; |
| out.flags(saved_flag_state); |
| }; |
| |
| auto add_padding = [&](uint32_t size, uint32_t msl_offset) { |
| std::string name; |
| do { |
| name = UniqueIdentifier("tint_pad"); |
| } while (str->FindMember(program_->Symbols().Get(name))); |
| |
| auto out = line(b); |
| add_byte_offset_comment(out, msl_offset); |
| out << ArrayType() << "<int8_t, " << size << "> " << name << ";"; |
| }; |
| |
| b->IncrementIndent(); |
| |
| uint32_t msl_offset = 0; |
| for (auto* mem : str->Members()) { |
| auto out = line(b); |
| auto mem_name = program_->Symbols().NameFor(mem->Name()); |
| auto wgsl_offset = mem->Offset(); |
| |
| if (is_host_shareable) { |
| if (wgsl_offset < msl_offset) { |
| // Unimplementable layout |
| TINT_ICE(Writer, diagnostics_) << "Structure member WGSL offset (" << wgsl_offset |
| << ") is behind MSL offset (" << msl_offset << ")"; |
| return false; |
| } |
| |
| // Generate padding if required |
| if (auto padding = wgsl_offset - msl_offset) { |
| add_padding(padding, msl_offset); |
| msl_offset += padding; |
| } |
| |
| add_byte_offset_comment(out, msl_offset); |
| |
| if (!EmitPackedType(out, mem->Type(), mem_name)) { |
| return false; |
| } |
| } else { |
| if (!EmitType(out, mem->Type(), mem_name)) { |
| return false; |
| } |
| } |
| |
| auto* ty = mem->Type(); |
| |
| out << " " << mem_name; |
| // Emit attributes |
| if (auto* decl = mem->Declaration()) { |
| for (auto* attr : decl->attributes) { |
| bool ok = Switch( |
| attr, |
| [&](const ast::BuiltinAttribute* builtin) { |
| auto name = builtin_to_attribute(builtin->builtin); |
| if (name.empty()) { |
| diagnostics_.add_error(diag::System::Writer, "unknown builtin"); |
| return false; |
| } |
| out << " [[" << name << "]]"; |
| return true; |
| }, |
| [&](const ast::LocationAttribute* loc) { |
| auto& pipeline_stage_uses = str->PipelineStageUses(); |
| if (pipeline_stage_uses.size() != 1) { |
| TINT_ICE(Writer, diagnostics_) << "invalid entry point IO struct uses"; |
| return false; |
| } |
| |
| if (pipeline_stage_uses.count(sem::PipelineStageUsage::kVertexInput)) { |
| out << " [[attribute(" + std::to_string(loc->value) + ")]]"; |
| } else if (pipeline_stage_uses.count( |
| sem::PipelineStageUsage::kVertexOutput)) { |
| out << " [[user(locn" + std::to_string(loc->value) + ")]]"; |
| } else if (pipeline_stage_uses.count( |
| sem::PipelineStageUsage::kFragmentInput)) { |
| out << " [[user(locn" + std::to_string(loc->value) + ")]]"; |
| } else if (pipeline_stage_uses.count( |
| sem::PipelineStageUsage::kFragmentOutput)) { |
| out << " [[color(" + std::to_string(loc->value) + ")]]"; |
| } else { |
| TINT_ICE(Writer, diagnostics_) << "invalid use of location decoration"; |
| return false; |
| } |
| return true; |
| }, |
| [&](const ast::InterpolateAttribute* interpolate) { |
| auto name = |
| interpolation_to_attribute(interpolate->type, interpolate->sampling); |
| if (name.empty()) { |
| diagnostics_.add_error(diag::System::Writer, |
| "unknown interpolation attribute"); |
| return false; |
| } |
| out << " [[" << name << "]]"; |
| return true; |
| }, |
| [&](const ast::InvariantAttribute*) { |
| if (invariant_define_name_.empty()) { |
| invariant_define_name_ = UniqueIdentifier("TINT_INVARIANT"); |
| } |
| out << " " << invariant_define_name_; |
| return true; |
| }, |
| [&](const ast::StructMemberOffsetAttribute*) { return true; }, |
| [&](const ast::StructMemberAlignAttribute*) { return true; }, |
| [&](const ast::StructMemberSizeAttribute*) { return true; }, |
| [&](Default) { |
| TINT_ICE(Writer, diagnostics_) |
| << "unhandled struct member attribute: " << attr->Name(); |
| return false; |
| }); |
| if (!ok) { |
| return false; |
| } |
| } |
| } |
| |
| out << ";"; |
| |
| if (is_host_shareable) { |
| // Calculate new MSL offset |
| auto size_align = MslPackedTypeSizeAndAlign(ty); |
| if (msl_offset % size_align.align) { |
| TINT_ICE(Writer, diagnostics_) |
| << "Misaligned MSL structure member " << ty->FriendlyName(program_->Symbols()) |
| << " " << mem_name; |
| return false; |
| } |
| msl_offset += size_align.size; |
| } |
| } |
| |
| if (is_host_shareable && str->Size() != msl_offset) { |
| add_padding(str->Size() - msl_offset, msl_offset); |
| } |
| |
| b->DecrementIndent(); |
| |
| line(b) << "};"; |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitStructTypeOnce(TextBuffer* buffer, const sem::Struct* str) { |
| auto it = emitted_structs_.emplace(str); |
| if (!it.second) { |
| return true; |
| } |
| return EmitStructType(buffer, str); |
| } |
| |
| bool GeneratorImpl::EmitUnaryOp(std::ostream& out, const ast::UnaryOpExpression* expr) { |
| // Handle `-e` when `e` is signed, so that we ensure that if `e` is the |
| // largest negative value, it returns `e`. |
| auto* expr_type = TypeOf(expr->expr)->UnwrapRef(); |
| if (expr->op == ast::UnaryOp::kNegation && expr_type->is_signed_scalar_or_vector()) { |
| auto fn = utils::GetOrCreate(unary_minus_funcs_, expr_type, [&]() -> std::string { |
| // e.g.: |
| // int tint_unary_minus(const int v) { |
| // return (v == -2147483648) ? v : -v; |
| // } |
| TextBuffer b; |
| TINT_DEFER(helpers_.Append(b)); |
| |
| auto fn_name = UniqueIdentifier("tint_unary_minus"); |
| { |
| auto decl = line(&b); |
| if (!EmitTypeAndName(decl, expr_type, fn_name)) { |
| return ""; |
| } |
| decl << "(const "; |
| if (!EmitType(decl, expr_type, "")) { |
| return ""; |
| } |
| decl << " v) {"; |
| } |
| |
| { |
| ScopedIndent si(&b); |
| const auto largest_negative_value = |
| std::to_string(std::numeric_limits<int32_t>::min()); |
| line(&b) << "return select(-v, v, v == " << largest_negative_value << ");"; |
| } |
| line(&b) << "}"; |
| line(&b); |
| return fn_name; |
| }); |
| |
| out << fn << "("; |
| if (!EmitExpression(out, expr->expr)) { |
| return false; |
| } |
| out << ")"; |
| return true; |
| } |
| |
| switch (expr->op) { |
| case ast::UnaryOp::kAddressOf: |
| out << "&"; |
| break; |
| case ast::UnaryOp::kComplement: |
| out << "~"; |
| break; |
| case ast::UnaryOp::kIndirection: |
| out << "*"; |
| break; |
| case ast::UnaryOp::kNot: |
| out << "!"; |
| break; |
| case ast::UnaryOp::kNegation: |
| out << "-"; |
| break; |
| } |
| out << "("; |
| |
| if (!EmitExpression(out, expr->expr)) { |
| return false; |
| } |
| |
| out << ")"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitVar(const ast::Var* var) { |
| auto* sem = program_->Sem().Get(var); |
| auto* type = sem->Type()->UnwrapRef(); |
| |
| auto out = line(); |
| |
| switch (sem->StorageClass()) { |
| case ast::StorageClass::kFunction: |
| case ast::StorageClass::kHandle: |
| case ast::StorageClass::kNone: |
| break; |
| case ast::StorageClass::kPrivate: |
| out << "thread "; |
| break; |
| case ast::StorageClass::kWorkgroup: |
| out << "threadgroup "; |
| break; |
| default: |
| TINT_ICE(Writer, diagnostics_) << "unhandled variable storage class"; |
| return false; |
| } |
| |
| std::string name = program_->Symbols().NameFor(var->symbol); |
| if (!EmitType(out, type, name)) { |
| return false; |
| } |
| // Variable name is output as part of the type for pointers. |
| if (!type->Is<sem::Pointer>()) { |
| out << " " << name; |
| } |
| |
| if (var->constructor != nullptr) { |
| out << " = "; |
| if (!EmitExpression(out, var->constructor)) { |
| return false; |
| } |
| } else if (sem->StorageClass() == ast::StorageClass::kPrivate || |
| sem->StorageClass() == ast::StorageClass::kFunction || |
| sem->StorageClass() == ast::StorageClass::kNone) { |
| out << " = "; |
| if (!EmitZeroValue(out, type)) { |
| return false; |
| } |
| } |
| out << ";"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitLet(const ast::Let* let) { |
| auto* sem = program_->Sem().Get(let); |
| auto* type = sem->Type(); |
| |
| auto out = line(); |
| |
| switch (sem->StorageClass()) { |
| case ast::StorageClass::kFunction: |
| case ast::StorageClass::kHandle: |
| case ast::StorageClass::kNone: |
| break; |
| case ast::StorageClass::kPrivate: |
| out << "thread "; |
| break; |
| case ast::StorageClass::kWorkgroup: |
| out << "threadgroup "; |
| break; |
| default: |
| TINT_ICE(Writer, diagnostics_) << "unhandled variable storage class"; |
| return false; |
| } |
| |
| std::string name = "const " + program_->Symbols().NameFor(let->symbol); |
| if (!EmitType(out, type, name)) { |
| return false; |
| } |
| |
| // Variable name is output as part of the type for pointers. |
| if (!type->Is<sem::Pointer>()) { |
| out << " " << name; |
| } |
| |
| out << " = "; |
| if (!EmitExpression(out, let->constructor)) { |
| return false; |
| } |
| out << ";"; |
| |
| return true; |
| } |
| |
| bool GeneratorImpl::EmitOverride(const ast::Override* override) { |
| auto* global = program_->Sem().Get<sem::GlobalVariable>(override); |
| auto* type = global->Type(); |
| |
| auto out = line(); |
| out << "constant "; |
| if (!EmitType(out, type, program_->Symbols().NameFor(override->symbol))) { |
| return false; |
| } |
| out << " " << program_->Symbols().NameFor(override->symbol); |
| |
| out << " [[function_constant(" << global->OverrideId().value << ")]];"; |
| |
| return true; |
| } |
| |
| GeneratorImpl::SizeAndAlign GeneratorImpl::MslPackedTypeSizeAndAlign(const sem::Type* ty) { |
| return Switch( |
| ty, |
| |
| // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf |
| // 2.1 Scalar Data Types |
| [&](const sem::U32*) { |
| return SizeAndAlign{4, 4}; |
| }, |
| [&](const sem::I32*) { |
| return SizeAndAlign{4, 4}; |
| }, |
| [&](const sem::F32*) { |
| return SizeAndAlign{4, 4}; |
| }, |
| [&](const sem::F16*) { |
| return SizeAndAlign{2, 2}; |
| }, |
| |
| [&](const sem::Vector* vec) { |
| auto num_els = vec->Width(); |
| auto* el_ty = vec->type(); |
| SizeAndAlign el_size_align = MslPackedTypeSizeAndAlign(el_ty); |
| if (el_ty->IsAnyOf<sem::U32, sem::I32, sem::F32, sem::F16>()) { |
| // Use a packed_vec type for 3-element vectors only. |
| if (num_els == 3) { |
| // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf |
| // 2.2.3 Packed Vector Types |
| return SizeAndAlign{num_els * el_size_align.size, el_size_align.align}; |
| } else { |
| // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf |
| // 2.2 Vector Data Types |
| // Vector data types are aligned to their size. |
| return SizeAndAlign{num_els * el_size_align.size, num_els * el_size_align.size}; |
| } |
| } |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "Unhandled vector element type " << el_ty->TypeInfo().name; |
| return SizeAndAlign{}; |
| }, |
| |
| [&](const sem::Matrix* mat) { |
| // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf |
| // 2.3 Matrix Data Types |
| auto cols = mat->columns(); |
| auto rows = mat->rows(); |
| auto* el_ty = mat->type(); |
| // Metal only support half and float matrix. |
| if (el_ty->IsAnyOf<sem::F32, sem::F16>()) { |
| static constexpr SizeAndAlign table_f32[] = { |
| /* float2x2 */ {16, 8}, |
| /* float2x3 */ {32, 16}, |
| /* float2x4 */ {32, 16}, |
| /* float3x2 */ {24, 8}, |
| /* float3x3 */ {48, 16}, |
| /* float3x4 */ {48, 16}, |
| /* float4x2 */ {32, 8}, |
| /* float4x3 */ {64, 16}, |
| /* float4x4 */ {64, 16}, |
| }; |
| static constexpr SizeAndAlign table_f16[] = { |
| /* half2x2 */ {8, 4}, |
| /* half2x3 */ {16, 8}, |
| /* half2x4 */ {16, 8}, |
| /* half3x2 */ {12, 4}, |
| /* half3x3 */ {24, 8}, |
| /* half3x4 */ {24, 8}, |
| /* half4x2 */ {16, 4}, |
| /* half4x3 */ {32, 8}, |
| /* half4x4 */ {32, 8}, |
| }; |
| if (cols >= 2 && cols <= 4 && rows >= 2 && rows <= 4) { |
| if (el_ty->Is<sem::F32>()) { |
| return table_f32[(3 * (cols - 2)) + (rows - 2)]; |
| } else { |
| return table_f16[(3 * (cols - 2)) + (rows - 2)]; |
| } |
| } |
| } |
| |
| TINT_UNREACHABLE(Writer, diagnostics_) |
| << "Unhandled matrix element type " << el_ty->TypeInfo().name; |
| return SizeAndAlign{}; |
| }, |
| |
| [&](const sem::Array* arr) { |
| if (!arr->IsStrideImplicit()) { |
| TINT_ICE(Writer, diagnostics_) |
| << "arrays with explicit strides should not exist past the SPIR-V reader"; |
| return SizeAndAlign{}; |
| } |
| auto num_els = std::max<uint32_t>(arr->Count(), 1); |
| return SizeAndAlign{arr->Stride() * num_els, arr->Align()}; |
| }, |
| |
| [&](const sem::Struct* str) { |
| // TODO(crbug.com/tint/650): There's an assumption here that MSL's |
| // default structure size and alignment matches WGSL's. We need to |
| // confirm this. |
| return SizeAndAlign{str->Size(), str->Align()}; |
| }, |
| |
| [&](const sem::Atomic* atomic) { return MslPackedTypeSizeAndAlign(atomic->Type()); }, |
| |
| [&](Default) { |
| TINT_UNREACHABLE(Writer, diagnostics_) << "Unhandled type " << ty->TypeInfo().name; |
| return SizeAndAlign{}; |
| }); |
| } |
| |
| template <typename F> |
| bool GeneratorImpl::CallBuiltinHelper(std::ostream& out, |
| const ast::CallExpression* call, |
| const sem::Builtin* builtin, |
| F&& build) { |
| // Generate the helper function if it hasn't been created already |
| auto fn = utils::GetOrCreate(builtins_, builtin, [&]() -> std::string { |
| TextBuffer b; |
| TINT_DEFER(helpers_.Append(b)); |
| |
| auto fn_name = UniqueIdentifier(std::string("tint_") + sem::str(builtin->Type())); |
| std::vector<std::string> parameter_names; |
| { |
| auto decl = line(&b); |
| if (!EmitTypeAndName(decl, builtin->ReturnType(), fn_name)) { |
| return ""; |
| } |
| { |
| ScopedParen sp(decl); |
| for (auto* param : builtin->Parameters()) { |
| if (!parameter_names.empty()) { |
| decl << ", "; |
| } |
| auto param_name = "param_" + std::to_string(parameter_names.size()); |
| if (!EmitTypeAndName(decl, param->Type(), param_name)) { |
| return ""; |
| } |
| parameter_names.emplace_back(std::move(param_name)); |
| } |
| } |
| decl << " {"; |
| } |
| { |
| ScopedIndent si(&b); |
| if (!build(&b, parameter_names)) { |
| return ""; |
| } |
| } |
| line(&b) << "}"; |
| line(&b); |
| return fn_name; |
| }); |
| |
| if (fn.empty()) { |
| return false; |
| } |
| |
| // Call the helper |
| out << fn; |
| { |
| ScopedParen sp(out); |
| bool first = true; |
| for (auto* arg : call->args) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| if (!EmitExpression(out, arg)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| const std::string& GeneratorImpl::ArrayType() { |
| if (array_template_name_.empty()) { |
| array_template_name_ = UniqueIdentifier("tint_array"); |
| auto* buf = &helpers_; |
| line(buf) << "template<typename T, size_t N>"; |
| line(buf) << "struct " << array_template_name_ << " {"; |
| line(buf) << " const constant T& operator[](size_t i) const constant" |
| << " { return elements[i]; }"; |
| for (auto* space : {"device", "thread", "threadgroup"}) { |
| line(buf) << " " << space << " T& operator[](size_t i) " << space |
| << " { return elements[i]; }"; |
| line(buf) << " const " << space << " T& operator[](size_t i) const " << space |
| << " { return elements[i]; }"; |
| } |
| line(buf) << " T elements[N];"; |
| line(buf) << "};"; |
| line(buf); |
| } |
| return array_template_name_; |
| } |
| |
| } // namespace tint::writer::msl |