blob: d550eec69d42c81dd7cd3b58338aa2cb5d044a87 [file] [log] [blame]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/intrinsic_table.h"
#include <algorithm>
#include <limits>
#include <string>
#include <unordered_map>
#include <utility>
#include "src/block_allocator.h"
#include "src/program_builder.h"
#include "src/semantic/intrinsic.h"
#include "src/type/f32_type.h"
namespace tint {
namespace {
/// OpenTypes are the symbols used for templated types in overload signatures
enum class OpenType {
T,
Count, // Number of entries in the enum. Not a usable symbol.
};
/// OpenNumber are the symbols used for templated integers in overload
/// signatures
enum class OpenNumber {
N, // Typically used for vecN
M, // Typically used for matNxM
F, // Typically used for texture_storage_2d<F>
};
/// @return a string of the OpenType symbol `ty`
const char* str(OpenType ty) {
switch (ty) {
case OpenType::T:
return "T";
case OpenType::Count:
break;
}
return "";
}
/// @return a string of the OpenNumber symbol `num`
const char* str(OpenNumber num) {
switch (num) {
case OpenNumber::N:
return "N";
case OpenNumber::M:
return "M";
case OpenNumber::F:
return "F";
}
return "";
}
/// A Matcher is an interface of a class used to match an overload parameter,
/// return type, or open type.
class Matcher {
public:
/// Current state passed to Match()
struct MatchState {
/// The map of open types. A new entry is assigned the first time an
/// OpenType is encountered. If the OpenType is encountered again, a
/// comparison is made to see if the type is consistent.
std::unordered_map<OpenType, type::Type*> open_types;
/// The map of open numbers. A new entry is assigned the first time an
/// OpenNumber is encountered. If the OpenNumber is encountered again, a
/// comparison is made to see if the number is consistent.
std::unordered_map<OpenNumber, uint32_t> open_numbers;
};
/// Destructor
virtual ~Matcher() = default;
/// Checks whether the given argument type matches.
/// Match may add to, or compare against the open types and numbers in state.
/// @returns true if the argument type is as expected.
virtual bool Match(MatchState& state, type::Type* argument_type) const = 0;
/// @return a string representation of the matcher. Used for printing error
/// messages when no overload is found.
virtual std::string str() const = 0;
protected:
/// Checks `state.open_type` to see if the OpenType `t` is equal to the type
/// `ty`. If `state.open_type` does not contain an entry for `t`, then `ty`
/// is added and returns true.
bool MatchOpenType(MatchState& state, OpenType t, type::Type* ty) const {
auto it = state.open_types.find(t);
if (it != state.open_types.end()) {
return it->second == ty;
}
state.open_types[t] = ty;
return true;
}
/// Checks `state.open_numbers` to see if the OpenNumber `n` is equal to
/// `val`. If `state.open_numbers` does not contain an entry for `n`, then
/// `val` is added and returns true.
bool MatchOpenNumber(MatchState& state, OpenNumber n, uint32_t val) const {
auto it = state.open_numbers.find(n);
if (it != state.open_numbers.end()) {
return it->second == val;
}
state.open_numbers[n] = val;
return true;
}
};
/// Builder is an extension of the Matcher interface that can also build the
/// expected type. Builders are used to generate the parameter and return types
/// on successful overload match.
class Builder : public Matcher {
public:
/// Final matched state passed to Build()
struct BuildState {
/// The type manager used to construct new types
type::Manager& ty_mgr;
/// The final resolved list of open types
std::unordered_map<OpenType, type::Type*> const open_types;
/// The final resolved list of open numbers
std::unordered_map<OpenNumber, uint32_t> const open_numbers;
};
/// Destructor
~Builder() override = default;
/// Constructs and returns the expected type
virtual type::Type* Build(BuildState& state) const = 0;
};
/// OpenTypeBuilder is a Matcher / Builder for an open type (T etc).
/// The OpenTypeBuilder will match against any type (so long as it is consistent
/// for the overload), and Build() will build the type it matched against.
class OpenTypeBuilder : public Builder {
public:
explicit OpenTypeBuilder(OpenType open_type) : open_type_(open_type) {}
bool Match(MatchState& state, type::Type* ty) const override {
return MatchOpenType(state, open_type_, ty);
}
type::Type* Build(BuildState& state) const override {
return state.open_types.at(open_type_);
}
std::string str() const override { return tint::str(open_type_); }
private:
OpenType open_type_;
};
/// BoolBuilder is a Matcher / Builder for boolean types.
class BoolBuilder : public Builder {
public:
bool Match(MatchState&, type::Type* ty) const override {
return ty->Is<type::Bool>();
}
type::Type* Build(BuildState& state) const override {
return state.ty_mgr.Get<type::Bool>();
}
std::string str() const override { return "bool"; }
};
/// F32Builder is a Matcher / Builder for f32 types.
class F32Builder : public Builder {
public:
bool Match(MatchState&, type::Type* ty) const override {
return ty->Is<type::F32>();
}
type::Type* Build(BuildState& state) const override {
return state.ty_mgr.Get<type::F32>();
}
std::string str() const override { return "f32"; }
};
/// U32Builder is a Matcher / Builder for u32 types.
class U32Builder : public Builder {
public:
bool Match(MatchState&, type::Type* ty) const override {
return ty->Is<type::U32>();
}
type::Type* Build(BuildState& state) const override {
return state.ty_mgr.Get<type::U32>();
}
std::string str() const override { return "u32"; }
};
/// I32Builder is a Matcher / Builder for i32 types.
class I32Builder : public Builder {
public:
bool Match(MatchState&, type::Type* ty) const override {
return ty->Is<type::I32>();
}
type::Type* Build(BuildState& state) const override {
return state.ty_mgr.Get<type::I32>();
}
std::string str() const override { return "i32"; }
};
/// IU32Matcher is a Matcher for i32 or u32 types.
class IU32Matcher : public Matcher {
public:
bool Match(MatchState&, type::Type* ty) const override {
return ty->Is<type::I32>() || ty->Is<type::U32>();
}
std::string str() const override { return "i32 or u32"; }
};
/// FIU32Matcher is a Matcher for f32, i32 or u32 types.
class FIU32Matcher : public Matcher {
public:
bool Match(MatchState&, type::Type* ty) const override {
return ty->Is<type::F32>() || ty->Is<type::I32>() || ty->Is<type::U32>();
}
std::string str() const override { return "f32, i32 or u32"; }
};
/// ScalarMatcher is a Matcher for f32, i32, u32 or boolean types.
class ScalarMatcher : public Matcher {
public:
bool Match(MatchState&, type::Type* ty) const override {
return ty->is_scalar();
}
std::string str() const override { return "scalar"; }
};
/// OpenSizeVecBuilder is a Matcher / Builder for vector types of an open number
/// size.
class OpenSizeVecBuilder : public Builder {
public:
OpenSizeVecBuilder(OpenNumber size, Builder* element_builder)
: size_(size), element_builder_(element_builder) {}
bool Match(MatchState& state, type::Type* ty) const override {
if (auto* vec = ty->UnwrapAll()->As<type::Vector>()) {
if (!MatchOpenNumber(state, size_, vec->size())) {
return false;
}
return element_builder_->Match(state, vec->type());
}
return false;
}
type::Type* Build(BuildState& state) const override {
auto* el = element_builder_->Build(state);
auto n = state.open_numbers.at(size_);
return state.ty_mgr.Get<type::Vector>(el, n);
}
std::string str() const override {
return "vec" + std::string(tint::str(size_)) + "<" +
element_builder_->str() + ">";
}
protected:
OpenNumber const size_;
Builder* const element_builder_;
};
/// VecBuilder is a Matcher / Builder for vector types of a fixed size.
class VecBuilder : public Builder {
public:
VecBuilder(uint32_t size, Builder* element_builder)
: size_(size), element_builder_(element_builder) {}
bool Match(MatchState& state, type::Type* ty) const override {
if (auto* vec = ty->UnwrapAll()->As<type::Vector>()) {
if (vec->size() == size_) {
return element_builder_->Match(state, vec->type());
}
}
return false;
}
type::Type* Build(BuildState& state) const override {
auto* el = element_builder_->Build(state);
return state.ty_mgr.Get<type::Vector>(el, size_);
}
std::string str() const override {
return "vec" + std::to_string(size_) + "<" + element_builder_->str() + ">";
}
protected:
const uint32_t size_;
Builder* element_builder_;
};
/// OpenSizeVecBuilder is a Matcher / Builder for matrix types of an open number
/// column and row size.
class OpenSizeMatBuilder : public Builder {
public:
OpenSizeMatBuilder(OpenNumber columns,
OpenNumber rows,
Builder* element_builder)
: columns_(columns), rows_(rows), element_builder_(element_builder) {}
bool Match(MatchState& state, type::Type* ty) const override {
if (auto* mat = ty->UnwrapAll()->As<type::Matrix>()) {
if (!MatchOpenNumber(state, columns_, mat->columns())) {
return false;
}
if (!MatchOpenNumber(state, rows_, mat->rows())) {
return false;
}
return element_builder_->Match(state, mat->type());
}
return false;
}
type::Type* Build(BuildState& state) const override {
auto* el = element_builder_->Build(state);
auto columns = state.open_numbers.at(columns_);
auto rows = state.open_numbers.at(rows_);
return state.ty_mgr.Get<type::Matrix>(el, rows, columns);
}
std::string str() const override {
return "max" + std::string(tint::str(columns_)) + "x" +
std::string(tint::str(rows_)) + "<" + element_builder_->str() + ">";
}
protected:
OpenNumber const columns_;
OpenNumber const rows_;
Builder* const element_builder_;
};
/// PtrBuilder is a Matcher / Builder for pointer types.
class PtrBuilder : public Builder {
public:
explicit PtrBuilder(Builder* element_builder)
: element_builder_(element_builder) {}
bool Match(MatchState& state, type::Type* ty) const override {
if (auto* ptr = ty->As<type::Pointer>()) {
return element_builder_->Match(state, ptr->type());
}
// TODO(bclayton): https://crbug.com/tint/486
// TypeDeterminer currently folds away the pointers on expressions.
// We'll need to fix this to ensure that pointer parameters are not fed
// non-pointer arguments, but for now just accept them.
return element_builder_->Match(state, ty);
}
type::Type* Build(BuildState& state) const override {
auto* el = element_builder_->Build(state);
return state.ty_mgr.Get<type::Pointer>(el, ast::StorageClass::kNone);
}
std::string str() const override {
return "ptr<" + element_builder_->str() + ">";
}
private:
Builder* const element_builder_;
};
/// ArrayBuilder is a Matcher / Builder for runtime sized array types.
class ArrayBuilder : public Builder {
public:
explicit ArrayBuilder(Builder* element_builder)
: element_builder_(element_builder) {}
bool Match(MatchState& state, type::Type* ty) const override {
if (auto* arr = ty->As<type::Array>()) {
if (arr->size() == 0) {
return element_builder_->Match(state, arr->type());
}
}
return false;
}
type::Type* Build(BuildState& state) const override {
auto* el = element_builder_->Build(state);
return state.ty_mgr.Get<type::Array>(el, 0, ast::ArrayDecorationList{});
}
std::string str() const override {
return "array<" + element_builder_->str() + ">";
}
private:
Builder* const element_builder_;
};
/// Impl is the private implementation of the IntrinsicTable interface.
class Impl : public IntrinsicTable {
public:
Impl();
IntrinsicTable::Result Lookup(
ProgramBuilder& builder,
semantic::IntrinsicType type,
const std::vector<type::Type*>& args) const override;
/// A single overload definition.
struct Overload {
/// @returns a human readable string representation of the overload
std::string str() const;
/// Attempts to match this overload given the IntrinsicType and argument
/// types. If a match is made, the build intrinsic is returned, otherwise
/// `match_score` is assigned a score of how closely the overload matched
/// (positive representing a greater match), and nullptr is returned.
semantic::Intrinsic* Match(ProgramBuilder& builder,
semantic::IntrinsicType type,
const std::vector<type::Type*>& arg_types,
int& match_score) const;
semantic::IntrinsicType type;
Builder* return_type;
std::vector<Builder*> parameters;
std::unordered_map<OpenType, Matcher*> open_type_matchers;
};
private:
/// Allocator for the built Matcher / Builders
BlockAllocator<Matcher> matcher_allocator_;
/// Commonly used Matcher / Builders
struct {
BoolBuilder bool_;
F32Builder f32;
I32Builder i32;
IU32Matcher iu32;
FIU32Matcher fiu32;
ScalarMatcher scalar;
U32Builder u32;
OpenTypeBuilder T{OpenType::T};
} matchers_;
// TODO(bclayton): Sort by type, or array these by IntrinsicType
std::vector<Overload> overloads_;
/// @returns a Matcher / Builder that matches a pointer with the given element
/// type
PtrBuilder* ptr(Builder* element_builder) {
return matcher_allocator_.Create<PtrBuilder>(element_builder);
}
/// @returns a Matcher / Builder that matches a vector of size OpenNumber::N
/// with the given element type
OpenSizeVecBuilder* vecN(Builder* element_builder) {
return matcher_allocator_.Create<OpenSizeVecBuilder>(OpenNumber::N,
element_builder);
}
/// @returns a Matcher / Builder that matches a vector of the given size and
/// element type
VecBuilder* vec(uint32_t size, Builder* element_builder) {
return matcher_allocator_.Create<VecBuilder>(size, element_builder);
}
/// @returns a Matcher / Builder that matches a runtime sized array with the
/// given element type
ArrayBuilder* array(Builder* element_builder) {
return matcher_allocator_.Create<ArrayBuilder>(element_builder);
}
/// @returns a Matcher / Builder that matches a matrix with the given size and
/// element type
OpenSizeMatBuilder* mat(OpenNumber columns,
OpenNumber rows,
Builder* element_builder) {
return matcher_allocator_.Create<OpenSizeMatBuilder>(columns, rows,
element_builder);
}
/// @returns a Matcher / Builder that matches a square matrix with the column
/// / row count of OpenNumber::N
template <typename T>
auto matNxN(T&& in) {
return mat(OpenNumber::N, OpenNumber::N, std::forward<T>(in));
}
/// Registers an overload with the given intrinsic type, return type Matcher /
/// Builder, and parameter Matcher / Builders.
/// This overload of Register does not constrain any OpenTypes.
void Register(semantic::IntrinsicType type,
Builder* return_type,
std::vector<Builder*> parameters) {
Overload overload{type, return_type, std::move(parameters), {}};
overloads_.emplace_back(overload);
}
/// Registers an overload with the given intrinsic type, return type Matcher /
/// Builder, and parameter Matcher / Builders.
/// A single OpenType is contained with the given Matcher in
/// open_type_matcher.
void Register(semantic::IntrinsicType type,
Builder* return_type,
std::vector<Builder*> parameters,
std::pair<OpenType, Matcher*> open_type_matcher) {
Overload overload{
type, return_type, std::move(parameters), {open_type_matcher}};
overloads_.emplace_back(overload);
}
};
Impl::Impl() {
using I = semantic::IntrinsicType;
auto* bool_ = &matchers_.bool_; // bool
auto* f32 = &matchers_.f32; // f32
auto* u32 = &matchers_.u32; // u32
auto* iu32 = &matchers_.iu32; // i32 or u32
auto* fiu32 = &matchers_.fiu32; // f32, i32 or u32
auto* scalar = &matchers_.scalar; // f32, i32, u32 or bool
auto* T = &matchers_.T; // Any T type
auto* array_T = array(T); // array<T>
auto* vec2_f32 = vec(2, f32); // vec2<f32>
auto* vec3_f32 = vec(3, f32); // vec3<f32>
auto* vec4_f32 = vec(4, f32); // vec4<f32>
auto* vecN_f32 = vecN(f32); // vecN<f32>
auto* vecN_T = vecN(T); // vecN<T>
auto* vecN_bool = vecN(bool_); // vecN<bool>
auto* matNxN_f32 = matNxN(f32); // matNxN<f32>
auto* ptr_T = ptr(T); // ptr<T>
auto* ptr_f32 = ptr(f32); // ptr<f32>
auto* ptr_vecN_T = ptr(vecN_T); // ptr<vecN<T>>
auto* ptr_vecN_f32 = ptr(vecN_f32); // ptr<vecN<f32>>
// Intrinsic overloads are registered with a call to the Register().
//
// The best way to explain Register() and the lookup process is by example.
//
// Let's begin with a simple overload declaration:
//
// Register(I::kIsInf, bool_, {f32});
//
// I - is an alias to semantic::IntrinsicType.
// I::kIsInf is shorthand for semantic::IntrinsicType::kIsInf.
// bool_ - is a pointer to a pre-constructed BoolBuilder which matches and
// builds type::Bool types.
// {f32} - is the list of parameter Builders for the overload.
// Builders are a type of Matcher that can also build the the type.
// All Builders are Matchers, not all Matchers are Builders.
// f32 is a pointer to a pre-constructed F32Builder which matches and
// builds type::F32 types.
//
// This call registers the overload for the `isInf(f32) -> bool` intrinsic.
//
// Let's now see the process of Overload::Match() when passed a single f32
// argument:
//
// (1) Overload::Match() begins by attempting to match the argument types
// from left to right.
// F32Builder::Match() is called with the type::F32 argument type.
// F32Builder (only) matches the type::F32 type, so F32Builder::Match()
// returns true.
// (2) All the parameters have had their Matcher::Match() methods return
// true, there are no open-types (more about these later), so the
// overload has matched.
// (3) The semantic::Intrinsic now needs to be built, so we begin by
// building the overload's parameter types (these may not exactly match
// the argument types). Build() is called for each parameter Builder,
// returning the parameter type.
// (4) Finally, Builder::Build() is called for the return_type, and the
// semantic::Intrinsic is constructed and returned.
// Job done.
//
// Overload resolution also supports basic pattern matching through the use of
// open-types and open-numbers.
//
// OpenTypeBuilder is a Matcher that matches a single open-type.
//
// An 'open-type' can be thought as a template type that is determined by the
// arguments to the intrinsic.
//
// At the beginning of Overload::Match(), all open-types are undefined.
// Open-types are closed (pinned to a fixed type) on the first attempt to
// match against that open-type (e.g. via OpenTypeBuilder::Match()).
// Once open-types are closed, they remain that type, and
// OpenTypeBuilder::Match() will only ever return true if the queried type
// matches the closed type.
//
// To better understand, let's consider the following hypothetical overload
// declaration:
//
// Register(I::kFoo, T, {T, T}, {OpenType::T, scalar});
//
// T - is the matcher for the open-type OpenType::T.
// scalar - is a pointer to a pre-constructed ScalarMatcher
// which matches scalar types (f32, i32, u32, bool).
// {OpenType::T, scalar} - is a constraint on the open-type OpenType::T that
// it needs to resolve to a scalar.
//
// This call to Register() declares the foo intrinsic which accepts the
// identical scalar type for both arguments, and returns that scalar type.
//
// The process for resolving this overload is as follows:
//
// (1) Overload::Match() begins by attempting to match the argument types
// from left to right.
// OpenTypeBuilder::Match() is called for the first parameter, being
// passed the type of the first argument.
// The OpenType::T has not been closed yet, so the OpenType::T is closed
// as the type of the first argument.
// There's no verification that the T type is a scalar at this stage.
// (2) OpenTypeBuilder::Match() is called again for the second parameter
// with the type of the second argument.
// As the OpenType::T is now closed, the argument type is compared
// against the value of the closed-type of OpenType::T.
// OpenTypeBuilder::Match() returns true if these type match, otherwise
// false and the overload match fails.
// (3) If all the parameters have had their Matcher::Match() methods return
// true, then the open-type constraints need to be checked next.
// The Matcher::Match() is called for each closed type. If any return
// false then the overload match fails.
// (4) Overload::Match() now needs to build and return the output
// semantic::Intrinsic holding the matched overload signature.
// (5) The parameter types are built by calling OpenTypeBuilder::Build().
// This simply returns the closed type.
// (6) OpenTypeBuilder::Build() is called again for the return_type, and the
// semantic::Intrinsic is constructed and returned.
// Job done.
//
// Open-numbers are very similar to open-types, except they match against
// integers instead of types. The rules for open-numbers are almost identical
// to open-types, except open-numbers do not support constraints.
//
// vecN(f32) is an example of a Matcher that uses open-numbers.
// vecN() constructs a OpenSizeVecBuilder that will match a vector of size
// OpenNumber::N and of element type f32. As vecN() always uses the
// OpenNumber::N, using vecN() multiple times in the same overload signature
// will ensure that the vector size is identical for all vector types.
//
// Some Matcher implementations accept other Matchers for matching sub-types.
// Consider:
//
// Register(I::kClamp, vecN(T), {vecN(T), vecN(T), vecN(T)},
// {OpenType::T, fiu32});
//
// vecN(T) is a OpenSizeVecBuilder that matches a vector of size OpenNumber::N
// and of element type OpenType::T, where T must be either a f32, i32, or u32.
// clang-format off
// name return type parameter types open type constraints // NOLINT
Register(I::kAbs, T, {T}, {OpenType::T, fiu32} ); // NOLINT
Register(I::kAbs, vecN_T, {vecN_T}, {OpenType::T, fiu32} ); // NOLINT
Register(I::kAcos, f32, {f32} ); // NOLINT
Register(I::kAcos, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kAll, bool_, {vecN_bool} ); // NOLINT
Register(I::kAny, bool_, {vecN_bool} ); // NOLINT
Register(I::kArrayLength, u32, {array_T} ); // NOLINT
Register(I::kAsin, f32, {f32} ); // NOLINT
Register(I::kAsin, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kAtan, f32, {f32} ); // NOLINT
Register(I::kAtan, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kAtan2, f32, {f32, f32} ); // NOLINT
Register(I::kAtan2, vecN_f32, {vecN_f32, vecN_f32} ); // NOLINT
Register(I::kCeil, f32, {f32} ); // NOLINT
Register(I::kCeil, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kClamp, T, {T, T, T}, {OpenType::T, fiu32} ); // NOLINT
Register(I::kClamp, vecN_T, {vecN_T, vecN_T, vecN_T}, {OpenType::T, fiu32} ); // NOLINT
Register(I::kCos, f32, {f32} ); // NOLINT
Register(I::kCos, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kCosh, f32, {f32} ); // NOLINT
Register(I::kCosh, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kCountOneBits, T, {T}, {OpenType::T, iu32} ); // NOLINT
Register(I::kCountOneBits, vecN_T, {vecN_T}, {OpenType::T, iu32} ); // NOLINT
Register(I::kCross, vec3_f32, {vec3_f32, vec3_f32} ); // NOLINT
Register(I::kDeterminant, f32, {matNxN_f32} ); // NOLINT
Register(I::kDistance, f32, {f32, f32} ); // NOLINT
Register(I::kDistance, f32, {vecN_f32, vecN_f32} ); // NOLINT
Register(I::kDot, f32, {vecN_f32, vecN_f32} ); // NOLINT
Register(I::kDpdx, f32, {f32} ); // NOLINT
Register(I::kDpdx, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kDpdxCoarse, f32, {f32} ); // NOLINT
Register(I::kDpdxCoarse, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kDpdxFine, f32, {f32} ); // NOLINT
Register(I::kDpdxFine, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kDpdy, f32, {f32} ); // NOLINT
Register(I::kDpdy, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kDpdyCoarse, f32, {f32} ); // NOLINT
Register(I::kDpdyCoarse, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kDpdyFine, f32, {f32} ); // NOLINT
Register(I::kDpdyFine, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kExp, f32, {f32} ); // NOLINT
Register(I::kExp, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kExp2, f32, {f32} ); // NOLINT
Register(I::kExp2, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kFaceForward, f32, {f32, f32, f32} ); // NOLINT
Register(I::kFaceForward, vecN_f32, {vecN_f32, vecN_f32, vecN_f32} ); // NOLINT
Register(I::kFloor, f32, {f32} ); // NOLINT
Register(I::kFloor, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kFma, f32, {f32, f32, f32} ); // NOLINT
Register(I::kFma, vecN_f32, {vecN_f32, vecN_f32, vecN_f32} ); // NOLINT
Register(I::kFract, f32, {f32} ); // NOLINT
Register(I::kFract, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kFrexp, f32, {f32, ptr_T}, {OpenType::T, iu32} ); // NOLINT
Register(I::kFrexp, vecN_f32, {vecN_f32, ptr_vecN_T}, {OpenType::T, iu32} ); // NOLINT
Register(I::kFwidth, f32, {f32} ); // NOLINT
Register(I::kFwidth, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kFwidthCoarse, f32, {f32} ); // NOLINT
Register(I::kFwidthCoarse, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kFwidthFine, f32, {f32} ); // NOLINT
Register(I::kFwidthFine, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kInverseSqrt, f32, {f32} ); // NOLINT
Register(I::kInverseSqrt, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kIsFinite, bool_, {f32} ); // NOLINT
Register(I::kIsFinite, vecN_bool, {vecN_f32} ); // NOLINT
Register(I::kIsInf, bool_, {f32} ); // NOLINT
Register(I::kIsInf, vecN_bool, {vecN_f32} ); // NOLINT
Register(I::kIsNan, bool_, {f32} ); // NOLINT
Register(I::kIsNan, vecN_bool, {vecN_f32} ); // NOLINT
Register(I::kIsNormal, bool_, {f32} ); // NOLINT
Register(I::kIsNormal, vecN_bool, {vecN_f32} ); // NOLINT
Register(I::kLdexp, f32, {f32, T}, {OpenType::T, iu32} ); // NOLINT
Register(I::kLdexp, vecN_f32, {vecN_f32, vecN_T}, {OpenType::T, iu32} ); // NOLINT
Register(I::kLength, f32, {f32} ); // NOLINT
Register(I::kLength, f32, {vecN_f32} ); // NOLINT
Register(I::kLog, f32, {f32} ); // NOLINT
Register(I::kLog, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kLog2, f32, {f32} ); // NOLINT
Register(I::kLog2, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kMax, T, {T, T}, {OpenType::T, fiu32} ); // NOLINT
Register(I::kMax, vecN_T, {vecN_T, vecN_T}, {OpenType::T, fiu32} ); // NOLINT
Register(I::kMin, T, {T, T}, {OpenType::T, fiu32} ); // NOLINT
Register(I::kMin, vecN_T, {vecN_T, vecN_T}, {OpenType::T, fiu32} ); // NOLINT
Register(I::kMix, f32, {f32, f32, f32} ); // NOLINT
Register(I::kMix, vecN_f32, {vecN_f32, vecN_f32, vecN_f32} ); // NOLINT
Register(I::kModf, f32, {f32, ptr_f32} ); // NOLINT
Register(I::kModf, vecN_f32, {vecN_f32, ptr_vecN_f32} ); // NOLINT
Register(I::kNormalize, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kPack2x16Float, u32, {vec2_f32} ); // NOLINT
Register(I::kPack2x16Snorm, u32, {vec2_f32} ); // NOLINT
Register(I::kPack2x16Unorm, u32, {vec2_f32} ); // NOLINT
Register(I::kPack4x8Snorm, u32, {vec4_f32} ); // NOLINT
Register(I::kPack4x8Unorm, u32, {vec4_f32} ); // NOLINT
Register(I::kPow, f32, {f32, f32} ); // NOLINT
Register(I::kPow, vecN_f32, {vecN_f32, vecN_f32} ); // NOLINT
Register(I::kReflect, f32, {f32, f32} ); // NOLINT
Register(I::kReflect, vecN_f32, {vecN_f32, vecN_f32} ); // NOLINT
Register(I::kReverseBits, T, {T}, {OpenType::T, iu32} ); // NOLINT
Register(I::kReverseBits, vecN_T, {vecN_T}, {OpenType::T, iu32} ); // NOLINT
Register(I::kRound, f32, {f32} ); // NOLINT
Register(I::kRound, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kSelect, T, {T, T, bool_}, {OpenType::T, scalar} ); // NOLINT
Register(I::kSelect, vecN_T, {vecN_T, vecN_T, vecN_bool}, {OpenType::T, scalar} ); // NOLINT
Register(I::kSign, f32, {f32} ); // NOLINT
Register(I::kSign, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kSin, f32, {f32} ); // NOLINT
Register(I::kSin, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kSinh, f32, {f32} ); // NOLINT
Register(I::kSinh, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kSmoothStep, f32, {f32, f32, f32} ); // NOLINT
Register(I::kSmoothStep, vecN_f32, {vecN_f32, vecN_f32, vecN_f32} ); // NOLINT
Register(I::kSqrt, f32, {f32} ); // NOLINT
Register(I::kSqrt, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kStep, f32, {f32, f32} ); // NOLINT
Register(I::kStep, vecN_f32, {vecN_f32, vecN_f32} ); // NOLINT
Register(I::kTan, f32, {f32} ); // NOLINT
Register(I::kTan, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kTanh, f32, {f32} ); // NOLINT
Register(I::kTanh, vecN_f32, {vecN_f32} ); // NOLINT
Register(I::kTrunc, f32, {f32} ); // NOLINT
Register(I::kTrunc, vecN_f32, {vecN_f32} ); // NOLINT
// clang-format on
}
std::string Impl::Overload::str() const {
std::stringstream ss;
ss << type << "(";
{
bool first = true;
for (auto* param : parameters) {
if (!first) {
ss << ", ";
}
first = false;
ss << param->str();
}
}
ss << ") -> ";
ss << return_type->str();
if (!open_type_matchers.empty()) {
ss << " where: ";
for (uint32_t i = 0; i < static_cast<uint32_t>(OpenType::Count); i++) {
auto open_type = static_cast<OpenType>(i);
auto it = open_type_matchers.find(open_type);
if (it != open_type_matchers.end()) {
if (i > 0) {
ss << ", ";
}
ss << tint::str(open_type) << " is " << it->second->str();
}
}
}
return ss.str();
}
/// TODO(bclayton): This really does not belong here. It would be nice if
/// type::Type::type_name() returned these strings.
/// @returns a human readable string for the type `ty`.
std::string TypeName(type::Type* ty) {
ty = ty->UnwrapAll();
if (ty->Is<type::F32>()) {
return "f32";
}
if (ty->Is<type::U32>()) {
return "u32";
}
if (ty->Is<type::I32>()) {
return "i32";
}
if (ty->Is<type::Bool>()) {
return "bool";
}
if (ty->Is<type::Void>()) {
return "void";
}
if (auto* ptr = ty->As<type::Pointer>()) {
return "ptr<" + TypeName(ptr->type()) + ">";
}
if (auto* vec = ty->As<type::Vector>()) {
return "vec" + std::to_string(vec->size()) + "<" + TypeName(vec->type()) +
">";
}
if (auto* mat = ty->As<type::Matrix>()) {
return "mat" + std::to_string(mat->columns()) + "x" +
std::to_string(mat->rows()) + "<" + TypeName(mat->type()) + ">";
}
return ty->type_name();
}
IntrinsicTable::Result Impl::Lookup(
ProgramBuilder& builder,
semantic::IntrinsicType type,
const std::vector<type::Type*>& args) const {
// Candidate holds information about a mismatched overload that could be what
// the user intended to call.
struct Candidate {
const Overload* overload;
int score;
};
// The list of failed matches that had promise.
std::vector<Candidate> candidates;
// TODO(bclayton) Sort overloads_, or place them into a map keyed by intrinsic
// type. This is horribly inefficient.
for (auto& overload : overloads_) {
int match_score = 0;
if (auto* intrinsic = overload.Match(builder, type, args, match_score)) {
return Result{intrinsic, ""}; // Match found
}
if (match_score > 0) {
candidates.emplace_back(Candidate{&overload, match_score});
}
}
// Sort the candidates with the most promising first
std::stable_sort(
candidates.begin(), candidates.end(),
[](const Candidate& a, const Candidate& b) { return a.score > b.score; });
// Generate an error message
std::stringstream ss;
ss << "no matching call to " << semantic::str(type) << "(";
{
bool first = true;
for (auto* arg : args) {
if (!first) {
ss << ", ";
}
first = false;
ss << TypeName(arg);
}
}
ss << ")" << std::endl;
if (!candidates.empty()) {
ss << std::endl;
ss << candidates.size() << " candidate function"
<< (candidates.size() > 1 ? "s:" : ":") << std::endl;
for (auto& candidate : candidates) {
ss << " " << candidate.overload->str() << std::endl;
}
}
return Result{nullptr, ss.str()};
}
semantic::Intrinsic* Impl::Overload::Match(ProgramBuilder& builder,
semantic::IntrinsicType intrinsic,
const std::vector<type::Type*>& args,
int& match_score) const {
if (type != intrinsic) {
match_score = std::numeric_limits<int>::min();
return nullptr; // Incorrect function
}
// Penalize argument <-> parameter count mismatches
match_score = 1000;
match_score -= std::max(parameters.size(), args.size()) -
std::min(parameters.size(), args.size());
bool matched = parameters.size() == args.size();
Matcher::MatchState matcher_state;
// Check that each of the parameters match.
// This stage also populates the open_types and open_numbers.
auto count = std::min(parameters.size(), args.size());
for (size_t i = 0; i < count; i++) {
assert(args[i]);
auto* arg_ty = args[i]->UnwrapAll();
if (!parameters[i]->Match(matcher_state, arg_ty)) {
matched = false;
continue;
}
// Weight correct parameter matches more than exact number of arguments
match_score += 2;
}
if (!matched) {
return nullptr;
}
// If any of the open-types are constrained, check that they match.
for (auto matcher_it : open_type_matchers) {
OpenType open_type = matcher_it.first;
auto* matcher = matcher_it.second;
auto type_it = matcher_state.open_types.find(open_type);
if (type_it == matcher_state.open_types.end()) {
// We have an overload that claims to have matched, but didn't actually
// resolve the open type. This is a bug that needs fixing.
assert(false);
return nullptr;
}
auto* resolved_type = type_it->second;
if (resolved_type == nullptr) {
// We have an overload that claims to have matched, but has a nullptr
// resolved open type. This is a bug that needs fixing.
assert(false);
return nullptr;
}
if (!matcher->Match(matcher_state, resolved_type)) {
matched = false;
continue;
}
match_score++;
}
if (!matched) {
return nullptr;
}
// Overload matched!
// Build the return type
Builder::BuildState builder_state{builder.Types(), matcher_state.open_types,
matcher_state.open_numbers};
auto* ret = return_type->Build(builder_state);
assert(ret); // Build() must return a type
// Build the semantic parameters
semantic::Parameters params;
params.reserve(parameters.size());
for (size_t i = 0; i < args.size(); i++) {
auto* ty = parameters[i]->Build(builder_state);
params.emplace_back(semantic::Parameter{ty});
}
return builder.create<semantic::Intrinsic>(intrinsic, ret, params);
}
} // namespace
std::unique_ptr<IntrinsicTable> IntrinsicTable::Create() {
return std::make_unique<Impl>();
}
IntrinsicTable::~IntrinsicTable() = default;
} // namespace tint