| // Copyright 2023 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "src/tint/lang/core/ir/validator.h" |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <functional> |
| #include <memory> |
| #include <string> |
| #include <string_view> |
| #include <utility> |
| |
| #include "src/tint/lang/core/intrinsic/table.h" |
| #include "src/tint/lang/core/ir/access.h" |
| #include "src/tint/lang/core/ir/binary.h" |
| #include "src/tint/lang/core/ir/bitcast.h" |
| #include "src/tint/lang/core/ir/block_param.h" |
| #include "src/tint/lang/core/ir/break_if.h" |
| #include "src/tint/lang/core/ir/constant.h" |
| #include "src/tint/lang/core/ir/construct.h" |
| #include "src/tint/lang/core/ir/continue.h" |
| #include "src/tint/lang/core/ir/control_instruction.h" |
| #include "src/tint/lang/core/ir/convert.h" |
| #include "src/tint/lang/core/ir/core_builtin_call.h" |
| #include "src/tint/lang/core/ir/disassembler.h" |
| #include "src/tint/lang/core/ir/discard.h" |
| #include "src/tint/lang/core/ir/exit_if.h" |
| #include "src/tint/lang/core/ir/exit_loop.h" |
| #include "src/tint/lang/core/ir/exit_switch.h" |
| #include "src/tint/lang/core/ir/function.h" |
| #include "src/tint/lang/core/ir/function_param.h" |
| #include "src/tint/lang/core/ir/if.h" |
| #include "src/tint/lang/core/ir/instruction.h" |
| #include "src/tint/lang/core/ir/instruction_result.h" |
| #include "src/tint/lang/core/ir/let.h" |
| #include "src/tint/lang/core/ir/load.h" |
| #include "src/tint/lang/core/ir/load_vector_element.h" |
| #include "src/tint/lang/core/ir/loop.h" |
| #include "src/tint/lang/core/ir/member_builtin_call.h" |
| #include "src/tint/lang/core/ir/multi_in_block.h" |
| #include "src/tint/lang/core/ir/next_iteration.h" |
| #include "src/tint/lang/core/ir/referenced_module_vars.h" |
| #include "src/tint/lang/core/ir/return.h" |
| #include "src/tint/lang/core/ir/store.h" |
| #include "src/tint/lang/core/ir/store_vector_element.h" |
| #include "src/tint/lang/core/ir/switch.h" |
| #include "src/tint/lang/core/ir/swizzle.h" |
| #include "src/tint/lang/core/ir/terminate_invocation.h" |
| #include "src/tint/lang/core/ir/unary.h" |
| #include "src/tint/lang/core/ir/unreachable.h" |
| #include "src/tint/lang/core/ir/unused.h" |
| #include "src/tint/lang/core/ir/user_call.h" |
| #include "src/tint/lang/core/ir/var.h" |
| #include "src/tint/lang/core/type/bool.h" |
| #include "src/tint/lang/core/type/f32.h" |
| #include "src/tint/lang/core/type/i8.h" |
| #include "src/tint/lang/core/type/memory_view.h" |
| #include "src/tint/lang/core/type/pointer.h" |
| #include "src/tint/lang/core/type/reference.h" |
| #include "src/tint/lang/core/type/type.h" |
| #include "src/tint/lang/core/type/u32.h" |
| #include "src/tint/lang/core/type/u8.h" |
| #include "src/tint/lang/core/type/vector.h" |
| #include "src/tint/lang/core/type/void.h" |
| #include "src/tint/utils/containers/hashset.h" |
| #include "src/tint/utils/containers/predicates.h" |
| #include "src/tint/utils/containers/reverse.h" |
| #include "src/tint/utils/containers/transform.h" |
| #include "src/tint/utils/diagnostic/diagnostic.h" |
| #include "src/tint/utils/ice/ice.h" |
| #include "src/tint/utils/macros/defer.h" |
| #include "src/tint/utils/result/result.h" |
| #include "src/tint/utils/rtti/castable.h" |
| #include "src/tint/utils/rtti/switch.h" |
| #include "src/tint/utils/text/styled_text.h" |
| #include "src/tint/utils/text/text_style.h" |
| |
| /// If set to 1 then the Tint will dump the IR when validating. |
| #define TINT_DUMP_IR_WHEN_VALIDATING 0 |
| #if TINT_DUMP_IR_WHEN_VALIDATING |
| #include <iostream> |
| #include "src/tint/utils/text/styled_text_printer.h" |
| #endif |
| |
| using namespace tint::core::fluent_types; // NOLINT |
| |
| namespace tint::core::ir { |
| |
| struct ValidatedType { |
| const type::Type* ty; |
| Capabilities caps; |
| }; |
| |
| namespace { |
| |
| /// @returns the parent block of @p block |
| const Block* ParentBlockOf(const Block* block) { |
| if (auto* parent = block->Parent()) { |
| return parent->Block(); |
| } |
| return nullptr; |
| } |
| |
| /// @returns true if @p block directly or transitively holds the instruction @p inst |
| bool TransitivelyHolds(const Block* block, const Instruction* inst) { |
| for (auto* b = inst->Block(); b; b = ParentBlockOf(b)) { |
| if (b == block) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// @returns true if @p attr contains both a location and builtin decoration |
| bool HasLocationAndBuiltin(const tint::core::IOAttributes& attr) { |
| return attr.builtin.has_value() && attr.location.has_value(); |
| } |
| |
| /// @returns true if @p attr contains one of location or builtin decoration |
| bool HasLocationOrBuiltin(const tint::core::IOAttributes& attr) { |
| return attr.builtin.has_value() || attr.location.has_value(); |
| } |
| |
| /// @return true if @param attr does not have invariant decoration or if it also has position |
| /// decoration |
| bool InvariantOnlyIfAlsoPosition(const tint::core::IOAttributes& attr) { |
| return !attr.invariant || attr.builtin == BuiltinValue::kPosition; |
| } |
| |
| /// @returns true if @p ty meets the basic function parameter rules (i.e. one of constructible, |
| /// pointer, sampler or texture). |
| /// |
| /// Note: Does not handle corner cases like if certain capabilities are |
| /// enabled. |
| bool IsValidFunctionParamType(const core::type::Type* ty) { |
| return ty->IsConstructible() || ty->Is<type::Pointer>() || ty->Is<type::Texture>() || |
| ty->Is<type::Sampler>(); |
| } |
| |
| /// @returns true if @p ty is a non-struct and decorated with @builtin(position), or if it is a |
| /// struct and one of its members is decorated, otherwise false. |
| /// @param attr attributes attached to data |
| /// @param ty type of the data being tested |
| bool IsPositionPresent(const IOAttributes& attr, const core::type::Type* ty) { |
| if (auto* ty_struct = ty->As<core::type::Struct>()) { |
| for (const auto* mem : ty_struct->Members()) { |
| if (mem->Attributes().builtin == BuiltinValue::kPosition) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| return attr.builtin == BuiltinValue::kPosition; |
| } |
| |
| /// Utility for running checks on attributes. |
| /// If the type that the attributes are attached to is a struct, the check is run over the members, |
| /// otherwise it run on the attributes directly. |
| /// |
| /// @param msg_anchor what to associate errors with, i.e. the 'foo' of AddError(foo) |
| /// @param ty_attr the directly attached attributes |
| /// @param ty the type of the thing that the attributes are attached to |
| /// @param is_not_struct_impl has the signature 'void(const MSG_ANCHOR*, const IOAttributes&)' and |
| /// is called when @p ty is not a struct |
| /// @param is_struct_impl has the signature 'void(const MSG_ANCHOR*, const IOAttributes&)' and is |
| /// called when @p ty is a struct |
| template <typename MSG_ANCHOR, typename IS_NOT_STRUCT, typename IS_STRUCT> |
| void CheckIOAttributes(const MSG_ANCHOR* msg_anchor, |
| const IOAttributes& ty_attr, |
| const core::type::Type* ty, |
| IS_NOT_STRUCT&& is_not_struct_impl, |
| IS_STRUCT&& is_struct_impl) { |
| if (auto* ty_struct = ty->As<core::type::Struct>()) { |
| for (const auto* mem : ty_struct->Members()) { |
| is_struct_impl(msg_anchor, mem->Attributes()); |
| } |
| } else { |
| is_not_struct_impl(msg_anchor, ty_attr); |
| } |
| } |
| |
| /// Helper for calling CheckIOAttributes on a function return |
| /// @param func function whose return is to be tested |
| /// See @ref CheckIOAttributes for more details |
| template <typename IS_NOT_STRUCT, typename IS_STRUCT> |
| void CheckFunctionReturnAttributes(const Function* func, |
| IS_NOT_STRUCT&& is_not_struct_impl, |
| IS_STRUCT&& is_struct_impl) { |
| CheckIOAttributes(func, func->ReturnAttributes(), func->ReturnType(), |
| std::forward<IS_NOT_STRUCT>(is_not_struct_impl), |
| std::forward<IS_STRUCT>(is_struct_impl)); |
| } |
| |
| /// Helper for calling CheckIOAttributes on a function param |
| /// @param param function param to be tested |
| /// See @ref CheckIOAttributes for more details |
| template <typename IS_NOT_STRUCT, typename IS_STRUCT> |
| void CheckFunctionParamAttributes(const FunctionParam* param, |
| IS_NOT_STRUCT&& is_not_struct_impl, |
| IS_STRUCT&& is_struct_impl) { |
| CheckIOAttributes(param, param->Attributes(), param->Type(), |
| std::forward<IS_NOT_STRUCT>(is_not_struct_impl), |
| std::forward<IS_STRUCT>(is_struct_impl)); |
| } |
| |
| /// Utility for running checks on attributes and type. |
| /// If the type that the attributes are attached to is a struct, the check is run over the members, |
| /// otherwise it run on the attributes directly. |
| /// |
| /// @param msg_anchor what to associate errors with, i.e. the 'foo' of AddError(foo) |
| /// @param ty_attr the directly attached attributes |
| /// @param ty the type of the thing that the attributes are attached to |
| /// @param is_not_struct_impl has the signature 'void(const MSG_ANCHOR*, const IOAttributes&, const |
| /// core::type::Type* ty)' |
| /// and is called when @p ty is not a struct |
| /// @param is_struct_impl has the signature 'void(const MSG_ANCHOR*, const IOAttributes&, const |
| /// core::type::Type* ty)' |
| /// and is called when @p ty is a struct |
| template <typename MSG_ANCHOR, typename IS_NOT_STRUCT, typename IS_STRUCT> |
| void CheckIOAttributesAndType(const MSG_ANCHOR* msg_anchor, |
| const IOAttributes& ty_attr, |
| const core::type::Type* ty, |
| IS_NOT_STRUCT&& is_not_struct_impl, |
| IS_STRUCT&& is_struct_impl) { |
| if (auto* ty_struct = ty->As<core::type::Struct>()) { |
| for (const auto* mem : ty_struct->Members()) { |
| is_struct_impl(msg_anchor, mem->Attributes(), mem->Type()); |
| } |
| } else { |
| is_not_struct_impl(msg_anchor, ty_attr, ty); |
| } |
| } |
| |
| /// Helper for calling IOAttributesAndType on a function param |
| /// @param param function param to be tested |
| /// See @ref IOAttributesAndType for more details |
| template <typename IS_NOT_STRUCT, typename IS_STRUCT> |
| void CheckFunctionParamAttributesAndType(const FunctionParam* param, |
| IS_NOT_STRUCT&& is_not_struct_impl, |
| IS_STRUCT&& is_struct_impl) { |
| CheckIOAttributesAndType(param, param->Attributes(), param->Type(), |
| std::forward<IS_NOT_STRUCT>(is_not_struct_impl), |
| std::forward<IS_STRUCT>(is_struct_impl)); |
| } |
| |
| /// Helper for calling IOAttributesAndType on a function return |
| /// @param func function's return to be tested |
| /// See @ref IOAttributesAndType for more details |
| template <typename IS_NOT_STRUCT, typename IS_STRUCT> |
| void CheckFunctionReturnAttributesAndType(const Function* func, |
| IS_NOT_STRUCT&& is_not_struct_impl, |
| IS_STRUCT&& is_struct_impl) { |
| CheckIOAttributesAndType(func, func->ReturnAttributes(), func->ReturnType(), |
| std::forward<IS_NOT_STRUCT>(is_not_struct_impl), |
| std::forward<IS_STRUCT>(is_struct_impl)); |
| } |
| |
| /// A BuiltinChecker is the interface used to check that a usage of a builtin attribute meets the |
| /// basic spec rules, i.e. correct shader stage, data type, and IO direction. |
| /// It does not test more sophisticated rules like location and builtins being mutually exclusive or |
| /// the correct capabilities are enabled. |
| struct BuiltinChecker { |
| /// User friendly name to print in logging messages |
| const char* name; |
| |
| /// What type of entry point is this builtin legal for |
| EnumSet<Function::PipelineStage> stages; |
| |
| enum IODirection : uint8_t { kInput, kOutput }; |
| /// Is this expected to be a param going into the entry point or a result coming out |
| IODirection direction; |
| |
| /// Implements logic for checking if the given type is valid or not |
| using TypeCheckFn = bool(const core::type::Type* type); |
| |
| /// @see #TypeCheckFn |
| TypeCheckFn* const type_check; |
| |
| /// Message that should logged if the type check fails |
| const char* type_error; |
| }; |
| |
| std::string_view ToString(BuiltinChecker::IODirection value) { |
| switch (value) { |
| case BuiltinChecker::IODirection::kInput: |
| return "input"; |
| case BuiltinChecker::IODirection::kOutput: |
| return "output"; |
| } |
| TINT_ICE() << "Unknown enum passed to ToString(BuiltinChecker::IODirection)"; |
| } |
| |
| constexpr BuiltinChecker kPointSizeChecker{ |
| /* name */ "__point_size", |
| /* stages */ EnumSet<Function::PipelineStage>(Function::PipelineStage::kVertex), |
| /* direction */ BuiltinChecker::IODirection::kOutput, |
| /* type_check */ [](const core::type::Type* ty) -> bool { return ty->Is<core::type::F32>(); }, |
| /* type_error */ "__point_size must be a f32", |
| }; |
| |
| constexpr BuiltinChecker kFragDepthChecker{ |
| /* name */ "frag_depth", |
| /* stages */ EnumSet<Function::PipelineStage>(Function::PipelineStage::kFragment), |
| /* direction */ BuiltinChecker::IODirection::kOutput, |
| /* type_check */ [](const core::type::Type* ty) -> bool { return ty->Is<core::type::F32>(); }, |
| /* type_error */ "frag_depth must be a f32", |
| }; |
| |
| constexpr BuiltinChecker kFrontFacingChecker{ |
| /* name */ "front_facing", |
| /* stages */ EnumSet<Function::PipelineStage>(Function::PipelineStage::kFragment), |
| /* direction */ BuiltinChecker::IODirection::kInput, |
| /* type_check */ [](const core::type::Type* ty) -> bool { return ty->Is<core::type::Bool>(); }, |
| /* type_error */ "front_facing must be a bool", |
| }; |
| |
| constexpr BuiltinChecker kGlobalInvocationIdChecker{ |
| /* name */ "global_invocation_id", |
| /* stages */ EnumSet<Function::PipelineStage>(Function::PipelineStage::kCompute), |
| /* direction */ BuiltinChecker::IODirection::kInput, |
| /* type_check */ |
| [](const core::type::Type* ty) -> bool { |
| return ty->IsUnsignedIntegerVector() && ty->Elements().count == 3; |
| }, |
| /* type_error */ "global_invocation_id must be an vec3<u32>", |
| }; |
| |
| constexpr BuiltinChecker kInstanceIndexChecker{ |
| /* name */ "instance_index", |
| /* stages */ EnumSet<Function::PipelineStage>(Function::PipelineStage::kVertex), |
| /* direction */ BuiltinChecker::IODirection::kInput, |
| /* type_check */ [](const core::type::Type* ty) -> bool { return ty->Is<core::type::U32>(); }, |
| /* type_error */ "instance_index must be an u32", |
| }; |
| |
| constexpr BuiltinChecker kLocalInvocationIdChecker{ |
| /* name */ "local_invocation_id", |
| /* stages */ EnumSet<Function::PipelineStage>(Function::PipelineStage::kCompute), |
| /* direction */ BuiltinChecker::IODirection::kInput, |
| /* type_check */ |
| [](const core::type::Type* ty) -> bool { |
| return ty->IsUnsignedIntegerVector() && ty->Elements().count == 3; |
| }, |
| /* type_error */ "local_invocation_id must be an vec3<u32>", |
| }; |
| |
| constexpr BuiltinChecker kLocalInvocationIndexChecker{ |
| /* name */ "local_invocation_index", |
| /* stages */ EnumSet<Function::PipelineStage>(Function::PipelineStage::kCompute), |
| /* direction */ BuiltinChecker::IODirection::kInput, |
| /* type_check */ [](const core::type::Type* ty) -> bool { return ty->Is<core::type::U32>(); }, |
| /* type_error */ "local_invocation_index must be an u32", |
| }; |
| |
| constexpr BuiltinChecker kNumWorkgroupsChecker{ |
| /* name */ "num_workgroups", |
| /* stages */ EnumSet<Function::PipelineStage>(Function::PipelineStage::kCompute), |
| /* direction */ BuiltinChecker::IODirection::kInput, |
| /* type_check */ |
| [](const core::type::Type* ty) -> bool { |
| return ty->IsUnsignedIntegerVector() && ty->Elements().count == 3; |
| }, |
| /* type_error */ "num_workgroups must be an vec3<u32>", |
| }; |
| |
| constexpr BuiltinChecker kSampleIndexChecker{ |
| /* name */ "sample_index", |
| /* stages */ EnumSet<Function::PipelineStage>(Function::PipelineStage::kFragment), |
| /* direction */ BuiltinChecker::IODirection::kInput, |
| /* type_check */ [](const core::type::Type* ty) -> bool { return ty->Is<core::type::U32>(); }, |
| /* type_error */ "sample_index must be an u32", |
| }; |
| |
| constexpr BuiltinChecker kSubgroupInvocationIdChecker{ |
| /* name */ "subgroup_invocation_id", |
| /* stages */ |
| EnumSet<Function::PipelineStage>(Function::PipelineStage::kFragment, |
| Function::PipelineStage::kCompute), |
| /* direction */ BuiltinChecker::IODirection::kInput, |
| /* type_check */ [](const core::type::Type* ty) -> bool { return ty->Is<core::type::U32>(); }, |
| /* type_error */ "subgroup_invocation_id must be an u32", |
| }; |
| |
| constexpr BuiltinChecker kSubgroupSizeChecker{ |
| /* name */ "subgroup_size", |
| /* stages */ |
| EnumSet<Function::PipelineStage>(Function::PipelineStage::kFragment, |
| Function::PipelineStage::kCompute), |
| /* direction */ BuiltinChecker::IODirection::kInput, |
| /* type_check */ [](const core::type::Type* ty) -> bool { return ty->Is<core::type::U32>(); }, |
| /* type_error */ "subgroup_size must be an u32", |
| }; |
| |
| constexpr BuiltinChecker kVertexIndexChecker{ |
| /* name */ "vertex_index", |
| /* stages */ EnumSet<Function::PipelineStage>(Function::PipelineStage::kVertex), |
| /* direction */ BuiltinChecker::IODirection::kInput, |
| /* type_check */ [](const core::type::Type* ty) -> bool { return ty->Is<core::type::U32>(); }, |
| /* type_error */ "vertex_index must be an u32", |
| }; |
| |
| constexpr BuiltinChecker kWorkgroupIdChecker{ |
| /* name */ "workgroup_id", |
| /* stages */ EnumSet<Function::PipelineStage>(Function::PipelineStage::kCompute), |
| /* direction */ BuiltinChecker::IODirection::kInput, |
| /* type_check */ |
| [](const core::type::Type* ty) -> bool { |
| return ty->IsUnsignedIntegerVector() && ty->Elements().count == 3; |
| }, |
| /* type_error */ "workgroup_id must be an vec3<u32>", |
| }; |
| |
| /// @returns an appropriate BuiltInCheck for @p builtin, ICEs when one isn't defined |
| const BuiltinChecker& BuiltinCheckerFor(BuiltinValue builtin) { |
| switch (builtin) { |
| case BuiltinValue::kPointSize: |
| return kPointSizeChecker; |
| case BuiltinValue::kFragDepth: |
| return kFragDepthChecker; |
| case BuiltinValue::kFrontFacing: |
| return kFrontFacingChecker; |
| case BuiltinValue::kGlobalInvocationId: |
| return kGlobalInvocationIdChecker; |
| case BuiltinValue::kInstanceIndex: |
| return kInstanceIndexChecker; |
| case BuiltinValue::kLocalInvocationId: |
| return kLocalInvocationIdChecker; |
| case BuiltinValue::kLocalInvocationIndex: |
| return kLocalInvocationIndexChecker; |
| case BuiltinValue::kNumWorkgroups: |
| return kNumWorkgroupsChecker; |
| case BuiltinValue::kSampleIndex: |
| return kSampleIndexChecker; |
| case BuiltinValue::kSubgroupInvocationId: |
| return kSubgroupInvocationIdChecker; |
| case BuiltinValue::kSubgroupSize: |
| return kSubgroupSizeChecker; |
| case BuiltinValue::kVertexIndex: |
| return kVertexIndexChecker; |
| case BuiltinValue::kWorkgroupId: |
| return kWorkgroupIdChecker; |
| case BuiltinValue::kPosition: |
| TINT_ICE() << "BuiltinValue::kPosition requires special handling, so does not have a " |
| "checker defined"; |
| case BuiltinValue::kSampleMask: |
| TINT_ICE() << "BuiltinValue::kSampleMask requires special handling, so does not have a " |
| "checker defined"; |
| default: |
| TINT_ICE() << builtin << " is does not have a checker defined for it"; |
| } |
| } |
| |
| /// Validates the basic spec rules for @builtin(position) usage |
| /// @param stage the shader stage the builtin is being used |
| /// @param is_input the IO direction of usage, true if input, false if output |
| /// @param ty the data type being decorated by the builtin |
| /// @returns Success if a valid usage, or reason for invalidity in Failure |
| Result<SuccessType, std::string> ValidatePositionBuiltIn(Function::PipelineStage stage, |
| bool is_input, |
| const core::type::Type* ty) { |
| if (stage != Function::PipelineStage::kVertex && stage != Function::PipelineStage::kFragment) { |
| return std::string("position must be used in a fragment or vertex shader entry point"); |
| } |
| |
| if (stage == Function::PipelineStage::kVertex && is_input) { |
| return std::string("position must be an output for a vertex entry point"); |
| } |
| |
| if (stage == Function::PipelineStage::kFragment && !is_input) { |
| return std::string("position must be an input for a fragment entry point"); |
| } |
| |
| if (!ty->IsFloatVector() || ty->Elements().count != 4 || |
| !ty->Element(0)->Is<core::type::F32>()) { |
| return std::string("position must be an vec4<f32>"); |
| } |
| |
| return Success; |
| } |
| |
| /// Validates the basic spec rules for @builtin(sample_mask) usage |
| /// @param stage the shader stage the builtin is being used |
| /// @param ty the data type being decorated by the builtin |
| /// @returns Success if a valid usage, or reason for invalidity in Failure |
| Result<SuccessType, std::string> ValidateSampleMaskBuiltIn(Function::PipelineStage stage, |
| const core::type::Type* ty) { |
| if (stage != Function::PipelineStage::kFragment) { |
| return std::string("sample_mask must be used in a fragment entry point"); |
| } |
| |
| if (!ty->Is<core::type::U32>()) { |
| return std::string("sample_mask must be an u32"); |
| } |
| |
| return Success; |
| } |
| |
| /// Validates the basic spec rules for @builtin(clip_distance) usage |
| /// @param stage the shader stage the builtin is being used |
| /// @param is_input the IO direction of usage, true if input, false if output |
| /// @param capabilities the optional capabilities that are allowed |
| /// @param ty the data type being decorated by the builtin |
| /// @returns Success if a valid usage, or reason for invalidity in Failure |
| Result<SuccessType, std::string> ValidateBuiltinClipDistances(Function::PipelineStage stage, |
| bool is_input, |
| const Capabilities& capabilities, |
| const core::type::Type* ty) { |
| if (stage != Function::PipelineStage::kVertex) { |
| return std::string("clip_distances must be used in a vertex shader entry point"); |
| } |
| |
| if (is_input) { |
| return std::string("clip_distances must be an output of a shader entry point"); |
| } |
| |
| auto is_valid_array = [&] { |
| const auto elems = ty->Elements(); |
| return elems.type && elems.type->Is<core::type::F32>() && elems.count <= 8; |
| }; |
| |
| if (capabilities.Contains(Capability::kAllowClipDistancesOnF32)) { |
| if (!ty->Is<core::type::F32>() && !is_valid_array()) { |
| return std::string("clip_distances must be an f32 or an array<f32, N>, where N <= 8"); |
| } |
| } else if (!is_valid_array()) { |
| return std::string("clip_distances must be an array<f32, N>, where N <= 8"); |
| } |
| |
| return Success; |
| } |
| |
| /// Validates the basic spec rules for builtin usage |
| /// @param builtin the builtin to test |
| /// @param stage the shader stage the builtin is being used |
| /// @param is_input the IO direction of usage, true if input, false if output |
| /// @param ty the data type being decorated by the builtin |
| /// @returns Success if a valid usage, or reason for invalidity in Failure |
| Result<SuccessType, std::string> ValidateBuiltIn(BuiltinValue builtin, |
| Function::PipelineStage stage, |
| bool is_input, |
| const Capabilities& capabilities, |
| const core::type::Type* ty) { |
| // This is not an entry point function, either it is dead code and thus never called, or any |
| // issues will be detected when validating the calling entry point. |
| if (stage == Function::PipelineStage::kUndefined) { |
| return Success; |
| } |
| |
| // Some builtins have multiple contexts that they are valid in, so have special handling |
| // instead of making the checker/lookup table more complex. |
| switch (builtin) { |
| case BuiltinValue::kPosition: |
| return ValidatePositionBuiltIn(stage, is_input, ty); |
| case BuiltinValue::kSampleMask: |
| return ValidateSampleMaskBuiltIn(stage, ty); |
| case BuiltinValue::kClipDistances: |
| return ValidateBuiltinClipDistances(stage, is_input, capabilities, ty); |
| default: |
| break; |
| } |
| |
| const auto& checker = BuiltinCheckerFor(builtin); |
| std::stringstream msg; |
| if (!checker.stages.Contains(stage)) { |
| auto stages_size = checker.stages.Size(); |
| switch (stages_size) { |
| case 1: |
| msg << checker.name << " must be used in a " << ToString(*checker.stages.begin()) |
| << " shader entry point"; |
| break; |
| case 2: |
| msg << checker.name << " must be used in a " << ToString(*checker.stages.begin()) |
| << " or " << ToString(*(++checker.stages.begin())) << " shader entry point"; |
| break; |
| default: |
| TINT_ICE() << "Unexpected number of stages set, " << stages_size; |
| } |
| return msg.str(); |
| } |
| |
| auto io_direction = |
| is_input ? BuiltinChecker::IODirection::kInput : BuiltinChecker::IODirection::kOutput; |
| if (io_direction != checker.direction) { |
| msg << checker.name << " must be an " << ToString(checker.direction) |
| << " of a shader entry point"; |
| return msg.str(); |
| } |
| |
| if (!checker.type_check(ty)) { |
| return std::string(checker.type_error); |
| } |
| |
| return Success; |
| } |
| |
| /// The core IR validator. |
| class Validator { |
| public: |
| /// Create a core validator |
| /// @param mod the module to be validated |
| /// @param capabilities the optional capabilities that are allowed |
| explicit Validator(const Module& mod, Capabilities capabilities); |
| |
| /// Destructor |
| ~Validator(); |
| |
| /// Runs the validator over the module provided during construction |
| /// @returns success or failure |
| Result<SuccessType> Run(); |
| |
| private: |
| /// Runs validation to confirm the structural soundness of the module. |
| /// Also runs any validation that is not dependent on the entire module being |
| /// sound and sets up data structures for later checks. |
| void RunStructuralSoundnessChecks(); |
| |
| /// Checks that there are no orphaned instructions |
| /// Depends on CheckStructuralSoundness() having previously been run |
| void CheckForOrphanedInstructions(); |
| |
| /// Checks that there are no discards called by non-fragment entrypoints |
| /// Depends on CheckStructuralSoundness() having previously been run |
| void CheckForNonFragmentDiscards(); |
| |
| /// @returns the IR disassembly, performing a disassemble if this is the first call. |
| ir::Disassembler& Disassemble(); |
| |
| /// Adds an error for the @p inst and highlights the instruction in the disassembly |
| /// @param inst the instruction |
| /// @returns the diagnostic |
| diag::Diagnostic& AddError(const Instruction* inst); |
| |
| /// Adds an error for the @p inst operand at @p idx and highlights the operand in the |
| /// disassembly |
| /// @param inst the instruction |
| /// @param idx the operand index |
| /// @returns the diagnostic |
| diag::Diagnostic& AddError(const Instruction* inst, size_t idx); |
| |
| /// Adds an error for the @p inst result at @p idx and highlgihts the result in the disassembly |
| /// @param inst the instruction |
| /// @param idx the result index |
| /// @returns the diagnostic |
| diag::Diagnostic& AddResultError(const Instruction* inst, size_t idx); |
| |
| /// Adds an error for the @p block and highlights the block header in the disassembly |
| /// @param blk the block |
| /// @returns the diagnostic |
| diag::Diagnostic& AddError(const Block* blk); |
| |
| /// Adds an error for the @p param and highlights the parameter in the disassembly |
| /// @param param the parameter |
| /// @returns the diagnostic |
| diag::Diagnostic& AddError(const BlockParam* param); |
| |
| /// Adds an error for the @p func and highlights the function in the disassembly |
| /// @param func the function |
| /// @returns the diagnostic |
| diag::Diagnostic& AddError(const Function* func); |
| |
| /// Adds an error for the @p param and highlights the parameter in the disassembly |
| /// @param param the parameter |
| /// @returns the diagnostic |
| diag::Diagnostic& AddError(const FunctionParam* param); |
| |
| /// Adds an error the @p block and highlights the block header in the disassembly |
| /// @param src the source lines to highlight |
| /// @returns the diagnostic |
| diag::Diagnostic& AddError(Source src); |
| |
| /// Adds a note to @p inst and highlights the instruction in the disassembly |
| /// @param inst the instruction |
| diag::Diagnostic& AddNote(const Instruction* inst); |
| |
| /// Adds a note to @p func and highlights the function in the disassembly |
| /// @param func the function |
| diag::Diagnostic& AddNote(const Function* func); |
| |
| /// Adds a note to @p inst for operand @p idx and highlights the operand in the disassembly |
| /// @param inst the instruction |
| /// @param idx the operand index |
| diag::Diagnostic& AddOperandNote(const Instruction* inst, size_t idx); |
| |
| /// Adds a note to @p inst for result @p idx and highlights the result in the disassembly |
| /// @param inst the instruction |
| /// @param idx the result index |
| diag::Diagnostic& AddResultNote(const Instruction* inst, size_t idx); |
| |
| /// Adds a note to @p blk and highlights the block in the disassembly |
| /// @param blk the block |
| diag::Diagnostic& AddNote(const Block* blk); |
| |
| /// Adds a note to the diagnostics |
| /// @param src the source lines to highlight |
| diag::Diagnostic& AddNote(Source src = {}); |
| |
| /// Adds a note to the diagnostics highlighting where the value instruction or block is |
| /// declared, if it has a source location. |
| /// @param decl the value instruction or block |
| void AddDeclarationNote(const CastableBase* decl); |
| |
| /// Adds a note to the diagnostics highlighting where the block is declared, if it has a source |
| /// location. |
| /// @param block the block |
| void AddDeclarationNote(const Block* block); |
| |
| /// Adds a note to the diagnostics highlighting where the block parameter is declared, if it |
| /// has a source location. |
| /// @param param the block parameter |
| void AddDeclarationNote(const BlockParam* param); |
| |
| /// Adds a note to the diagnostics highlighting where the function is declared, if it has a |
| /// source location. |
| /// @param fn the function |
| void AddDeclarationNote(const Function* fn); |
| |
| /// Adds a note to the diagnostics highlighting where the function parameter is declared, if it |
| /// has a source location. |
| /// @param param the function parameter |
| void AddDeclarationNote(const FunctionParam* param); |
| |
| /// Adds a note to the diagnostics highlighting where the instruction is declared, if it has a |
| /// source location. |
| /// @param inst the inst |
| void AddDeclarationNote(const Instruction* inst); |
| |
| /// Adds a note to the diagnostics highlighting where instruction result was declared, if it has |
| /// a source location. |
| /// @param res the res |
| void AddDeclarationNote(const InstructionResult* res); |
| |
| /// @param decl the type, value, instruction or block to get the name for |
| /// @returns the styled name for the given value, instruction or block |
| StyledText NameOf(const CastableBase* decl); |
| |
| // @param ty the type to get the name for |
| /// @returns the styled name for the given type |
| StyledText NameOf(const type::Type* ty); |
| |
| /// @param v the value to get the name for |
| /// @returns the styled name for the given value |
| StyledText NameOf(const Value* v); |
| |
| /// @param inst the instruction to get the name for |
| /// @returns the styled name for the given instruction |
| StyledText NameOf(const Instruction* inst); |
| |
| /// @param block the block to get the name for |
| /// @returns the styled name for the given block |
| StyledText NameOf(const Block* block); |
| |
| /// Checks the given result is not null and its type is not null |
| /// @param inst the instruction |
| /// @param idx the result index |
| /// @returns true if the result is not null |
| bool CheckResult(const Instruction* inst, size_t idx); |
| |
| /// Checks the results (and their types) for @p inst are not null. If count is specified then |
| /// number of results is checked to be exact. |
| /// @param inst the instruction |
| /// @param count the number of results to check |
| /// @returns true if the results count is as expected and none are null |
| bool CheckResults(const ir::Instruction* inst, std::optional<size_t> count); |
| |
| /// Checks the given operand is not null and its type is not null |
| /// @param inst the instruction |
| /// @param idx the operand index |
| /// @returns true if the operand is not null |
| bool CheckOperand(const Instruction* inst, size_t idx); |
| |
| /// Checks the number of operands provided to @p inst and that none of them are null. Also |
| /// checks that the types for the operands are not null |
| /// @param inst the instruction |
| /// @param min_count the minimum number of operands to expect |
| /// @param max_count the maximum number of operands to expect, if not set, than only the minimum |
| /// number is checked. |
| /// @returns true if the number of operands is in the expected range and none are null |
| bool CheckOperands(const ir::Instruction* inst, |
| size_t min_count, |
| std::optional<size_t> max_count); |
| |
| /// Checks the operands (and their types) for @p inst are not null. If count is specified then |
| /// number of operands is checked to be exact. |
| /// @param inst the instruction |
| /// @param count the number of operands to check |
| /// @returns true if the operands count is as expected and none are null |
| bool CheckOperands(const ir::Instruction* inst, std::optional<size_t> count); |
| |
| /// Checks the number of results for @p inst are exactly equal to @p num_results and the number |
| /// of operands is correctly. Both results and operands are confirmed to be non-null. |
| /// @param inst the instruction |
| /// @param num_results expected number of results for the instruction |
| /// @param min_operands the minimum number of operands to expect |
| /// @param max_operands the maximum number of operands to expect, if not set, than only the |
| /// minimum number is checked. |
| /// @returns true if the result and operand counts are as expected and none are null |
| bool CheckResultsAndOperandRange(const ir::Instruction* inst, |
| size_t num_results, |
| size_t min_operands, |
| std::optional<size_t> max_operands); |
| |
| /// Checks the number of results and operands for @p inst are exactly equal to num_results |
| /// and num_operands, respectively, and that none of them are null. |
| /// @param inst the instruction |
| /// @param num_results expected number of results for the instruction |
| /// @param num_operands expected number of operands for the instruction |
| /// @returns true if the result and operand counts are as expected and none are null |
| bool CheckResultsAndOperands(const ir::Instruction* inst, |
| size_t num_results, |
| size_t num_operands); |
| |
| /// Checks that @p type does not use any types that are prohibited by the target capabilities. |
| /// @param type the type |
| /// @param diag a function that creates an error diagnostic for the source of the type |
| /// @param ignore_caps a set of capabilities to ignore for this check |
| void CheckType(const core::type::Type* type, |
| std::function<diag::Diagnostic&()> diag, |
| Capabilities ignore_caps = {}); |
| |
| /// Validates the root block |
| /// @param blk the block |
| void CheckRootBlock(const Block* blk); |
| |
| /// Validates the given function |
| /// @param func the function to validate |
| void CheckFunction(const Function* func); |
| |
| /// Validates the specific function as a vertex entry point |
| /// @param ep the function to validate |
| void CheckVertexEntryPoint(const Function* ep); |
| |
| /// @returns a function that validates rules for invariant decorations |
| /// @param err error message to log when check fails |
| template <typename MSG_ANCHOR> |
| auto CheckInvariantFunc(const std::string& err) { |
| return [this, err](const MSG_ANCHOR* msg_anchor, const IOAttributes& attr) { |
| if (!InvariantOnlyIfAlsoPosition(attr)) { |
| AddError(msg_anchor) << err; |
| } |
| }; |
| } |
| |
| /// @returns a function that validates builtins on function params |
| auto CheckBuiltinFunctionParam(const std::string& err) { |
| return [this, err](const FunctionParam* param, const IOAttributes& attr, |
| const type::Type* ty) { |
| if (!attr.builtin.has_value()) { |
| return; |
| } |
| auto result = ValidateBuiltIn(attr.builtin.value(), param->Function()->Stage(), true, |
| capabilities_, ty); |
| if (result != Success) { |
| AddError(param) << err << result.Failure(); |
| } |
| }; |
| } |
| |
| /// @returns a function that validates builtins on function returns |
| auto CheckBuiltinFunctionReturn(const std::string& err) { |
| return [this, err](const Function* func, const IOAttributes& attr, const type::Type* ty) { |
| if (!attr.builtin.has_value()) { |
| return; |
| } |
| auto result = |
| ValidateBuiltIn(attr.builtin.value(), func->Stage(), false, capabilities_, ty); |
| if (result != Success) { |
| AddError(func) << err << result.Failure(); |
| } |
| }; |
| } |
| |
| /// @returns a function that validates that location and builtin attributes are not present at |
| /// the same time |
| /// @param err error message to log when check fails |
| template <typename MSG_ANCHOR> |
| auto CheckDoesNotHaveBothLocationAndBuiltinFunc(const std::string& err) { |
| return [this, err](const MSG_ANCHOR* msg_anchor, const IOAttributes& attr) { |
| if (HasLocationAndBuiltin(attr)) { |
| AddError(msg_anchor) << err; |
| } |
| }; |
| } |
| |
| /// @returns a function that validates that either a location or builtin attribute are present |
| /// @param err error message to log when check fails |
| template <typename MSG_ANCHOR> |
| auto CheckHasLocationOrBuiltinFunc(const std::string& err) { |
| return [this, err](const MSG_ANCHOR* msg_anchor, const IOAttributes& attr) { |
| if (!HasLocationOrBuiltin(attr)) { |
| AddError(msg_anchor) << err; |
| } |
| }; |
| } |
| |
| /// Validates the given instruction |
| /// @param inst the instruction to validate |
| void CheckInstruction(const Instruction* inst); |
| |
| /// Validates the given var |
| /// @param var the var to validate |
| void CheckVar(const Var* var); |
| |
| /// Validates the given let |
| /// @param l the let to validate |
| void CheckLet(const Let* l); |
| |
| /// Validates the given call |
| /// @param call the call to validate |
| void CheckCall(const Call* call); |
| |
| /// Validates the given bitcast |
| /// @param bitcast the bitcast to validate |
| void CheckBitcast(const Bitcast* bitcast); |
| |
| /// Validates the given builtin call |
| /// @param call the call to validate |
| void CheckBuiltinCall(const BuiltinCall* call); |
| |
| /// Validates the given member builtin call |
| /// @param call the member call to validate |
| void CheckMemberBuiltinCall(const MemberBuiltinCall* call); |
| |
| /// Validates the given construct |
| /// @param construct the construct to validate |
| void CheckConstruct(const Construct* construct); |
| |
| /// Validates the given convert |
| /// @param convert the convert to validate |
| void CheckConvert(const Convert* convert); |
| |
| /// Validates the given discard |
| /// @note Does not validate that the discard is in a fragment shader, that |
| /// needs to be handled later in the validation. |
| /// @param discard the discard to validate |
| void CheckDiscard(const Discard* discard); |
| |
| /// Validates the given user call |
| /// @param call the call to validate |
| void CheckUserCall(const UserCall* call); |
| |
| /// Validates the given access |
| /// @param a the access to validate |
| void CheckAccess(const Access* a); |
| |
| /// Validates the given binary |
| /// @param b the binary to validate |
| void CheckBinary(const Binary* b); |
| |
| /// Validates the given unary |
| /// @param u the unary to validate |
| void CheckUnary(const Unary* u); |
| |
| /// Validates the given if |
| /// @param if_ the if to validate |
| void CheckIf(const If* if_); |
| |
| /// Validates the given loop |
| /// @param l the loop to validate |
| void CheckLoop(const Loop* l); |
| |
| /// Validates the loop body block |
| /// @param l the loop to validate |
| void CheckLoopBody(const Loop* l); |
| |
| /// Validates the loop continuing block |
| /// @param l the loop to validate |
| void CheckLoopContinuing(const Loop* l); |
| |
| /// Validates the given switch |
| /// @param s the switch to validate |
| void CheckSwitch(const Switch* s); |
| |
| /// Validates the given swizzle |
| /// @param s the swizzle to validate |
| void CheckSwizzle(const Swizzle* s); |
| |
| /// Validates the given terminator |
| /// @param b the terminator to validate |
| void CheckTerminator(const Terminator* b); |
| |
| /// Validates the break if instruction |
| /// @param b the break if to validate |
| void CheckBreakIf(const BreakIf* b); |
| |
| /// Validates the continue instruction |
| /// @param c the continue to validate |
| void CheckContinue(const Continue* c); |
| |
| /// Validates the given exit |
| /// @param e the exit to validate |
| void CheckExit(const Exit* e); |
| |
| /// Validates the next iteration instruction |
| /// @param n the next iteration to validate |
| void CheckNextIteration(const NextIteration* n); |
| |
| /// Validates the given exit if |
| /// @param e the exit if to validate |
| void CheckExitIf(const ExitIf* e); |
| |
| /// Validates the given return |
| /// @param r the return to validate |
| void CheckReturn(const Return* r); |
| |
| /// Validates the given unreachable |
| /// @param u the unreachable to validate |
| void CheckUnreachable(const Unreachable* u); |
| |
| /// Validates the @p exit targets a valid @p control instruction where the instruction may jump |
| /// over if control instructions. |
| /// @param exit the exit to validate |
| /// @param control the control instruction targeted |
| void CheckControlsAllowingIf(const Exit* exit, const Instruction* control); |
| |
| /// Validates the given exit switch |
| /// @param s the exit switch to validate |
| void CheckExitSwitch(const ExitSwitch* s); |
| |
| /// Validates the given exit loop |
| /// @param l the exit loop to validate |
| void CheckExitLoop(const ExitLoop* l); |
| |
| /// Validates the given load |
| /// @param l the load to validate |
| void CheckLoad(const Load* l); |
| |
| /// Validates the given store |
| /// @param s the store to validate |
| void CheckStore(const Store* s); |
| |
| /// Validates the given load vector element |
| /// @param l the load vector element to validate |
| void CheckLoadVectorElement(const LoadVectorElement* l); |
| |
| /// Validates the given store vector element |
| /// @param s the store vector element to validate |
| void CheckStoreVectorElement(const StoreVectorElement* s); |
| |
| /// Validates that the number and types of the source instruction operands match the target's |
| /// values. |
| /// @param source_inst the source instruction |
| /// @param source_operand_offset the index of the first operand of the source instruction |
| /// @param source_operand_count the number of operands of the source instruction |
| /// @param target the receiver of the operand values |
| /// @param target_values the receiver of the operand values |
| void CheckOperandsMatchTarget(const Instruction* source_inst, |
| size_t source_operand_offset, |
| size_t source_operand_count, |
| const CastableBase* target, |
| VectorRef<const Value*> target_values); |
| |
| /// @param inst the instruction |
| /// @param idx the operand index |
| /// @returns the vector pointer type for the given instruction operand |
| const core::type::Type* GetVectorPtrElementType(const Instruction* inst, size_t idx); |
| |
| /// Executes all the pending tasks |
| void ProcessTasks(); |
| |
| /// Queues the block to be validated with ProcessTasks() |
| /// @param blk the block to validate |
| void QueueBlock(const Block* blk); |
| |
| /// Queues the list of instructions starting with @p inst to be validated |
| /// @param inst the first instruction |
| void QueueInstructions(const Instruction* inst); |
| |
| /// Begins validation of the block @p blk, and its instructions. |
| /// BeginBlock() pushes a new scope for values. |
| /// Must be paired with a call to EndBlock(). |
| void BeginBlock(const Block* blk); |
| |
| /// Ends validation of the block opened with BeginBlock() and closes the block's scope for |
| /// values. |
| void EndBlock(); |
| |
| /// Get the function that contains an instruction. |
| /// @param inst the instruction |
| /// @returns the function |
| const ir::Function* ContainingFunction(const ir::Instruction* inst) { |
| return block_to_function_.GetOrAdd(inst->Block(), [&] { // |
| return ContainingFunction(inst->Block()->Parent()); |
| }); |
| } |
| |
| /// Get any endpoints that call a function. |
| /// @param f the function |
| /// @returns all end points that call the function |
| Hashset<const ir::Function*, 4> ContainingEndPoints(const ir::Function* f) { |
| Hashset<const ir::Function*, 4> result{}; |
| Hashset<const ir::Function*, 4> visited{f}; |
| |
| auto call_sites = user_func_calls_.GetOr(f, Hashset<const ir::UserCall*, 4>()).Vector(); |
| while (!call_sites.IsEmpty()) { |
| auto call_site = call_sites.Pop(); |
| auto calling_function = ContainingFunction(call_site); |
| if (visited.Contains(calling_function)) { |
| continue; |
| } |
| visited.Add(calling_function); |
| |
| if (calling_function->Stage() != Function::PipelineStage::kUndefined) { |
| result.Add(calling_function); |
| } |
| |
| for (auto new_call_sites : |
| user_func_calls_.GetOr(f, Hashset<const ir::UserCall*, 4>())) { |
| call_sites.Push(new_call_sites); |
| } |
| } |
| |
| return result; |
| } |
| |
| /// ScopeStack holds a stack of values that are currently in scope |
| struct ScopeStack { |
| void Push() { stack_.Push({}); } |
| void Pop() { stack_.Pop(); } |
| void Add(const Value* value) { stack_.Back().Add(value); } |
| bool Contains(const Value* value) { |
| return stack_.Any([&](auto& v) { return v.Contains(value); }); |
| } |
| bool IsEmpty() const { return stack_.IsEmpty(); } |
| |
| private: |
| Vector<Hashset<const Value*, 8>, 4> stack_; |
| }; |
| |
| const Module& mod_; |
| Capabilities capabilities_; |
| std::optional<ir::Disassembler> disassembler_; // Use Disassemble() |
| diag::List diagnostics_; |
| Hashset<const Function*, 4> all_functions_; |
| Hashset<const Instruction*, 4> visited_instructions_; |
| Hashmap<const Loop*, const Continue*, 4> first_continues_; |
| Vector<const ControlInstruction*, 8> control_stack_; |
| Vector<const Block*, 8> block_stack_; |
| ScopeStack scope_stack_; |
| Vector<std::function<void()>, 16> tasks_; |
| SymbolTable symbols_ = SymbolTable::Wrap(mod_.symbols); |
| type::Manager type_mgr_ = type::Manager::Wrap(mod_.Types()); |
| Hashmap<const ir::Block*, const ir::Function*, 64> block_to_function_{}; |
| Hashmap<const ir::Function*, Hashset<const ir::UserCall*, 4>, 4> user_func_calls_; |
| Hashset<const ir::Discard*, 4> discards_; |
| core::ir::ReferencedModuleVars<const Module> referenced_module_vars_; |
| |
| Hashset<ValidatedType, 16> validated_types_{}; |
| }; |
| |
| Validator::Validator(const Module& mod, Capabilities capabilities) |
| : mod_(mod), capabilities_(capabilities), referenced_module_vars_(mod) {} |
| |
| Validator::~Validator() = default; |
| |
| Disassembler& Validator::Disassemble() { |
| if (!disassembler_) { |
| disassembler_.emplace(ir::Disassembler(mod_)); |
| } |
| return *disassembler_; |
| } |
| |
| Result<SuccessType> Validator::Run() { |
| RunStructuralSoundnessChecks(); |
| |
| CheckForOrphanedInstructions(); |
| CheckForNonFragmentDiscards(); |
| |
| if (diagnostics_.ContainsErrors()) { |
| diagnostics_.AddNote(Source{}) << "# Disassembly\n" << Disassemble().Text(); |
| return Failure{std::move(diagnostics_)}; |
| } |
| return Success; |
| } |
| |
| void Validator::CheckForOrphanedInstructions() { |
| if (diagnostics_.ContainsErrors()) { |
| return; |
| } |
| |
| // Check for orphaned instructions. |
| for (auto* inst : mod_.Instructions()) { |
| if (!visited_instructions_.Contains(inst)) { |
| AddError(inst) << "orphaned instruction: " << inst->FriendlyName(); |
| } |
| } |
| } |
| |
| void Validator::CheckForNonFragmentDiscards() { |
| if (diagnostics_.ContainsErrors()) { |
| return; |
| } |
| |
| // Check for discards in non-fragments |
| for (const auto& d : discards_) { |
| const auto* f = ContainingFunction(d); |
| for (const Function* ep : ContainingEndPoints(f)) { |
| if (ep->Stage() != Function::PipelineStage::kFragment) { |
| AddError(d) << "cannot be called in non-fragment end point"; |
| } |
| } |
| } |
| } |
| |
| void Validator::RunStructuralSoundnessChecks() { |
| scope_stack_.Push(); |
| TINT_DEFER({ |
| scope_stack_.Pop(); |
| TINT_ASSERT(scope_stack_.IsEmpty()); |
| TINT_ASSERT(tasks_.IsEmpty()); |
| TINT_ASSERT(control_stack_.IsEmpty()); |
| TINT_ASSERT(block_stack_.IsEmpty()); |
| }); |
| CheckRootBlock(mod_.root_block); |
| |
| for (auto& func : mod_.functions) { |
| if (!all_functions_.Add(func.Get())) { |
| AddError(func) << "function " << NameOf(func.Get()) |
| << " added to module multiple times"; |
| } |
| scope_stack_.Add(func); |
| } |
| |
| for (auto& func : mod_.functions) { |
| block_to_function_.Add(func->Block(), func); |
| CheckFunction(func); |
| } |
| } |
| |
| diag::Diagnostic& Validator::AddError(const Instruction* inst) { |
| diagnostics_.ReserveAdditional(2); // Ensure diagnostics don't resize alive after AddNote() |
| auto src = Disassemble().InstructionSource(inst); |
| auto& diag = AddError(src) << inst->FriendlyName() << ": "; |
| |
| if (!block_stack_.IsEmpty()) { |
| AddNote(block_stack_.Back()) << "in block"; |
| } |
| return diag; |
| } |
| |
| diag::Diagnostic& Validator::AddError(const Instruction* inst, size_t idx) { |
| diagnostics_.ReserveAdditional(2); // Ensure diagnostics don't resize alive after AddNote() |
| auto src = |
| Disassemble().OperandSource(Disassembler::IndexedValue{inst, static_cast<uint32_t>(idx)}); |
| auto& diag = AddError(src) << inst->FriendlyName() << ": "; |
| |
| if (!block_stack_.IsEmpty()) { |
| AddNote(block_stack_.Back()) << "in block"; |
| } |
| return diag; |
| } |
| |
| diag::Diagnostic& Validator::AddResultError(const Instruction* inst, size_t idx) { |
| diagnostics_.ReserveAdditional(2); // Ensure diagnostics don't resize alive after AddNote() |
| auto src = |
| Disassemble().ResultSource(Disassembler::IndexedValue{inst, static_cast<uint32_t>(idx)}); |
| auto& diag = AddError(src) << inst->FriendlyName() << ": "; |
| |
| if (!block_stack_.IsEmpty()) { |
| AddNote(block_stack_.Back()) << "in block"; |
| } |
| return diag; |
| } |
| |
| diag::Diagnostic& Validator::AddError(const Block* blk) { |
| auto src = Disassemble().BlockSource(blk); |
| return AddError(src); |
| } |
| |
| diag::Diagnostic& Validator::AddError(const BlockParam* param) { |
| auto src = Disassemble().BlockParamSource(param); |
| return AddError(src); |
| } |
| |
| diag::Diagnostic& Validator::AddError(const Function* func) { |
| auto src = Disassemble().FunctionSource(func); |
| return AddError(src); |
| } |
| |
| diag::Diagnostic& Validator::AddError(const FunctionParam* param) { |
| auto src = Disassemble().FunctionParamSource(param); |
| return AddError(src); |
| } |
| |
| diag::Diagnostic& Validator::AddNote(const Instruction* inst) { |
| auto src = Disassemble().InstructionSource(inst); |
| return AddNote(src); |
| } |
| |
| diag::Diagnostic& Validator::AddNote(const Function* func) { |
| auto src = Disassemble().FunctionSource(func); |
| return AddNote(src); |
| } |
| |
| diag::Diagnostic& Validator::AddOperandNote(const Instruction* inst, size_t idx) { |
| auto src = |
| Disassemble().OperandSource(Disassembler::IndexedValue{inst, static_cast<uint32_t>(idx)}); |
| return AddNote(src); |
| } |
| |
| diag::Diagnostic& Validator::AddResultNote(const Instruction* inst, size_t idx) { |
| auto src = |
| Disassemble().ResultSource(Disassembler::IndexedValue{inst, static_cast<uint32_t>(idx)}); |
| return AddNote(src); |
| } |
| |
| diag::Diagnostic& Validator::AddNote(const Block* blk) { |
| auto src = Disassemble().BlockSource(blk); |
| return AddNote(src); |
| } |
| |
| diag::Diagnostic& Validator::AddError(Source src) { |
| auto& diag = diagnostics_.AddError(src); |
| diag.owned_file = Disassemble().File(); |
| return diag; |
| } |
| |
| diag::Diagnostic& Validator::AddNote(Source src) { |
| auto& diag = diagnostics_.AddNote(src); |
| diag.owned_file = Disassemble().File(); |
| return diag; |
| } |
| |
| void Validator::AddDeclarationNote(const CastableBase* decl) { |
| tint::Switch( |
| decl, // |
| [&](const Block* block) { AddDeclarationNote(block); }, |
| [&](const BlockParam* param) { AddDeclarationNote(param); }, |
| [&](const Function* fn) { AddDeclarationNote(fn); }, |
| [&](const FunctionParam* param) { AddDeclarationNote(param); }, |
| [&](const Instruction* inst) { AddDeclarationNote(inst); }, |
| [&](const InstructionResult* res) { AddDeclarationNote(res); }); |
| } |
| |
| void Validator::AddDeclarationNote(const Block* block) { |
| auto src = Disassemble().BlockSource(block); |
| if (src.file) { |
| AddNote(src) << NameOf(block) << " declared here"; |
| } |
| } |
| |
| void Validator::AddDeclarationNote(const BlockParam* param) { |
| auto src = Disassemble().BlockParamSource(param); |
| if (src.file) { |
| AddNote(src) << NameOf(param) << " declared here"; |
| } |
| } |
| |
| void Validator::AddDeclarationNote(const Function* fn) { |
| AddNote(fn) << NameOf(fn) << " declared here"; |
| } |
| |
| void Validator::AddDeclarationNote(const FunctionParam* param) { |
| auto src = Disassemble().FunctionParamSource(param); |
| if (src.file) { |
| AddNote(src) << NameOf(param) << " declared here"; |
| } |
| } |
| |
| void Validator::AddDeclarationNote(const Instruction* inst) { |
| auto src = Disassemble().InstructionSource(inst); |
| if (src.file) { |
| AddNote(src) << NameOf(inst) << " declared here"; |
| } |
| } |
| |
| void Validator::AddDeclarationNote(const InstructionResult* res) { |
| if (auto* inst = res->Instruction()) { |
| auto results = inst->Results(); |
| for (size_t i = 0; i < results.Length(); i++) { |
| if (results[i] == res) { |
| AddResultNote(res->Instruction(), i) << NameOf(res) << " declared here"; |
| return; |
| } |
| } |
| } |
| } |
| |
| StyledText Validator::NameOf(const CastableBase* decl) { |
| return tint::Switch( |
| decl, // |
| [&](const type::Type* ty) { return NameOf(ty); }, |
| [&](const Value* value) { return NameOf(value); }, |
| [&](const Instruction* inst) { return NameOf(inst); }, |
| [&](const Block* block) { return NameOf(block); }, // |
| TINT_ICE_ON_NO_MATCH); |
| } |
| |
| StyledText Validator::NameOf(const type::Type* ty) { |
| auto name = ty ? ty->FriendlyName() : "undef"; |
| return StyledText{} << style::Type(name); |
| } |
| |
| StyledText Validator::NameOf(const Value* value) { |
| return Disassemble().NameOf(value); |
| } |
| |
| StyledText Validator::NameOf(const Instruction* inst) { |
| auto name = inst ? inst->FriendlyName() : "undef"; |
| return StyledText{} << style::Instruction(name); |
| } |
| |
| StyledText Validator::NameOf(const Block* block) { |
| auto parent_name = block->Parent() ? block->Parent()->FriendlyName() : "undef"; |
| return StyledText{} << style::Instruction(parent_name) << " block " |
| << Disassemble().NameOf(block); |
| } |
| |
| bool Validator::CheckResult(const Instruction* inst, size_t idx) { |
| auto* result = inst->Result(idx); |
| if (DAWN_UNLIKELY(result == nullptr)) { |
| AddResultError(inst, idx) << "result is undefined"; |
| return false; |
| } |
| |
| if (DAWN_UNLIKELY(result->Type() == nullptr)) { |
| AddResultError(inst, idx) << "result type is undefined"; |
| return false; |
| } |
| |
| if (DAWN_UNLIKELY(result->Instruction() == nullptr)) { |
| AddResultError(inst, idx) << "result instruction is undefined"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Validator::CheckResults(const ir::Instruction* inst, std::optional<size_t> count = {}) { |
| if (count.has_value()) { |
| if (DAWN_UNLIKELY(inst->Results().Length() != count.value())) { |
| AddError(inst) << "expected exactly " << count.value() << " results, got " |
| << inst->Results().Length(); |
| return false; |
| } |
| } |
| |
| bool passed = true; |
| for (size_t i = 0; i < inst->Results().Length(); i++) { |
| if (DAWN_UNLIKELY(!CheckResult(inst, i))) { |
| passed = false; |
| } |
| } |
| return passed; |
| } |
| |
| bool Validator::CheckOperand(const Instruction* inst, size_t idx) { |
| auto* operand = inst->Operand(idx); |
| if (DAWN_UNLIKELY(operand == nullptr)) { |
| AddError(inst, idx) << "operand is undefined"; |
| return false; |
| } |
| |
| // ir::Unused is a internal value used by some transforms to track unused entries, and is |
| // removed as part of generating an output shader. |
| if (DAWN_UNLIKELY(operand->Is<ir::Unused>())) { |
| return true; |
| } |
| |
| // ir::Function does not have a meaningful type, so does not override the default Type() |
| // behaviour. |
| if (DAWN_UNLIKELY(!operand->Is<ir::Function>() && operand->Type() == nullptr)) { |
| AddError(inst, idx) << "operand type is undefined"; |
| return false; |
| } |
| |
| if (DAWN_UNLIKELY(!operand->Alive())) { |
| AddError(inst, idx) << "operand is not alive"; |
| return false; |
| } |
| |
| if (DAWN_UNLIKELY(!operand->HasUsage(inst, idx))) { |
| AddError(inst, idx) << "operand missing usage"; |
| return false; |
| } |
| |
| if (auto fn = operand->As<Function>(); fn && !all_functions_.Contains(fn)) { |
| AddError(inst, idx) << NameOf(operand) << " is not part of the module"; |
| return false; |
| } |
| |
| if (DAWN_UNLIKELY(!operand->Is<ir::Unused>() && !operand->Is<Constant>() && |
| !scope_stack_.Contains(operand))) { |
| AddError(inst, idx) << NameOf(operand) << " is not in scope"; |
| AddDeclarationNote(operand); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Validator::CheckOperands(const ir::Instruction* inst, |
| size_t min_count, |
| std::optional<size_t> max_count) { |
| if (DAWN_UNLIKELY(inst->Operands().Length() < min_count)) { |
| if (max_count.has_value()) { |
| AddError(inst) << "expected between " << min_count << " and " << max_count.value() |
| << " operands, got " << inst->Operands().Length(); |
| } else { |
| AddError(inst) << "expected at least " << min_count << " operands, got " |
| << inst->Operands().Length(); |
| } |
| return false; |
| } |
| |
| if (DAWN_UNLIKELY(max_count.has_value() && inst->Operands().Length() > max_count.value())) { |
| AddError(inst) << "expected between " << min_count << " and " << max_count.value() |
| << " operands, got " << inst->Operands().Length(); |
| return false; |
| } |
| |
| bool passed = true; |
| for (size_t i = 0; i < inst->Operands().Length(); i++) { |
| if (DAWN_UNLIKELY(!CheckOperand(inst, i))) { |
| passed = false; |
| } |
| } |
| return passed; |
| } |
| |
| bool Validator::CheckOperands(const ir::Instruction* inst, std::optional<size_t> count = {}) { |
| if (count.has_value()) { |
| if (DAWN_UNLIKELY(inst->Operands().Length() != count.value())) { |
| AddError(inst) << "expected exactly " << count.value() << " operands, got " |
| << inst->Operands().Length(); |
| return false; |
| } |
| } |
| |
| bool passed = true; |
| for (size_t i = 0; i < inst->Operands().Length(); i++) { |
| if (DAWN_UNLIKELY(!CheckOperand(inst, i))) { |
| passed = false; |
| } |
| } |
| return passed; |
| } |
| |
| bool Validator::CheckResultsAndOperandRange(const ir::Instruction* inst, |
| size_t num_results, |
| size_t min_operands, |
| std::optional<size_t> max_operands = {}) { |
| // Intentionally avoiding short-circuiting here |
| bool results_passed = CheckResults(inst, num_results); |
| bool operands_passed = CheckOperands(inst, min_operands, max_operands); |
| return results_passed && operands_passed; |
| } |
| |
| bool Validator::CheckResultsAndOperands(const ir::Instruction* inst, |
| size_t num_results, |
| size_t num_operands) { |
| // Intentionally avoiding short-circuiting here |
| bool results_passed = CheckResults(inst, num_results); |
| bool operands_passed = CheckOperands(inst, num_operands); |
| return results_passed && operands_passed; |
| } |
| |
| void Validator::CheckType(const core::type::Type* root, |
| std::function<diag::Diagnostic&()> diag, |
| Capabilities ignore_caps) { |
| if (root == nullptr) { |
| return; |
| } |
| |
| if (!validated_types_.Add(ValidatedType{root, ignore_caps})) { |
| return; |
| } |
| |
| auto visit = [&](const type::Type* type) { |
| return tint::Switch( |
| type, |
| [&](const type::Reference*) { |
| // Reference types are guarded by the AllowRefTypes capability. |
| if (!capabilities_.Contains(Capability::kAllowRefTypes) || |
| ignore_caps.Contains(Capability::kAllowRefTypes)) { |
| diag() << "reference types are not permitted here"; |
| return false; |
| } else if (type != root) { |
| // If they are allowed, reference types still cannot be nested. |
| diag() << "nested reference types are not permitted"; |
| return false; |
| } |
| return true; |
| }, |
| [&](const type::Pointer*) { |
| if (type != root) { |
| // Nesting pointer types inside structures is guarded by a capability. |
| if (!(root->Is<type::Struct>() && |
| capabilities_.Contains(Capability::kAllowPointersInStructures))) { |
| diag() << "nested pointer types are not permitted"; |
| return false; |
| } |
| } |
| return true; |
| }, |
| [&](const type::I8*) { |
| // i8 types are guarded by the Allow8BitIntegers capability. |
| if (!capabilities_.Contains(Capability::kAllow8BitIntegers)) { |
| diag() << "8-bit integer types are not permitted"; |
| return false; |
| } |
| return true; |
| }, |
| [&](const type::U8*) { |
| // u8 types are guarded by the Allow8BitIntegers capability. |
| if (!capabilities_.Contains(Capability::kAllow8BitIntegers)) { |
| diag() << "8-bit integer types are not permitted"; |
| return false; |
| } |
| return true; |
| }, |
| [](Default) { return true; }); |
| }; |
| |
| Vector<const type::Type*, 8> stack{root}; |
| Hashset<const type::Type*, 8> seen{}; |
| while (!stack.IsEmpty()) { |
| auto* ty = stack.Pop(); |
| if (!ty) { |
| continue; |
| } |
| if (!visit(ty)) { |
| return; |
| } |
| |
| if (auto* view = ty->As<type::MemoryView>(); view && seen.Add(view)) { |
| stack.Push(view->StoreType()); |
| continue; |
| } |
| |
| auto type_count = ty->Elements(); |
| if (type_count.type && seen.Add(type_count.type)) { |
| stack.Push(type_count.type); |
| continue; |
| } |
| |
| for (uint32_t i = 0; i < type_count.count; i++) { |
| if (auto* subtype = ty->Element(i); subtype && seen.Add(subtype)) { |
| stack.Push(subtype); |
| } |
| } |
| } |
| } |
| |
| void Validator::CheckRootBlock(const Block* blk) { |
| block_stack_.Push(blk); |
| TINT_DEFER(block_stack_.Pop()); |
| |
| for (auto* inst : *blk) { |
| if (inst->Block() != blk) { |
| AddError(inst) << "instruction in root block does not have root block as parent"; |
| continue; |
| } |
| |
| tint::Switch( |
| inst, // |
| [&](const core::ir::Var* var) { CheckInstruction(var); }, |
| [&](const core::ir::Let* let) { |
| if (capabilities_.Contains(Capability::kAllowModuleScopeLets)) { |
| CheckInstruction(let); |
| } else { |
| AddError(inst) << "root block: invalid instruction: " << inst->TypeInfo().name; |
| } |
| }, |
| [&](const core::ir::Construct* c) { |
| if (capabilities_.Contains(Capability::kAllowModuleScopeLets)) { |
| CheckInstruction(c); |
| } else { |
| AddError(inst) << "root block: invalid instruction: " << inst->TypeInfo().name; |
| } |
| }, |
| [&](Default) { |
| AddError(inst) << "root block: invalid instruction: " << inst->TypeInfo().name; |
| }); |
| } |
| } |
| |
| void Validator::CheckFunction(const Function* func) { |
| // Scope holds the parameters and block |
| scope_stack_.Push(); |
| TINT_DEFER(scope_stack_.Pop()); |
| |
| for (auto* param : func->Params()) { |
| if (!param->Alive()) { |
| AddError(param) << "destroyed parameter found in function parameter list"; |
| return; |
| } |
| if (!param->Function()) { |
| AddError(param) << "function parameter has nullptr parent function"; |
| return; |
| } else if (param->Function() != func) { |
| AddError(param) << "function parameter has incorrect parent function"; |
| AddNote(param->Function()) << "parent function declared here"; |
| return; |
| } |
| |
| if (!param->Type()) { |
| AddError(param) << "function parameter has nullptr type"; |
| return; |
| } |
| |
| // References not allowed on function signatures even with Capability::kAllowRefTypes. |
| CheckType( |
| param->Type(), [&]() -> diag::Diagnostic& { return AddError(param); }, |
| Capabilities{Capability::kAllowRefTypes}); |
| |
| if (!IsValidFunctionParamType(param->Type())) { |
| auto struct_ty = param->Type()->As<core::type::Struct>(); |
| if (!capabilities_.Contains(Capability::kAllowPointersInStructures) || !struct_ty || |
| struct_ty->Members().Any([](const core::type::StructMember* m) { |
| return !IsValidFunctionParamType(m->Type()); |
| })) { |
| AddError(param) << "function parameter type must be constructible, a pointer, a " |
| "texture, or a sampler"; |
| } |
| } |
| |
| CheckFunctionParamAttributesAndType(param, CheckBuiltinFunctionParam(""), |
| CheckBuiltinFunctionParam("")); |
| |
| CheckFunctionParamAttributes( |
| param, |
| CheckInvariantFunc<FunctionParam>( |
| "invariant can only decorate a param iff it is also decorated with position"), |
| CheckInvariantFunc<FunctionParam>( |
| "invariant can only decorate a param member iff it is also " |
| "decorated with position")); |
| CheckFunctionParamAttributes( |
| param, |
| CheckDoesNotHaveBothLocationAndBuiltinFunc<FunctionParam>( |
| "a builtin and location cannot be both declared for a param"), |
| CheckDoesNotHaveBothLocationAndBuiltinFunc<FunctionParam>( |
| "a builtin and location cannot be both declared for a struct member")); |
| |
| scope_stack_.Add(param); |
| } |
| |
| // References not allowed on function signatures even with Capability::kAllowRefTypes. |
| CheckType( |
| func->ReturnType(), [&]() -> diag::Diagnostic& { return AddError(func); }, |
| Capabilities{Capability::kAllowRefTypes}); |
| |
| CheckFunctionReturnAttributesAndType(func, CheckBuiltinFunctionReturn(""), |
| CheckBuiltinFunctionReturn("")); |
| |
| CheckFunctionReturnAttributes( |
| func, |
| CheckInvariantFunc<Function>( |
| "invariant can only decorate outputs iff they are also position builtins"), |
| CheckInvariantFunc<Function>( |
| "invariant can only decorate output members iff they are also position builtins")); |
| |
| CheckFunctionReturnAttributes( |
| func, |
| CheckDoesNotHaveBothLocationAndBuiltinFunc<Function>( |
| "a builtin and location cannot be both declared for a function return"), |
| CheckDoesNotHaveBothLocationAndBuiltinFunc<Function>( |
| "a builtin and location cannot be both declared for a struct member")); |
| |
| // void needs to be filtered out, since it isn't constructible, but used in the IR when no |
| // return is specified. |
| if (DAWN_UNLIKELY(!func->ReturnType()->Is<core::type::Void>() && |
| !func->ReturnType()->IsConstructible())) { |
| AddError(func) << "function return type must be constructible"; |
| } |
| |
| if (func->Stage() != Function::PipelineStage::kUndefined) { |
| if (DAWN_UNLIKELY(mod_.NameOf(func).Name().empty())) { |
| AddError(func) << "entry points must have names"; |
| } |
| } |
| |
| if (func->Stage() == Function::PipelineStage::kCompute) { |
| if (DAWN_UNLIKELY(!func->WorkgroupSize().has_value())) { |
| AddError(func) << "compute entry point requires workgroup size attribute"; |
| } |
| |
| if (DAWN_UNLIKELY(func->ReturnType() && !func->ReturnType()->Is<core::type::Void>())) { |
| AddError(func) << "compute entry point must not have a return type"; |
| } |
| } |
| |
| if (DAWN_UNLIKELY(func->Stage() != Function::PipelineStage::kCompute && |
| func->WorkgroupSize().has_value())) { |
| AddError(func) << "workgroup size attribute only valid on compute entry point"; |
| } |
| |
| if (func->Stage() == Function::PipelineStage::kFragment) { |
| if (!func->ReturnType()->Is<core::type::Void>()) { |
| CheckFunctionReturnAttributes( |
| func, |
| CheckHasLocationOrBuiltinFunc<Function>( |
| "a non-void return for an entry point must have a " |
| "builtin or location decoration"), |
| CheckHasLocationOrBuiltinFunc<Function>( |
| "members of struct used for returns of entry points must have a builtin or " |
| "location decoration")); |
| } |
| } |
| |
| if (func->Stage() == Function::PipelineStage::kVertex) { |
| CheckVertexEntryPoint(func); |
| } |
| |
| QueueBlock(func->Block()); |
| ProcessTasks(); |
| } |
| |
| void Validator::CheckVertexEntryPoint(const Function* ep) { |
| bool contains_position = IsPositionPresent(ep->ReturnAttributes(), ep->ReturnType()); |
| |
| for (auto var : referenced_module_vars_.TransitiveReferences(ep)) { |
| const auto* ty = var->Result(0)->Type()->UnwrapPtrOrRef(); |
| const auto attr = var->Attributes(); |
| if (!ty) { |
| continue; |
| } |
| |
| if (!contains_position) { |
| contains_position = IsPositionPresent(attr, ty); |
| } |
| |
| CheckIOAttributes( |
| ep, attr, ty, |
| CheckInvariantFunc<Function>( |
| "invariant can only decorate vars iff they are also position builtins"), |
| CheckInvariantFunc<Function>( |
| "invariant can only decorate members iff they are also position builtins")); |
| |
| // Builtin rules are not checked on module-scope variables, because they are often generated |
| // as part of the backend transforms, and have different rules for correctness. |
| } |
| |
| if (DAWN_UNLIKELY(!contains_position)) { |
| AddError(ep) << "position must be declared for vertex entry point output"; |
| } |
| } |
| |
| void Validator::ProcessTasks() { |
| while (!tasks_.IsEmpty()) { |
| tasks_.Pop()(); |
| } |
| } |
| |
| void Validator::QueueBlock(const Block* blk) { |
| tasks_.Push([this] { EndBlock(); }); |
| tasks_.Push([this, blk] { BeginBlock(blk); }); |
| } |
| |
| void Validator::BeginBlock(const Block* blk) { |
| scope_stack_.Push(); |
| block_stack_.Push(blk); |
| |
| if (auto* mb = blk->As<MultiInBlock>()) { |
| for (auto* param : mb->Params()) { |
| if (!param->Alive()) { |
| AddError(param) << "destroyed parameter found in block parameter list"; |
| return; |
| } |
| if (!param->Block()) { |
| AddError(param) << "block parameter has nullptr parent block"; |
| return; |
| } else if (param->Block() != mb) { |
| AddError(param) << "block parameter has incorrect parent block"; |
| AddNote(param->Block()) << "parent block declared here"; |
| return; |
| } |
| |
| // References not allowed on block parameters even with Capability::kAllowRefTypes. |
| CheckType( |
| param->Type(), [&]() -> diag::Diagnostic& { return AddError(param); }, |
| Capabilities{Capability::kAllowRefTypes}); |
| |
| scope_stack_.Add(param); |
| } |
| } |
| |
| if (!blk->Terminator()) { |
| AddError(blk) << "block does not end in a terminator instruction"; |
| } |
| |
| // Validate the instructions w.r.t. the parent block |
| for (auto* inst : *blk) { |
| if (inst->Block() != blk) { |
| AddError(inst) << "block instruction does not have same block as parent"; |
| AddNote(blk) << "in block"; |
| } |
| } |
| |
| // Enqueue validation of the instructions of the block |
| if (!blk->IsEmpty()) { |
| QueueInstructions(blk->Instructions()); |
| } |
| } |
| |
| void Validator::EndBlock() { |
| scope_stack_.Pop(); |
| block_stack_.Pop(); |
| } |
| |
| void Validator::QueueInstructions(const Instruction* inst) { |
| tasks_.Push([this, inst] { |
| CheckInstruction(inst); |
| if (inst->next) { |
| QueueInstructions(inst->next); |
| } |
| }); |
| } |
| |
| void Validator::CheckInstruction(const Instruction* inst) { |
| visited_instructions_.Add(inst); |
| if (!inst->Alive()) { |
| AddError(inst) << "destroyed instruction found in instruction list"; |
| return; |
| } |
| |
| auto results = inst->Results(); |
| for (size_t i = 0; i < results.Length(); ++i) { |
| auto* res = results[i]; |
| if (!res) { |
| continue; |
| } |
| CheckType(res->Type(), [&]() -> diag::Diagnostic& { return AddResultError(inst, i); }); |
| } |
| |
| auto ops = inst->Operands(); |
| for (size_t i = 0; i < ops.Length(); ++i) { |
| auto* op = ops[i]; |
| if (!op) { |
| continue; |
| } |
| |
| CheckType(op->Type(), [&]() -> diag::Diagnostic& { return AddError(inst, i); }); |
| } |
| |
| tint::Switch( |
| inst, // |
| [&](const Access* a) { CheckAccess(a); }, // |
| [&](const Binary* b) { CheckBinary(b); }, // |
| [&](const Call* c) { CheckCall(c); }, // |
| [&](const If* if_) { CheckIf(if_); }, // |
| [&](const Let* let) { CheckLet(let); }, // |
| [&](const Load* load) { CheckLoad(load); }, // |
| [&](const LoadVectorElement* l) { CheckLoadVectorElement(l); }, // |
| [&](const Loop* l) { CheckLoop(l); }, // |
| [&](const Store* s) { CheckStore(s); }, // |
| [&](const StoreVectorElement* s) { CheckStoreVectorElement(s); }, // |
| [&](const Switch* s) { CheckSwitch(s); }, // |
| [&](const Swizzle* s) { CheckSwizzle(s); }, // |
| [&](const Terminator* b) { CheckTerminator(b); }, // |
| [&](const Unary* u) { CheckUnary(u); }, // |
| [&](const Var* var) { CheckVar(var); }, // |
| [&](const Default) { AddError(inst) << "missing validation"; }); |
| |
| for (auto* result : results) { |
| scope_stack_.Add(result); |
| } |
| } |
| |
| void Validator::CheckVar(const Var* var) { |
| // Intentionally not checking operands, since Var may have a null operand |
| if (!CheckResults(var, Var::kNumResults)) { |
| return; |
| } |
| |
| // Check that initializer and result type match |
| if (var->Initializer()) { |
| if (!CheckOperand(var, ir::Var::kInitializerOperandOffset)) { |
| return; |
| } |
| |
| if (var->Initializer()->Type() != var->Result(0)->Type()->UnwrapPtrOrRef()) { |
| AddError(var) << "initializer type " |
| << style::Type(var->Initializer()->Type()->FriendlyName()) |
| << " does not match store type " |
| << style::Type(var->Result(0)->Type()->UnwrapPtrOrRef()->FriendlyName()); |
| return; |
| } |
| } |
| |
| auto* result_type = var->Result(0)->Type(); |
| if (result_type == nullptr) { |
| AddError(var) << "result type is undefined"; |
| return; |
| } |
| |
| auto* mv = result_type->As<type::MemoryView>(); |
| if (!mv) { |
| AddError(var) << "result type must be a pointer or a reference"; |
| return; |
| } |
| |
| // Check that only resource variables have @group and @binding set |
| switch (mv->AddressSpace()) { |
| case AddressSpace::kHandle: |
| if (!capabilities_.Contains(Capability::kAllowHandleVarsWithoutBindings)) { |
| if (!var->BindingPoint().has_value()) { |
| AddError(var) << "resource variable missing binding points"; |
| } |
| } |
| break; |
| case AddressSpace::kStorage: |
| case AddressSpace::kUniform: |
| if (!var->BindingPoint().has_value()) { |
| AddError(var) << "resource variable missing binding points"; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| // Check that non-handle variables don't have @input_attachment_index set |
| if (var->InputAttachmentIndex().has_value() && mv->AddressSpace() != AddressSpace::kHandle) { |
| AddError(var) << "'@input_attachment_index' is not valid for non-handle var"; |
| return; |
| } |
| |
| if (HasLocationAndBuiltin(var->Attributes())) { |
| AddError(var) << "a builtin and location cannot be both declared for a var"; |
| return; |
| } |
| |
| if (auto* s = var->Result(0)->Type()->UnwrapPtrOrRef()->As<core::type::Struct>()) { |
| for (auto* mem : s->Members()) { |
| if (HasLocationAndBuiltin(mem->Attributes())) { |
| AddError(var) |
| << "a builtin and location cannot be both declared for a struct member"; |
| return; |
| } |
| } |
| } |
| } |
| |
| void Validator::CheckLet(const Let* l) { |
| if (!CheckResultsAndOperands(l, Let::kNumResults, Let::kNumOperands)) { |
| return; |
| } |
| |
| if (l->Result(0) && l->Value()) { |
| if (l->Result(0)->Type() != l->Value()->Type()) { |
| AddError(l) << "result type " << style::Type(l->Result(0)->Type()->FriendlyName()) |
| << " does not match value type " |
| << style::Type(l->Value()->Type()->FriendlyName()); |
| } |
| } |
| } |
| |
| void Validator::CheckCall(const Call* call) { |
| tint::Switch( |
| call, // |
| [&](const Bitcast* b) { CheckBitcast(b); }, // |
| [&](const BuiltinCall* c) { CheckBuiltinCall(c); }, // |
| [&](const MemberBuiltinCall* c) { CheckMemberBuiltinCall(c); }, // |
| [&](const Construct* c) { CheckConstruct(c); }, // |
| [&](const Convert* c) { CheckConvert(c); }, // |
| [&](const Discard* d) { // |
| discards_.Add(d); // |
| CheckDiscard(d); // |
| }, // |
| [&](const UserCall* c) { // |
| if (c->Target()) { // |
| auto calls = // |
| user_func_calls_.GetOr(c->Target(), // |
| Hashset<const ir::UserCall*, 4>{}); // |
| calls.Add(c); // |
| user_func_calls_.Replace(c->Target(), calls); // |
| } // |
| CheckUserCall(c); // |
| }, // |
| [&](Default) { |
| // Validation of custom IR instructions |
| }); |
| } |
| |
| void Validator::CheckBitcast(const Bitcast* bitcast) { |
| CheckResultsAndOperands(bitcast, Bitcast::kNumResults, Bitcast::kNumOperands); |
| } |
| |
| void Validator::CheckBuiltinCall(const BuiltinCall* call) { |
| auto args = |
| Transform<8>(call->Args(), [&](const ir::Value* v) { return v ? v->Type() : nullptr; }); |
| if (args.Any([&](const type::Type* ty) { return ty == nullptr; })) { |
| AddError(call) << "argument to builtin has undefined type"; |
| return; |
| } |
| |
| intrinsic::Context context{ |
| call->TableData(), |
| type_mgr_, |
| symbols_, |
| }; |
| |
| auto builtin = core::intrinsic::LookupFn(context, call->FriendlyName().c_str(), call->FuncId(), |
| Empty, args, core::EvaluationStage::kRuntime); |
| if (builtin != Success) { |
| AddError(call) << builtin.Failure(); |
| return; |
| } |
| |
| TINT_ASSERT(builtin->return_type); |
| |
| if (call->Result(0) == nullptr) { |
| AddError(call) << "call to builtin does not have a return type"; |
| return; |
| } |
| |
| if (builtin->return_type != call->Result(0)->Type()) { |
| AddError(call) << "call result type does not match builtin return type"; |
| return; |
| } |
| } |
| |
| void Validator::CheckMemberBuiltinCall(const MemberBuiltinCall* call) { |
| auto args = Vector<const type::Type*, 8>({call->Object()->Type()}); |
| for (auto* arg : call->Args()) { |
| args.Push(arg->Type()); |
| } |
| intrinsic::Context context{ |
| call->TableData(), |
| type_mgr_, |
| symbols_, |
| }; |
| |
| auto result = |
| core::intrinsic::LookupMemberFn(context, call->FriendlyName().c_str(), call->FuncId(), |
| Empty, std::move(args), core::EvaluationStage::kRuntime); |
| if (result != Success) { |
| AddError(call) << result.Failure(); |
| return; |
| } |
| |
| if (result->return_type != call->Result(0)->Type()) { |
| AddError(call) << "member call result type (" |
| << style::Type(call->Result(0)->Type()->FriendlyName()) |
| << ") does not match builtin return type (" |
| << style::Type(result->return_type->FriendlyName()) << ")"; |
| } |
| } |
| |
| void Validator::CheckConstruct(const Construct* construct) { |
| if (!CheckResultsAndOperandRange(construct, Construct::kNumResults, Construct::kMinOperands)) { |
| return; |
| } |
| |
| auto args = construct->Args(); |
| if (args.IsEmpty()) { |
| // Zero-value constructors are valid for all constructible types. |
| return; |
| } |
| |
| if (auto* str = As<type::Struct>(construct->Result(0)->Type())) { |
| auto members = str->Members(); |
| if (args.Length() != str->Members().Length()) { |
| AddError(construct) << "structure has " << members.Length() |
| << " members, but construct provides " << args.Length() |
| << " arguments"; |
| return; |
| } |
| for (size_t i = 0; i < args.Length(); i++) { |
| if (args[i]->Is<ir::Unused>()) { |
| continue; |
| } |
| if (args[i]->Type() != members[i]->Type()) { |
| AddError(construct, Construct::kArgsOperandOffset + i) |
| << "structure member " << i << " is of type " |
| << style::Type(members[i]->Type()->FriendlyName()) |
| << ", but argument is of type " << style::Type(args[i]->Type()->FriendlyName()); |
| } |
| } |
| } |
| } |
| |
| void Validator::CheckConvert(const Convert* convert) { |
| CheckResultsAndOperands(convert, Convert::kNumResults, Convert::kNumOperands); |
| } |
| |
| void Validator::CheckDiscard(const tint::core::ir::Discard* discard) { |
| CheckResultsAndOperands(discard, Discard::kNumResults, Discard::kNumOperands); |
| } |
| |
| void Validator::CheckUserCall(const UserCall* call) { |
| if (!CheckResultsAndOperandRange(call, UserCall::kNumResults, UserCall::kMinOperands)) { |
| return; |
| } |
| |
| if (!call->Target()) { |
| AddError(call, UserCall::kFunctionOperandOffset) << "target not defined or not a function"; |
| return; |
| } |
| |
| if (call->Target()->Stage() != Function::PipelineStage::kUndefined) { |
| AddError(call, UserCall::kFunctionOperandOffset) |
| << "call target must not have a pipeline stage"; |
| } |
| |
| auto args = call->Args(); |
| auto params = call->Target()->Params(); |
| if (args.Length() != params.Length()) { |
| AddError(call, UserCall::kFunctionOperandOffset) |
| << "function has " << params.Length() << " parameters, but call provides " |
| << args.Length() << " arguments"; |
| return; |
| } |
| |
| for (size_t i = 0; i < args.Length(); i++) { |
| if (args[i]->Type() != params[i]->Type()) { |
| AddError(call, UserCall::kArgsOperandOffset + i) |
| << "function parameter " << i << " is of type " |
| << style::Type(params[i]->Type()->FriendlyName()) << ", but argument is of type " |
| << style::Type(args[i]->Type()->FriendlyName()); |
| } |
| } |
| } |
| |
| void Validator::CheckAccess(const Access* a) { |
| if (!CheckResultsAndOperandRange(a, Access::kNumResults, Access::kMinNumOperands)) { |
| return; |
| } |
| |
| auto* obj_view = a->Object()->Type()->As<core::type::MemoryView>(); |
| auto* ty = obj_view ? obj_view->StoreType() : a->Object()->Type(); |
| |
| enum Kind : uint8_t { kPtr, kRef, kValue }; |
| |
| auto kind_of = [&](const core::type::Type* type) { |
| return tint::Switch( |
| type, // |
| [&](const core::type::Pointer*) { return kPtr; }, // |
| [&](const core::type::Reference*) { return kRef; }, // |
| [&](Default) { return kValue; }); |
| }; |
| |
| const Kind in_kind = kind_of(a->Object()->Type()); |
| auto desc_of = [&](Kind kind, const core::type::Type* type) { |
| switch (kind) { |
| case kPtr: |
| return StyledText{} |
| << style::Type("ptr<", obj_view->AddressSpace(), ", ", type->FriendlyName(), |
| ", ", obj_view->Access(), ">"); |
| case kRef: |
| return StyledText{} |
| << style::Type("ref<", obj_view->AddressSpace(), ", ", type->FriendlyName(), |
| ", ", obj_view->Access(), ">"); |
| default: |
| return StyledText{} << style::Type(type->FriendlyName()); |
| } |
| }; |
| |
| for (size_t i = 0; i < a->Indices().Length(); i++) { |
| auto err = [&]() -> diag::Diagnostic& { |
| return AddError(a, i + Access::kIndicesOperandOffset); |
| }; |
| auto note = [&]() -> diag::Diagnostic& { |
| return AddOperandNote(a, i + Access::kIndicesOperandOffset); |
| }; |
| |
| auto* index = a->Indices()[i]; |
| if (DAWN_UNLIKELY(!index->Type()->IsIntegerScalar())) { |
| err() << "index must be integer, got " << index->Type()->FriendlyName(); |
| return; |
| } |
| |
| if (!capabilities_.Contains(Capability::kAllowVectorElementPointer)) { |
| if (in_kind != kValue && ty->Is<core::type::Vector>()) { |
| err() << "cannot obtain address of vector element"; |
| return; |
| } |
| } |
| |
| if (auto* const_index = index->As<ir::Constant>()) { |
| auto* value = const_index->Value(); |
| if (value->Type()->IsSignedIntegerScalar()) { |
| // index is a signed integer scalar. Check that the index isn't negative. |
| // If the index is unsigned, we can skip this. |
| auto idx = value->ValueAs<AInt>(); |
| if (DAWN_UNLIKELY(idx < 0)) { |
| err() << "constant index must be positive, got " << idx; |
| return; |
| } |
| } |
| |
| auto idx = value->ValueAs<uint32_t>(); |
| auto* el = ty->Element(idx); |
| if (DAWN_UNLIKELY(!el)) { |
| // Is index in bounds? |
| if (auto el_count = ty->Elements().count; el_count != 0 && idx >= el_count) { |
| err() << "index out of bounds for type " << desc_of(in_kind, ty); |
| note() << "acceptable range: [0.." << (el_count - 1) << "]"; |
| return; |
| } |
| err() << "type " << desc_of(in_kind, ty) << " cannot be indexed"; |
| return; |
| } |
| ty = el; |
| } else { |
| auto* el = ty->Elements().type; |
| if (DAWN_UNLIKELY(!el)) { |
| err() << "type " << desc_of(in_kind, ty) << " cannot be dynamically indexed"; |
| return; |
| } |
| ty = el; |
| } |
| } |
| |
| auto* want = a->Result(0)->Type(); |
| auto* want_view = want->As<type::MemoryView>(); |
| bool ok = true; |
| if (obj_view) { |
| // Pointer source always means pointer result. |
| ok = want_view && ty == want_view->StoreType(); |
| if (ok) { |
| // Also check that the address space and access modes match. |
| ok = obj_view->Is<type::Pointer>() == want_view->Is<type::Pointer>() && |
| obj_view->AddressSpace() == want_view->AddressSpace() && |
| obj_view->Access() == want_view->Access(); |
| } |
| } else { |
| // Otherwise, result types should exactly match. |
| ok = ty == want; |
| } |
| if (DAWN_UNLIKELY(!ok)) { |
| AddError(a) << "result of access chain is type " << desc_of(in_kind, ty) |
| << " but instruction type is " << style::Type(want->FriendlyName()); |
| } |
| } |
| |
| void Validator::CheckBinary(const Binary* b) { |
| if (!CheckResultsAndOperandRange(b, Binary::kNumResults, Binary::kNumOperands)) { |
| return; |
| } |
| |
| if (b->LHS() && b->RHS()) { |
| intrinsic::Context context{b->TableData(), type_mgr_, symbols_}; |
| |
| auto overload = |
| core::intrinsic::LookupBinary(context, b->Op(), b->LHS()->Type(), b->RHS()->Type(), |
| core::EvaluationStage::kRuntime, /* is_compound */ false); |
| if (overload != Success) { |
| AddError(b) << overload.Failure(); |
| return; |
| } |
| |
| if (auto* result = b->Result(0)) { |
| if (overload->return_type != result->Type()) { |
| AddError(b) << "result value type " << style::Type(result->Type()->FriendlyName()) |
| << " does not match " |
| << style::Instruction(Disassemble().NameOf(b->Op())) << " result type " |
| << style::Type(overload->return_type->FriendlyName()); |
| } |
| } |
| } |
| } |
| |
| void Validator::CheckUnary(const Unary* u) { |
| if (!CheckResultsAndOperandRange(u, Unary::kNumResults, Unary::kNumOperands)) { |
| return; |
| } |
| |
| if (u->Val()) { |
| intrinsic::Context context{u->TableData(), type_mgr_, symbols_}; |
| |
| auto overload = core::intrinsic::LookupUnary(context, u->Op(), u->Val()->Type(), |
| core::EvaluationStage::kRuntime); |
| if (overload != Success) { |
| AddError(u) << overload.Failure(); |
| return; |
| } |
| |
| if (auto* result = u->Result(0)) { |
| if (overload->return_type != result->Type()) { |
| AddError(u) << "result value type " << style::Type(result->Type()->FriendlyName()) |
| << " does not match " |
| << style::Instruction(Disassemble().NameOf(u->Op())) << " result type " |
| << style::Type(overload->return_type->FriendlyName()); |
| } |
| } |
| } |
| } |
| |
| void Validator::CheckIf(const If* if_) { |
| CheckResults(if_); |
| CheckOperand(if_, If::kConditionOperandOffset); |
| |
| if (if_->Condition() && !if_->Condition()->Type()->Is<core::type::Bool>()) { |
| AddError(if_, If::kConditionOperandOffset) |
| << "condition type must be " << style::Type("bool"); |
| } |
| |
| tasks_.Push([this] { control_stack_.Pop(); }); |
| |
| if (!if_->False()->IsEmpty()) { |
| QueueBlock(if_->False()); |
| } |
| |
| QueueBlock(if_->True()); |
| |
| tasks_.Push([this, if_] { control_stack_.Push(if_); }); |
| } |
| |
| void Validator::CheckLoop(const Loop* l) { |
| // Note: Tasks are queued in reverse order of their execution |
| tasks_.Push([this, l] { |
| first_continues_.Remove(l); // No need for this any more. Free memory. |
| control_stack_.Pop(); |
| }); |
| if (!l->Initializer()->IsEmpty()) { |
| tasks_.Push([this] { EndBlock(); }); |
| } |
| tasks_.Push([this] { EndBlock(); }); |
| if (!l->Continuing()->IsEmpty()) { |
| tasks_.Push([this] { EndBlock(); }); |
| } |
| |
| // ⎡Initializer ⎤ |
| // ⎢ ⎡Body ⎤⎥ |
| // ⎣ ⎣ [Continuing ] ⎦⎦ |
| |
| if (!l->Continuing()->IsEmpty()) { |
| tasks_.Push([this, l] { |
| CheckLoopContinuing(l); |
| BeginBlock(l->Continuing()); |
| }); |
| } |
| |
| tasks_.Push([this, l] { |
| CheckLoopBody(l); |
| BeginBlock(l->Body()); |
| }); |
| if (!l->Initializer()->IsEmpty()) { |
| tasks_.Push([this, l] { BeginBlock(l->Initializer()); }); |
| } |
| tasks_.Push([this, l] { control_stack_.Push(l); }); |
| } |
| |
| void Validator::CheckLoopBody(const Loop* loop) { |
| // If the body block has parameters, there must be an initializer block. |
| if (!loop->Body()->Params().IsEmpty()) { |
| if (!loop->HasInitializer()) { |
| AddError(loop) << "loop with body block parameters must have an initializer"; |
| } |
| } |
| } |
| |
| void Validator::CheckLoopContinuing(const Loop* loop) { |
| if (!loop->HasContinuing()) { |
| return; |
| } |
| |
| // Ensure that values used in the loop continuing are not from the loop body, after a |
| // continue instruction. |
| if (auto* first_continue = first_continues_.GetOr(loop, nullptr)) { |
| // Find the instruction in the body block that is or holds the first continue |
| // instruction. |
| const Instruction* holds_continue = first_continue; |
| while (holds_continue && holds_continue->Block() && |
| holds_continue->Block() != loop->Body()) { |
| holds_continue = holds_continue->Block()->Parent(); |
| } |
| |
| // Check that all subsequent instruction values are not used in the continuing block. |
| for (auto* inst = holds_continue; inst; inst = inst->next) { |
| for (auto* result : inst->Results()) { |
| result->ForEachUseUnsorted([&](Usage use) { |
| if (TransitivelyHolds(loop->Continuing(), use.instruction)) { |
| AddError(use.instruction, use.operand_index) |
| << NameOf(result) |
| << " cannot be used in continuing block as it is declared after " |
| "the " |
| "first " |
| << style::Instruction("continue") << " in the loop's body"; |
| AddDeclarationNote(result); |
| AddNote(first_continue) |
| << "loop body's first " << style::Instruction("continue"); |
| } |
| }); |
| } |
| } |
| } |
| } |
| |
| void Validator::CheckSwitch(const Switch* s) { |
| CheckOperand(s, Switch::kConditionOperandOffset); |
| |
| if (s->Condition() && !s->Condition()->Type()->IsIntegerScalar()) { |
| AddError(s, Switch::kConditionOperandOffset) << "condition type must be an integer scalar"; |
| } |
| |
| tasks_.Push([this] { control_stack_.Pop(); }); |
| |
| bool found_default = false; |
| for (auto& cse : s->Cases()) { |
| QueueBlock(cse.block); |
| |
| for (const auto& sel : cse.selectors) { |
| if (sel.IsDefault()) { |
| found_default = true; |
| } |
| } |
| } |
| |
| if (!found_default) { |
| AddError(s) << "missing default case for switch"; |
| } |
| |
| tasks_.Push([this, s] { control_stack_.Push(s); }); |
| } |
| |
| void Validator::CheckSwizzle(const Swizzle* s) { |
| if (!CheckResultsAndOperands(s, Swizzle::kNumResults, Swizzle::kNumOperands)) { |
| return; |
| } |
| |
| auto indices = s->Indices(); |
| if (indices.Length() < Swizzle::kMinNumIndices) { |
| AddError(s) << "expected at least " << Swizzle::kMinNumIndices << " indices"; |
| } |
| |
| if (indices.Length() > Swizzle::kMaxNumIndices) { |
| AddError(s) << "expected at most " << Swizzle::kMaxNumIndices << " indices"; |
| } |
| |
| for (auto& idx : indices) { |
| if (idx > Swizzle::kMaxIndexValue) { |
| AddError(s) << "invalid index value"; |
| } |
| } |
| } |
| |
| void Validator::CheckTerminator(const Terminator* b) { |
| // Note, transforms create `undef` terminator arguments (this is done in MergeReturn and |
| // DemoteToHelper) so we can't add validation. |
| |
| tint::Switch( |
| b, // |
| [&](const ir::BreakIf* i) { CheckBreakIf(i); }, // |
| [&](const ir::Continue* c) { CheckContinue(c); }, // |
| [&](const ir::Exit* e) { CheckExit(e); }, // |
| [&](const ir::NextIteration* n) { CheckNextIteration(n); }, // |
| [&](const ir::Return* ret) { CheckReturn(ret); }, // |
| [&](const ir::TerminateInvocation*) {}, // |
| [&](const ir::Unreachable* u) { CheckUnreachable(u); }, // |
| [&](Default) { AddError(b) << "missing validation"; }); |
| |
| if (b->next) { |
| AddError(b) << "must be the last instruction in the block"; |
| } |
| } |
| |
| void Validator::CheckBreakIf(const BreakIf* b) { |
| auto* loop = b->Loop(); |
| if (loop == nullptr) { |
| AddError(b) << "has no associated loop"; |
| return; |
| } |
| |
| if (loop->Continuing() != b->Block()) { |
| AddError(b) << "must only be called directly from loop continuing"; |
| } |
| |
| auto next_iter_values = b->NextIterValues(); |
| if (auto* body = loop->Body()) { |
| CheckOperandsMatchTarget(b, b->ArgsOperandOffset(), next_iter_values.Length(), body, |
| body->Params()); |
| } |
| |
| auto exit_values = b->ExitValues(); |
| CheckOperandsMatchTarget(b, b->ArgsOperandOffset() + next_iter_values.Length(), |
| exit_values.Length(), loop, loop->Results()); |
| } |
| |
| void Validator::CheckContinue(const Continue* c) { |
| auto* loop = c->Loop(); |
| if (loop == nullptr) { |
| AddError(c) << "has no associated loop"; |
| return; |
| } |
| if (!TransitivelyHolds(loop->Body(), c)) { |
| if (control_stack_.Any(Eq<const ControlInstruction*>(loop))) { |
| AddError(c) << "must only be called from loop body"; |
| } else { |
| AddError(c) << "called outside of associated loop"; |
| } |
| } |
| |
| if (auto* cont = loop->Continuing()) { |
| CheckOperandsMatchTarget(c, Continue::kArgsOperandOffset, c->Args().Length(), cont, |
| cont->Params()); |
| } |
| |
| first_continues_.Add(loop, c); |
| } |
| |
| void Validator::CheckExit(const Exit* e) { |
| if (e->ControlInstruction() == nullptr) { |
| AddError(e) << "has no parent control instruction"; |
| return; |
| } |
| |
| if (control_stack_.IsEmpty()) { |
| AddError(e) << "found outside all control instructions"; |
| return; |
| } |
| |
| auto args = e->Args(); |
| CheckOperandsMatchTarget(e, e->ArgsOperandOffset(), args.Length(), e->ControlInstruction(), |
| e->ControlInstruction()->Results()); |
| |
| tint::Switch( |
| e, // |
| [&](const ir::ExitIf* i) { CheckExitIf(i); }, // |
| [&](const ir::ExitLoop* l) { CheckExitLoop(l); }, // |
| [&](const ir::ExitSwitch* s) { CheckExitSwitch(s); }, // |
| [&](Default) { AddError(e) << "missing validation"; }); |
| } |
| |
| void Validator::CheckNextIteration(const NextIteration* n) { |
| auto* loop = n->Loop(); |
| if (loop == nullptr) { |
| AddError(n) << "has no associated loop"; |
| return; |
| } |
| if (!TransitivelyHolds(loop->Initializer(), n) && !TransitivelyHolds(loop->Continuing(), n)) { |
| if (control_stack_.Any(Eq<const ControlInstruction*>(loop))) { |
| AddError(n) << "must only be called from loop initializer or continuing"; |
| } else { |
| AddError(n) << "called outside of associated loop"; |
| } |
| } |
| |
| if (auto* body = loop->Body()) { |
| CheckOperandsMatchTarget(n, NextIteration::kArgsOperandOffset, n->Args().Length(), body, |
| body->Params()); |
| } |
| } |
| |
| void Validator::CheckExitIf(const ExitIf* e) { |
| if (control_stack_.Back() != e->If()) { |
| AddError(e) << "if target jumps over other control instructions"; |
| AddNote(control_stack_.Back()) << "first control instruction jumped"; |
| } |
| } |
| |
| void Validator::CheckReturn(const Return* ret) { |
| if (!CheckResultsAndOperandRange(ret, Return::kNumResults, Return::kMinOperands, |
| Return::kMaxOperands)) { |
| return; |
| } |
| |
| auto* func = ret->Func(); |
| if (func == nullptr) { |
| // Func() returning nullptr after CheckResultsAndOperandRange is due to the first |
| // operand being not a function |
| AddError(ret) << "expected function for first operand"; |
| return; |
| } |
| |
| if (func->ReturnType()->Is<core::type::Void>()) { |
| if (ret->Value()) { |
| AddError(ret) << "unexpected return value"; |
| } |
| } else { |
| if (!ret->Value()) { |
| AddError(ret) << "expected return value"; |
| } else if (ret->Value()->Type() != func->ReturnType()) { |
| AddError(ret) << "return value type " << NameOf(ret->Value()->Type()) |
| << " does not match function return type " << NameOf(func->ReturnType()); |
| } |
| } |
| } |
| |
| void Validator::CheckUnreachable(const Unreachable* u) { |
| CheckResultsAndOperands(u, Unreachable::kNumResults, Unreachable::kNumOperands); |
| } |
| |
| void Validator::CheckControlsAllowingIf(const Exit* exit, const Instruction* control) { |
| bool found = false; |
| for (auto ctrl : tint::Reverse(control_stack_)) { |
| if (ctrl == control) { |
| found = true; |
| break; |
| } |
| // A exit switch can step over if instructions, but no others. |
| if (!ctrl->Is<ir::If>()) { |
| AddError(exit) << control->FriendlyName() |
| << " target jumps over other control instructions"; |
| AddNote(ctrl) << "first control instruction jumped"; |
| return; |
| } |
| } |
| if (!found) { |
| AddError(exit) << control->FriendlyName() << " not found in parent control instructions"; |
| } |
| } |
| |
| void Validator::CheckExitSwitch(const ExitSwitch* s) { |
| CheckControlsAllowingIf(s, s->ControlInstruction()); |
| } |
| |
| void Validator::CheckExitLoop(const ExitLoop* l) { |
| CheckControlsAllowingIf(l, l->ControlInstruction()); |
| |
| const Instruction* inst = l; |
| const Loop* control = l->Loop(); |
| while (inst) { |
| // Found parent loop |
| if (inst->Block()->Parent() == control) { |
| if (inst->Block() == control->Continuing()) { |
| AddError(l) << "loop exit jumps out of continuing block"; |
| if (control->Continuing() != l->Block()) { |
| AddNote(control->Continuing()) << "in continuing block"; |
| } |
| } else if (inst->Block() == control->Initializer()) { |
| AddError(l) << "loop exit not permitted in loop initializer"; |
| if (control->Initializer() != l->Block()) { |
| AddNote(control->Initializer()) << "in initializer block"; |
| } |
| } |
| break; |
| } |
| inst = inst->Block()->Parent(); |
| } |
| } |
| |
| void Validator::CheckLoad(const Load* l) { |
| if (!CheckResultsAndOperands(l, Load::kNumResults, Load::kNumOperands)) { |
| return; |
| } |
| |
| if (auto* from = l->From()) { |
| auto* mv = from->Type()->As<core::type::MemoryView>(); |
| if (!mv) { |
| AddError(l, Load::kFromOperandOffset) << "load source operand is not a memory view"; |
| return; |
| } |
| if (l->Result(0)->Type() != mv->StoreType()) { |
| AddError(l, Load::kFromOperandOffset) |
| << "result type " << style::Type(l->Result(0)->Type()->FriendlyName()) |
| << " does not match source store type " |
| << style::Type(mv->StoreType()->FriendlyName()); |
| } |
| } |
| } |
| |
| void Validator::CheckStore(const Store* s) { |
| if (!CheckResultsAndOperands(s, Store::kNumResults, Store::kNumOperands)) { |
| return; |
| } |
| |
| if (auto* from = s->From()) { |
| if (auto* to = s->To()) { |
| auto* mv = As<core::type::MemoryView>(to->Type()); |
| if (!mv) { |
| AddError(s, Store::kToOperandOffset) << "store target operand is not a memory view"; |
| return; |
| } |
| auto* value_type = from->Type(); |
| auto* store_type = mv->StoreType(); |
| if (value_type != store_type) { |
| AddError(s, Store::kFromOperandOffset) |
| << "value type " << style::Type(value_type->FriendlyName()) |
| << " does not match store type " << style::Type(store_type->FriendlyName()); |
| } |
| } |
| } |
| } |
| |
| void Validator::CheckLoadVectorElement(const LoadVectorElement* l) { |
| if (!CheckResultsAndOperands(l, LoadVectorElement::kNumResults, |
| LoadVectorElement::kNumOperands)) { |
| return; |
| } |
| |
| if (auto* res = l->Result(0)) { |
| if (auto* el_ty = GetVectorPtrElementType(l, LoadVectorElement::kFromOperandOffset)) { |
| if (res->Type() != el_ty) { |
| AddResultError(l, 0) << "result type " << style::Type(res->Type()->FriendlyName()) |
| << " does not match vector pointer element type " |
| << style::Type(el_ty->FriendlyName()); |
| } |
| } |
| } |
| } |
| |
| void Validator::CheckStoreVectorElement(const StoreVectorElement* s) { |
| if (!CheckResultsAndOperands(s, StoreVectorElement::kNumResults, |
| StoreVectorElement::kNumOperands)) { |
| return; |
| } |
| |
| if (auto* value = s->Value()) { |
| if (auto* el_ty = GetVectorPtrElementType(s, StoreVectorElement::kToOperandOffset)) { |
| if (value->Type() != el_ty) { |
| AddError(s, StoreVectorElement::kValueOperandOffset) |
| << "value type " << style::Type(value->Type()->FriendlyName()) |
| << " does not match vector pointer element type " |
| << style::Type(el_ty->FriendlyName()); |
| } |
| } |
| } |
| } |
| |
| void Validator::CheckOperandsMatchTarget(const Instruction* source_inst, |
| size_t source_operand_offset, |
| size_t source_operand_count, |
| const CastableBase* target, |
| VectorRef<const Value*> target_values) { |
| if (source_operand_count != target_values.Length()) { |
| auto values = [&](size_t n) { return n == 1 ? " value" : " values"; }; |
| AddError(source_inst) << "provides " << source_operand_count << values(source_operand_count) |
| << " but " << NameOf(target) << " expects " << target_values.Length() |
| << values(target_values.Length()); |
| AddDeclarationNote(target); |
| } |
| size_t count = std::min(source_operand_count, target_values.Length()); |
| for (size_t i = 0; i < count; i++) { |
| auto* source_value = source_inst->Operand(source_operand_offset + i); |
| auto* target_value = target_values[i]; |
| if (!source_value || !target_value) { |
| continue; // Caller should be checking operands are not null |
| } |
| auto* source_type = source_value->Type(); |
| auto* target_type = target_value->Type(); |
| if (source_type != target_type) { |
| AddError(source_inst, source_operand_offset + i) |
| << "operand with type " << style::Type(source_type->FriendlyName()) |
| << " does not match " << NameOf(target) << " target type " |
| << style::Type(target_type->FriendlyName()); |
| AddDeclarationNote(target_value); |
| } |
| } |
| } |
| |
| const core::type::Type* Validator::GetVectorPtrElementType(const Instruction* inst, size_t idx) { |
| auto* operand = inst->Operands()[idx]; |
| if (DAWN_UNLIKELY(!operand)) { |
| return nullptr; |
| } |
| |
| auto* type = operand->Type(); |
| if (DAWN_UNLIKELY(!type)) { |
| return nullptr; |
| } |
| |
| auto* memory_view_ty = type->As<core::type::MemoryView>(); |
| if (DAWN_LIKELY(memory_view_ty)) { |
| auto* vec_ty = memory_view_ty->StoreType()->As<core::type::Vector>(); |
| if (DAWN_LIKELY(vec_ty)) { |
| return vec_ty->Type(); |
| } |
| } |
| |
| AddError(inst, idx) << "operand must be a pointer to vector, got " |
| << style::Type(type->FriendlyName()); |
| return nullptr; |
| } |
| |
| } // namespace |
| |
| Result<SuccessType> Validate(const Module& mod, Capabilities capabilities) { |
| Validator v(mod, capabilities); |
| return v.Run(); |
| } |
| |
| Result<SuccessType> ValidateAndDumpIfNeeded([[maybe_unused]] const Module& ir, |
| [[maybe_unused]] const char* msg, |
| [[maybe_unused]] Capabilities capabilities) { |
| #if TINT_DUMP_IR_WHEN_VALIDATING |
| auto printer = StyledTextPrinter::Create(stdout); |
| std::cout << "=========================================================\n"; |
| std::cout << "== IR dump before " << msg << ":\n"; |
| std::cout << "=========================================================\n"; |
| printer->Print(Disassembler(ir).Text()); |
| #endif |
| |
| #ifndef NDEBUG |
| auto result = Validate(ir, capabilities); |
| if (result != Success) { |
| return result.Failure(); |
| } |
| #endif |
| |
| return Success; |
| } |
| |
| } // namespace tint::core::ir |
| |
| namespace std { |
| |
| template <> |
| struct hash<tint::core::ir::ValidatedType> { |
| size_t operator()(const tint::core::ir::ValidatedType& v) const { return Hash(v.ty, v.caps); } |
| }; |
| |
| template <> |
| struct equal_to<tint::core::ir::ValidatedType> { |
| bool operator()(const tint::core::ir::ValidatedType& a, |
| const tint::core::ir::ValidatedType& b) const { |
| return a.ty->Equals(*(b.ty)) && a.caps == b.caps; |
| } |
| }; |
| |
| } // namespace std |