blob: 01bd6860d80e33a35e71ef8caa2dcb9d1e6714eb [file] [log] [blame]
// Copyright 2020 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef DAWNNATIVE_SUBRESOURCESTORAGE_H_
#define DAWNNATIVE_SUBRESOURCESTORAGE_H_
#include "common/Assert.h"
#include "common/TypeTraits.h"
#include "dawn_native/EnumMaskIterator.h"
#include "dawn_native/Subresource.h"
#include <array>
#include <limits>
#include <memory>
#include <vector>
namespace dawn_native {
// SubresourceStorage<T> acts like a simple map from subresource (aspect, layer, level) to a
// value of type T except that it tries to compress similar subresources so that algorithms
// can act on a whole range of subresources at once if they have the same state.
//
// For example a very common case to optimize for is the tracking of the usage of texture
// subresources inside a render pass: the vast majority of texture views will select the whole
// texture while a small minority will select a sub-range. We want to optimize the common case
// by setting and checking a single "usage" value when a full subresource is used but at the
// same time allow per-subresource data when needed.
//
// Another example is barrier tracking per-subresource in the backends: it will often happen
// that during texture upload each mip level will have a different "barrier state". However
// when the texture is fully uploaded and after it is used for sampling (with a full view) for
// the first time, the barrier state will likely be the same across all the subresources.
// That's why some form of "recompression" of subresource state must be possibe.
//
// In order to keep the implementation details private and to avoid iterator-hell, this
// container uses a more functional approach of calling a closure on the interesting ranges.
// This is for example how to look at the state of all subresources.
//
// subresources.Iterate([](const SubresourceRange& range, const T& data) {
// // Do something with the knowledge that all the subresources in `range` have value
// // `data`.
// });
//
// SubresourceStorage internally tracks compression state per aspect and then per layer of each
// aspect. This means that a 2-aspect texture can have the following compression state:
//
// - Aspect 0 is fully compressed.
// - Aspect 1 is partially compressed:
// - Aspect 1 layer 3 is decompressed.
// - Aspect 1 layer 0-2 and 4-42 are compressed.
//
// A useful model to reason about SubresourceStorage is to represent is as a tree:
//
// - SubresourceStorage is the root.
// |-> Nodes 1 deep represent each aspect. If an aspect is compressed, its node doesn't have
// any children because the data is constant across all of the subtree.
// |-> Nodes 2 deep represent layers (for uncompressed aspects). If a layer is compressed,
// its node doesn't have any children because the data is constant across all of the
// subtree.
// |-> Nodes 3 deep represent individial mip levels (for uncompressed layers).
//
// The concept of recompression is the removal of all child nodes of a non-leaf node when the
// data is constant across them. Decompression is the addition of child nodes to a leaf node
// and copying of its data to all its children.
//
// The choice of having secondary compression for array layers is to optimize for the cases
// where transfer operations are used to update specific layers of texture with render or
// transfer operations, while the rest is untouched. It seems much less likely that there
// would be operations that touch all Nth mips of a 2D array texture without touching the
// others.
//
// There are several hot code paths that create new SubresourceStorage like the tracking of
// resource usage per-pass. We don't want to allocate a container for the decompressed data
// unless we have to because it would dramatically lower performance. Instead
// SubresourceStorage contains an inline array that contains the per-aspect compressed data
// and only allocates a per-subresource on aspect decompression.
//
// T must be a copyable type that supports equality comparison with ==.
//
// The implementation of functions in this file can have a lot of control flow and corner cases
// so each modification should come with extensive tests and ensure 100% code coverage of the
// modified functions. See instructions at
// https://chromium.googlesource.com/chromium/src/+/master/docs/testing/code_coverage.md#local-coverage-script
// to run the test with code coverage. A command line that worked in the past (with the right
// GN args for the out/coverage directory in a Chromium checkout) is:
//
/*
python tools/code_coverage/coverage.py dawn_unittests -b out/coverage -o out/report -c \
"out/coverage/dawn_unittests --gtest_filter=SubresourceStorage\*" -f \
third_party/dawn/src/dawn_native
*/
//
// TODO(crbug.com/dawn/836): Make the recompression optional, the calling code should know
// if recompression can happen or not in Update() and Merge()
template <typename T>
class SubresourceStorage {
public:
static_assert(std::is_copy_assignable<T>::value, "T must be copyable");
static_assert(HasEqualityOperator<T>::value, "T requires bool operator == (T, T)");
// Creates the storage with the given "dimensions" and all subresources starting with the
// initial value.
SubresourceStorage(Aspect aspects,
uint32_t arrayLayerCount,
uint32_t mipLevelCount,
T initialValue = {});
// Returns the data for a single subresource. Note that the reference returned might be the
// same for multiple subresources.
const T& Get(Aspect aspect, uint32_t arrayLayer, uint32_t mipLevel) const;
// Given an iterateFunc that's a function or function-like objet that can be called with
// arguments of type (const SubresourceRange& range, const T& data) and returns void,
// calls it with aggregate ranges if possible, such that each subresource is part of
// exactly one of the ranges iterateFunc is called with (and obviously data is the value
// stored for that subresource). For example:
//
// subresources.Iterate([&](const SubresourceRange& range, const T& data) {
// // Do something with range and data.
// });
template <typename F>
void Iterate(F&& iterateFunc) const;
// Given an updateFunc that's a function or function-like objet that can be called with
// arguments of type (const SubresourceRange& range, T* data) and returns void,
// calls it with ranges that in aggregate form `range` and pass for each of the
// sub-ranges a pointer to modify the value for that sub-range. For example:
//
// subresources.Update(view->GetRange(), [](const SubresourceRange&, T* data) {
// *data |= wgpu::TextureUsage::Stuff;
// });
//
// /!\ WARNING: updateFunc should never use range to compute the update to data otherwise
// your code is likely to break when compression happens. Range should only be used for
// side effects like using it to compute a Vulkan pipeline barrier.
template <typename F>
void Update(const SubresourceRange& range, F&& updateFunc);
// Given a mergeFunc that's a function or a function-like object that can be called with
// arguments of type (const SubresourceRange& range, T* data, const U& otherData) and
// returns void, calls it with ranges that in aggregate form the full resources and pass
// for each of the sub-ranges a pointer to modify the value for that sub-range and the
// corresponding value from other for that sub-range. For example:
//
// subresources.Merge(otherUsages,
// [](const SubresourceRange&, T* data, const T& otherData) {
// *data |= otherData;
// });
//
// /!\ WARNING: mergeFunc should never use range to compute the update to data otherwise
// your code is likely to break when compression happens. Range should only be used for
// side effects like using it to compute a Vulkan pipeline barrier.
template <typename U, typename F>
void Merge(const SubresourceStorage<U>& other, F&& mergeFunc);
// Other operations to consider:
//
// - UpdateTo(Range, T) that updates the range to a constant value.
// Methods to query the internal state of SubresourceStorage for testing.
Aspect GetAspectsForTesting() const;
uint32_t GetArrayLayerCountForTesting() const;
uint32_t GetMipLevelCountForTesting() const;
bool IsAspectCompressedForTesting(Aspect aspect) const;
bool IsLayerCompressedForTesting(Aspect aspect, uint32_t layer) const;
private:
template <typename U>
friend class SubresourceStorage;
void DecompressAspect(uint32_t aspectIndex);
void RecompressAspect(uint32_t aspectIndex);
void DecompressLayer(uint32_t aspectIndex, uint32_t layer);
void RecompressLayer(uint32_t aspectIndex, uint32_t layer);
SubresourceRange GetFullLayerRange(Aspect aspect, uint32_t layer) const;
// LayerCompressed should never be called when the aspect is compressed otherwise it would
// need to check that mLayerCompressed is not null before indexing it.
bool& LayerCompressed(uint32_t aspectIndex, uint32_t layerIndex);
bool LayerCompressed(uint32_t aspectIndex, uint32_t layerIndex) const;
// Return references to the data for a compressed plane / layer or subresource.
// Each variant should be called exactly under the correct compression level.
T& DataInline(uint32_t aspectIndex);
T& Data(uint32_t aspectIndex, uint32_t layer, uint32_t level = 0);
const T& DataInline(uint32_t aspectIndex) const;
const T& Data(uint32_t aspectIndex, uint32_t layer, uint32_t level = 0) const;
Aspect mAspects;
uint8_t mMipLevelCount;
uint16_t mArrayLayerCount;
// Invariant: if an aspect is marked compressed, then all it's layers are marked as
// compressed.
static constexpr size_t kMaxAspects = 2;
std::array<bool, kMaxAspects> mAspectCompressed;
std::array<T, kMaxAspects> mInlineAspectData;
// Indexed as mLayerCompressed[aspectIndex * mArrayLayerCount + layer].
std::unique_ptr<bool[]> mLayerCompressed;
// Indexed as mData[(aspectIndex * mArrayLayerCount + layer) * mMipLevelCount + level].
// The data for a compressed aspect is stored in the slot for (aspect, 0, 0). Similarly
// the data for a compressed layer of aspect if in the slot for (aspect, layer, 0).
std::unique_ptr<T[]> mData;
};
template <typename T>
SubresourceStorage<T>::SubresourceStorage(Aspect aspects,
uint32_t arrayLayerCount,
uint32_t mipLevelCount,
T initialValue)
: mAspects(aspects), mMipLevelCount(mipLevelCount), mArrayLayerCount(arrayLayerCount) {
ASSERT(arrayLayerCount <= std::numeric_limits<decltype(mArrayLayerCount)>::max());
ASSERT(mipLevelCount <= std::numeric_limits<decltype(mMipLevelCount)>::max());
uint32_t aspectCount = GetAspectCount(aspects);
ASSERT(aspectCount <= kMaxAspects);
for (uint32_t aspectIndex = 0; aspectIndex < aspectCount; aspectIndex++) {
mAspectCompressed[aspectIndex] = true;
DataInline(aspectIndex) = initialValue;
}
}
template <typename T>
template <typename F>
void SubresourceStorage<T>::Update(const SubresourceRange& range, F&& updateFunc) {
bool fullLayers = range.baseMipLevel == 0 && range.levelCount == mMipLevelCount;
bool fullAspects =
range.baseArrayLayer == 0 && range.layerCount == mArrayLayerCount && fullLayers;
for (Aspect aspect : IterateEnumMask(range.aspects)) {
uint32_t aspectIndex = GetAspectIndex(aspect);
// Call the updateFunc once for the whole aspect if possible or decompress and fallback
// to per-layer handling.
if (mAspectCompressed[aspectIndex]) {
if (fullAspects) {
SubresourceRange updateRange =
SubresourceRange::MakeFull(aspect, mArrayLayerCount, mMipLevelCount);
updateFunc(updateRange, &DataInline(aspectIndex));
continue;
}
DecompressAspect(aspectIndex);
}
uint32_t layerEnd = range.baseArrayLayer + range.layerCount;
for (uint32_t layer = range.baseArrayLayer; layer < layerEnd; layer++) {
// Call the updateFunc once for the whole layer if possible or decompress and
// fallback to per-level handling.
if (LayerCompressed(aspectIndex, layer)) {
if (fullLayers) {
SubresourceRange updateRange = GetFullLayerRange(aspect, layer);
updateFunc(updateRange, &Data(aspectIndex, layer));
continue;
}
DecompressLayer(aspectIndex, layer);
}
// Worst case: call updateFunc per level.
uint32_t levelEnd = range.baseMipLevel + range.levelCount;
for (uint32_t level = range.baseMipLevel; level < levelEnd; level++) {
SubresourceRange updateRange =
SubresourceRange::MakeSingle(aspect, layer, level);
updateFunc(updateRange, &Data(aspectIndex, layer, level));
}
// If the range has fullLayers then it is likely we can recompress after the calls
// to updateFunc (this branch is skipped if updateFunc was called for the whole
// layer).
if (fullLayers) {
RecompressLayer(aspectIndex, layer);
}
}
// If the range has fullAspects then it is likely we can recompress after the calls to
// updateFunc (this branch is skipped if updateFunc was called for the whole aspect).
if (fullAspects) {
RecompressAspect(aspectIndex);
}
}
}
template <typename T>
template <typename U, typename F>
void SubresourceStorage<T>::Merge(const SubresourceStorage<U>& other, F&& mergeFunc) {
ASSERT(mAspects == other.mAspects);
ASSERT(mArrayLayerCount == other.mArrayLayerCount);
ASSERT(mMipLevelCount == other.mMipLevelCount);
for (Aspect aspect : IterateEnumMask(mAspects)) {
uint32_t aspectIndex = GetAspectIndex(aspect);
// If the other storage's aspect is compressed we don't need to decompress anything
// in `this` and can just iterate through it, merging with `other`'s constant value for
// the aspect. For code simplicity this can be done with a call to Update().
if (other.mAspectCompressed[aspectIndex]) {
const U& otherData = other.DataInline(aspectIndex);
Update(SubresourceRange::MakeFull(aspect, mArrayLayerCount, mMipLevelCount),
[&](const SubresourceRange& subrange, T* data) {
mergeFunc(subrange, data, otherData);
});
continue;
}
// Other doesn't have the aspect compressed so we must do at least per-layer merging.
if (mAspectCompressed[aspectIndex]) {
DecompressAspect(aspectIndex);
}
for (uint32_t layer = 0; layer < mArrayLayerCount; layer++) {
// Similarly to above, use a fast path if other's layer is compressed.
if (other.LayerCompressed(aspectIndex, layer)) {
const U& otherData = other.Data(aspectIndex, layer);
Update(GetFullLayerRange(aspect, layer),
[&](const SubresourceRange& subrange, T* data) {
mergeFunc(subrange, data, otherData);
});
continue;
}
// Sad case, other is decompressed for this layer, do per-level merging.
if (LayerCompressed(aspectIndex, layer)) {
DecompressLayer(aspectIndex, layer);
}
for (uint32_t level = 0; level < mMipLevelCount; level++) {
SubresourceRange updateRange =
SubresourceRange::MakeSingle(aspect, layer, level);
mergeFunc(updateRange, &Data(aspectIndex, layer, level),
other.Data(aspectIndex, layer, level));
}
RecompressLayer(aspectIndex, layer);
}
RecompressAspect(aspectIndex);
}
}
template <typename T>
template <typename F>
void SubresourceStorage<T>::Iterate(F&& iterateFunc) const {
for (Aspect aspect : IterateEnumMask(mAspects)) {
uint32_t aspectIndex = GetAspectIndex(aspect);
// Fastest path, call iterateFunc on the whole aspect at once.
if (mAspectCompressed[aspectIndex]) {
SubresourceRange range =
SubresourceRange::MakeFull(aspect, mArrayLayerCount, mMipLevelCount);
iterateFunc(range, DataInline(aspectIndex));
continue;
}
for (uint32_t layer = 0; layer < mArrayLayerCount; layer++) {
// Fast path, call iterateFunc on the whole array layer at once.
if (LayerCompressed(aspectIndex, layer)) {
SubresourceRange range = GetFullLayerRange(aspect, layer);
iterateFunc(range, Data(aspectIndex, layer));
continue;
}
// Slow path, call iterateFunc for each mip level.
for (uint32_t level = 0; level < mMipLevelCount; level++) {
SubresourceRange range = SubresourceRange::MakeSingle(aspect, layer, level);
iterateFunc(range, Data(aspectIndex, layer, level));
}
}
}
}
template <typename T>
const T& SubresourceStorage<T>::Get(Aspect aspect,
uint32_t arrayLayer,
uint32_t mipLevel) const {
uint32_t aspectIndex = GetAspectIndex(aspect);
ASSERT(aspectIndex < GetAspectCount(mAspects));
ASSERT(arrayLayer < mArrayLayerCount);
ASSERT(mipLevel < mMipLevelCount);
// Fastest path, the aspect is compressed!
uint32_t dataIndex = aspectIndex * mArrayLayerCount * mMipLevelCount;
if (mAspectCompressed[aspectIndex]) {
return DataInline(aspectIndex);
}
// Fast path, the array layer is compressed.
dataIndex += arrayLayer * mMipLevelCount;
if (LayerCompressed(aspectIndex, arrayLayer)) {
return Data(aspectIndex, arrayLayer);
}
return Data(aspectIndex, arrayLayer, mipLevel);
}
template <typename T>
Aspect SubresourceStorage<T>::GetAspectsForTesting() const {
return mAspects;
}
template <typename T>
uint32_t SubresourceStorage<T>::GetArrayLayerCountForTesting() const {
return mArrayLayerCount;
}
template <typename T>
uint32_t SubresourceStorage<T>::GetMipLevelCountForTesting() const {
return mMipLevelCount;
}
template <typename T>
bool SubresourceStorage<T>::IsAspectCompressedForTesting(Aspect aspect) const {
return mAspectCompressed[GetAspectIndex(aspect)];
}
template <typename T>
bool SubresourceStorage<T>::IsLayerCompressedForTesting(Aspect aspect, uint32_t layer) const {
return mAspectCompressed[GetAspectIndex(aspect)] ||
mLayerCompressed[GetAspectIndex(aspect) * mArrayLayerCount + layer];
}
template <typename T>
void SubresourceStorage<T>::DecompressAspect(uint32_t aspectIndex) {
ASSERT(mAspectCompressed[aspectIndex]);
const T& aspectData = DataInline(aspectIndex);
mAspectCompressed[aspectIndex] = false;
// Extra allocations are only needed when aspects are decompressed. Create them lazily.
if (mData == nullptr) {
ASSERT(mLayerCompressed == nullptr);
uint32_t aspectCount = GetAspectCount(mAspects);
mLayerCompressed = std::make_unique<bool[]>(aspectCount * mArrayLayerCount);
mData = std::make_unique<T[]>(aspectCount * mArrayLayerCount * mMipLevelCount);
for (uint32_t layerIndex = 0; layerIndex < aspectCount * mArrayLayerCount;
layerIndex++) {
mLayerCompressed[layerIndex] = true;
}
}
ASSERT(LayerCompressed(aspectIndex, 0));
for (uint32_t layer = 0; layer < mArrayLayerCount; layer++) {
Data(aspectIndex, layer) = aspectData;
ASSERT(LayerCompressed(aspectIndex, layer));
}
}
template <typename T>
void SubresourceStorage<T>::RecompressAspect(uint32_t aspectIndex) {
ASSERT(!mAspectCompressed[aspectIndex]);
// All layers of the aspect must be compressed for the aspect to possibly recompress.
for (uint32_t layer = 0; layer < mArrayLayerCount; layer++) {
if (!LayerCompressed(aspectIndex, layer)) {
return;
}
}
T layer0Data = Data(aspectIndex, 0);
for (uint32_t layer = 1; layer < mArrayLayerCount; layer++) {
if (!(Data(aspectIndex, layer) == layer0Data)) {
return;
}
}
mAspectCompressed[aspectIndex] = true;
DataInline(aspectIndex) = layer0Data;
}
template <typename T>
void SubresourceStorage<T>::DecompressLayer(uint32_t aspectIndex, uint32_t layer) {
ASSERT(LayerCompressed(aspectIndex, layer));
ASSERT(!mAspectCompressed[aspectIndex]);
const T& layerData = Data(aspectIndex, layer);
LayerCompressed(aspectIndex, layer) = false;
// We assume that (aspect, layer, 0) is stored at the same place as (aspect, layer) which
// allows starting the iteration at level 1.
for (uint32_t level = 1; level < mMipLevelCount; level++) {
Data(aspectIndex, layer, level) = layerData;
}
}
template <typename T>
void SubresourceStorage<T>::RecompressLayer(uint32_t aspectIndex, uint32_t layer) {
ASSERT(!LayerCompressed(aspectIndex, layer));
ASSERT(!mAspectCompressed[aspectIndex]);
const T& level0Data = Data(aspectIndex, layer, 0);
for (uint32_t level = 1; level < mMipLevelCount; level++) {
if (!(Data(aspectIndex, layer, level) == level0Data)) {
return;
}
}
LayerCompressed(aspectIndex, layer) = true;
}
template <typename T>
SubresourceRange SubresourceStorage<T>::GetFullLayerRange(Aspect aspect, uint32_t layer) const {
return {aspect, {layer, 1}, {0, mMipLevelCount}};
}
template <typename T>
bool& SubresourceStorage<T>::LayerCompressed(uint32_t aspectIndex, uint32_t layer) {
ASSERT(!mAspectCompressed[aspectIndex]);
return mLayerCompressed[aspectIndex * mArrayLayerCount + layer];
}
template <typename T>
bool SubresourceStorage<T>::LayerCompressed(uint32_t aspectIndex, uint32_t layer) const {
ASSERT(!mAspectCompressed[aspectIndex]);
return mLayerCompressed[aspectIndex * mArrayLayerCount + layer];
}
template <typename T>
T& SubresourceStorage<T>::DataInline(uint32_t aspectIndex) {
ASSERT(mAspectCompressed[aspectIndex]);
return mInlineAspectData[aspectIndex];
}
template <typename T>
T& SubresourceStorage<T>::Data(uint32_t aspectIndex, uint32_t layer, uint32_t level) {
ASSERT(level == 0 || !LayerCompressed(aspectIndex, layer));
ASSERT(!mAspectCompressed[aspectIndex]);
return mData[(aspectIndex * mArrayLayerCount + layer) * mMipLevelCount + level];
}
template <typename T>
const T& SubresourceStorage<T>::DataInline(uint32_t aspectIndex) const {
ASSERT(mAspectCompressed[aspectIndex]);
return mInlineAspectData[aspectIndex];
}
template <typename T>
const T& SubresourceStorage<T>::Data(uint32_t aspectIndex,
uint32_t layer,
uint32_t level) const {
ASSERT(level == 0 || !LayerCompressed(aspectIndex, layer));
ASSERT(!mAspectCompressed[aspectIndex]);
return mData[(aspectIndex * mArrayLayerCount + layer) * mMipLevelCount + level];
}
} // namespace dawn_native
#endif // DAWNNATIVE_SUBRESOURCESTORAGE_H_