| // Copyright 2023 The Dawn Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <condition_variable> |
| #include <functional> |
| #include <mutex> |
| #include <string> |
| #include <thread> |
| #include <vector> |
| |
| #include "dawn/common/ContentLessObjectCache.h" |
| #include "dawn/utils/BinarySemaphore.h" |
| #include "gtest/gtest.h" |
| |
| namespace dawn { |
| namespace { |
| |
| using utils::BinarySemaphore; |
| |
| class CacheableT : public RefCounted, public ContentLessObjectCacheable<CacheableT> { |
| public: |
| explicit CacheableT(size_t value) : mHash(value), mValue(value) {} |
| CacheableT(size_t hash, size_t value) : mHash(hash), mValue(value) {} |
| |
| ~CacheableT() override { mDeleteFn(this); } |
| |
| struct HashFunc { |
| size_t operator()(const CacheableT* x) const { |
| x->mHashFn(x); |
| return x->mHash; |
| } |
| }; |
| |
| struct EqualityFunc { |
| bool operator()(const CacheableT* l, const CacheableT* r) const { |
| l->mEqualFn(l); |
| r->mEqualFn(r); |
| return l->mValue == r->mValue; |
| } |
| }; |
| |
| void SetHashFn(std::function<void(const CacheableT*)> fn) { mHashFn = fn; } |
| void SetEqualFn(std::function<void(const CacheableT*)> fn) { mEqualFn = fn; } |
| void SetDeleteFn(std::function<void(CacheableT*)> fn) { mDeleteFn = fn; } |
| |
| private: |
| size_t mHash; |
| size_t mValue; |
| |
| // Injectable functions to allow for isolated thread testing. |
| std::function<void(const CacheableT*)> mHashFn = [](const CacheableT*) -> void {}; |
| std::function<void(const CacheableT*)> mEqualFn = [](const CacheableT*) -> void {}; |
| std::function<void(CacheableT*)> mDeleteFn = [](CacheableT*) -> void {}; |
| }; |
| |
| // Empty cache returns true on Empty(). |
| TEST(ContentLessObjectCacheTest, Empty) { |
| ContentLessObjectCache<CacheableT> cache; |
| EXPECT_TRUE(cache.Empty()); |
| } |
| |
| // Non-empty cache returns false on Empty(). |
| TEST(ContentLessObjectCacheTest, NonEmpty) { |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object = AcquireRef(new CacheableT(1)); |
| object->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| EXPECT_TRUE(cache.Insert(object.Get()).second); |
| EXPECT_FALSE(cache.Empty()); |
| } |
| |
| // Object inserted into the cache are findable. |
| TEST(ContentLessObjectCacheTest, Insert) { |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object = AcquireRef(new CacheableT(1)); |
| object->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| EXPECT_TRUE(cache.Insert(object.Get()).second); |
| |
| CacheableT blueprint(1); |
| Ref<CacheableT> cached = cache.Find(&blueprint); |
| EXPECT_TRUE(object.Get() == cached.Get()); |
| } |
| |
| // Duplicate insert calls on different equivalent objects only inserts the first. |
| TEST(ContentLessObjectCacheTest, InsertDuplicate) { |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object1 = AcquireRef(new CacheableT(1)); |
| object1->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| EXPECT_TRUE(cache.Insert(object1.Get()).second); |
| |
| Ref<CacheableT> object2 = AcquireRef(new CacheableT(1)); |
| EXPECT_FALSE(cache.Insert(object2.Get()).second); |
| |
| CacheableT blueprint(1); |
| Ref<CacheableT> cached = cache.Find(&blueprint); |
| EXPECT_TRUE(object1.Get() == cached.Get()); |
| } |
| |
| // Duplicate insert calls on different objects with the same hash inserts both objects. |
| TEST(ContentLessObjectCacheTest, InsertHashDuplicate) { |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object1 = AcquireRef(new CacheableT(1, 1)); |
| object1->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| EXPECT_TRUE(cache.Insert(object1.Get()).second); |
| |
| Ref<CacheableT> object2 = AcquireRef(new CacheableT(1, 2)); |
| object2->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| EXPECT_TRUE(cache.Insert(object2.Get()).second); |
| |
| CacheableT blueprint1(1, 1); |
| Ref<CacheableT> cached1 = cache.Find(&blueprint1); |
| EXPECT_TRUE(object1.Get() == cached1.Get()); |
| CacheableT blueprint2(1, 2); |
| Ref<CacheableT> cached2 = cache.Find(&blueprint2); |
| EXPECT_TRUE(object2.Get() == cached2.Get()); |
| } |
| |
| // Erasing the only entry leaves the cache empty. |
| TEST(ContentLessObjectCacheTest, Erase) { |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object = AcquireRef(new CacheableT(1)); |
| EXPECT_TRUE(cache.Insert(object.Get()).second); |
| EXPECT_FALSE(cache.Empty()); |
| |
| cache.Erase(object.Get()); |
| EXPECT_TRUE(cache.Empty()); |
| } |
| |
| // Erasing an equivalent but not pointer equivalent entry is a no-op. |
| TEST(ContentLessObjectCacheTest, EraseDuplicate) { |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object1 = AcquireRef(new CacheableT(1)); |
| object1->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| EXPECT_TRUE(cache.Insert(object1.Get()).second); |
| EXPECT_FALSE(cache.Empty()); |
| |
| Ref<CacheableT> object2 = AcquireRef(new CacheableT(1)); |
| cache.Erase(object2.Get()); |
| EXPECT_FALSE(cache.Empty()); |
| } |
| |
| // Inserting and finding elements should respect the results from the insert call. |
| TEST(ContentLessObjectCacheTest, InsertingAndFinding) { |
| constexpr size_t kNumObjects = 100; |
| constexpr size_t kNumThreads = 8; |
| ContentLessObjectCache<CacheableT> cache; |
| std::vector<Ref<CacheableT>> objects(kNumObjects); |
| |
| auto f = [&] { |
| for (size_t i = 0; i < kNumObjects; i++) { |
| Ref<CacheableT> object = AcquireRef(new CacheableT(i)); |
| object->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| if (cache.Insert(object.Get()).second) { |
| // This shouldn't race because exactly 1 thread should successfully insert. |
| objects[i] = object; |
| } |
| } |
| for (size_t i = 0; i < kNumObjects; i++) { |
| CacheableT blueprint(i); |
| Ref<CacheableT> cached = cache.Find(&blueprint); |
| EXPECT_NE(cached.Get(), nullptr); |
| EXPECT_EQ(cached.Get(), objects[i].Get()); |
| } |
| }; |
| |
| std::vector<std::thread> threads; |
| for (size_t t = 0; t < kNumThreads; t++) { |
| threads.emplace_back(f); |
| } |
| for (size_t t = 0; t < kNumThreads; t++) { |
| threads[t].join(); |
| } |
| } |
| |
| // Finding an element that is in the process of deletion should return nullptr. |
| TEST(ContentLessObjectCacheTest, FindDeleting) { |
| BinarySemaphore semA, semB; |
| |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object = AcquireRef(new CacheableT(1)); |
| object->SetDeleteFn([&](CacheableT* x) { |
| semA.Release(); |
| semB.Acquire(); |
| cache.Erase(x); |
| }); |
| EXPECT_TRUE(cache.Insert(object.Get()).second); |
| |
| // Thread A will release the last reference of the original object. |
| auto threadA = [&] { object = nullptr; }; |
| // Thread B will try to Find the entry before it is completely destroyed. |
| auto threadB = [&] { |
| semA.Acquire(); |
| CacheableT blueprint(1); |
| EXPECT_TRUE(cache.Find(&blueprint) == nullptr); |
| semB.Release(); |
| }; |
| |
| std::thread tA(threadA); |
| std::thread tB(threadB); |
| tA.join(); |
| tB.join(); |
| } |
| |
| // Finding an equivalent element when the cached version is in the process of deletion and the |
| // last ref of the object is actually the one acquired inside the find operation does not deadlock |
| // and returns the cached value. This is a regression test for dawn:1993. |
| TEST(ContentLessObjectCacheTest, FindDeletingLastRef) { |
| BinarySemaphore semA, semB; |
| |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object = AcquireRef(new CacheableT(1)); |
| object->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| object->SetEqualFn([&](const CacheableT* x) { |
| semA.Release(); |
| semB.Acquire(); |
| }); |
| EXPECT_TRUE(cache.Insert(object.Get()).second); |
| CacheableT* objectPtr = object.Get(); |
| |
| // Thread A will release the last reference of the original object after the object has been |
| // promoted internally for equality check. |
| auto threadA = [&] { |
| semA.Acquire(); |
| object = nullptr; |
| semB.Release(); |
| }; |
| // Thread B will try to Find the entry before the original object is destroyed. |
| auto threadB = [&] { |
| CacheableT blueprint(1); |
| EXPECT_TRUE(cache.Find(&blueprint) == objectPtr); |
| }; |
| |
| std::thread tA(threadA); |
| std::thread tB(threadB); |
| tA.join(); |
| tB.join(); |
| } |
| |
| // Finding a non-equivalent but hash equivalent element when the cached version is in the process |
| // of deletion and the last ref of the object is actually the one acquired inside the find operation |
| // does not deadlock and returns nullptr. This is a regression test for dawn:1993. |
| TEST(ContentLessObjectCacheTest, FindDeletingLastRefHashEquivalent) { |
| BinarySemaphore semA, semB; |
| |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object = AcquireRef(new CacheableT(1, 1)); |
| object->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| object->SetEqualFn([&](const CacheableT* x) { |
| semA.Release(); |
| semB.Acquire(); |
| }); |
| EXPECT_TRUE(cache.Insert(object.Get()).second); |
| |
| // Thread A will release the last reference of the original object after the object has been |
| // promoted internally for equality check. |
| auto threadA = [&] { |
| semA.Acquire(); |
| object = nullptr; |
| semB.Release(); |
| }; |
| // Thread B will try to Find a hash-equivalent entry before the original object is destroyed. |
| auto threadB = [&] { |
| CacheableT blueprint(1, 2); |
| EXPECT_TRUE(cache.Find(&blueprint) == nullptr); |
| }; |
| |
| std::thread tA(threadA); |
| std::thread tB(threadB); |
| tA.join(); |
| tB.join(); |
| } |
| |
| // Inserting an element that has an entry which is in process of deletion should insert the new |
| // object. |
| TEST(ContentLessObjectCacheTest, InsertDeleting) { |
| BinarySemaphore semA, semB; |
| |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object1 = AcquireRef(new CacheableT(1)); |
| object1->SetDeleteFn([&](CacheableT* x) { |
| semA.Release(); |
| semB.Acquire(); |
| cache.Erase(x); |
| }); |
| EXPECT_TRUE(cache.Insert(object1.Get()).second); |
| |
| Ref<CacheableT> object2 = AcquireRef(new CacheableT(1)); |
| object2->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| |
| // Thread A will release the last reference of the original object. |
| auto threadA = [&] { object1 = nullptr; }; |
| // Thread B will try to Insert an equivalent entry before the original is completely |
| // destroyed. |
| auto threadB = [&] { |
| semA.Acquire(); |
| EXPECT_TRUE(cache.Insert(object2.Get()).second); |
| semB.Release(); |
| }; |
| |
| std::thread tA(threadA); |
| std::thread tB(threadB); |
| tA.join(); |
| tB.join(); |
| |
| CacheableT blueprint(1); |
| Ref<CacheableT> cached = cache.Find(&blueprint); |
| EXPECT_TRUE(object2.Get() == cached.Get()); |
| } |
| |
| // Inserting an equivalent element when the cached version is in the process of deletion and the |
| // last ref of the object is actually the one acquired inside the find operation does not deadlock |
| // and no insert happens. This is a regression test for dawn:1993. |
| TEST(ContentLessObjectCacheTest, InsertDeletingLastRef) { |
| BinarySemaphore semA, semB; |
| |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object1 = AcquireRef(new CacheableT(1)); |
| object1->SetEqualFn([&](const CacheableT* x) { |
| semA.Release(); |
| semB.Acquire(); |
| }); |
| object1->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| EXPECT_TRUE(cache.Insert(object1.Get()).second); |
| CacheableT* object1Ptr = object1.Get(); |
| |
| // Thread A will release the last reference of the original object after the object has been |
| // promoted internally for equality check. |
| auto threadA = [&] { |
| semA.Acquire(); |
| object1 = nullptr; |
| semB.Release(); |
| }; |
| // Thread B will try to Insert an equivalent entry before the original object is destroyed. |
| auto threadB = [&] { |
| Ref<CacheableT> object2 = AcquireRef(new CacheableT(1)); |
| auto result = cache.Insert(object2.Get()); |
| EXPECT_FALSE(result.second); |
| EXPECT_TRUE(result.first == object1Ptr); |
| }; |
| |
| std::thread tA(threadA); |
| std::thread tB(threadB); |
| tA.join(); |
| tB.join(); |
| } |
| |
| // Inserting a non-equivalent but hash equivalent element when the cached version is in the process |
| // of deletion and the last ref of the object is actually the one acquired inside the find operation |
| // does not deadlock and the insert occurs successfully. This is a regression test for dawn:1993. |
| TEST(ContentLessObjectCacheTest, InsertDeletingLastRefHashEquivalent) { |
| BinarySemaphore semA, semB; |
| |
| ContentLessObjectCache<CacheableT> cache; |
| Ref<CacheableT> object1 = AcquireRef(new CacheableT(1, 1)); |
| object1->SetEqualFn([&](const CacheableT* x) { |
| semA.Release(); |
| semB.Acquire(); |
| }); |
| object1->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| EXPECT_TRUE(cache.Insert(object1.Get()).second); |
| |
| // Thread A will release the last reference of the original object after the object has been |
| // promoted internally for equality check. |
| auto threadA = [&] { |
| semA.Acquire(); |
| object1 = nullptr; |
| semB.Release(); |
| }; |
| // Thread B will try to Insert a hash equivalent entry before the original object is destroyed. |
| auto threadB = [&] { |
| Ref<CacheableT> object2 = AcquireRef(new CacheableT(1, 2)); |
| object2->SetDeleteFn([&](CacheableT* x) { cache.Erase(x); }); |
| auto result = cache.Insert(object2.Get()); |
| EXPECT_TRUE(result.second); |
| EXPECT_TRUE(result.first == object2.Get()); |
| }; |
| |
| std::thread tA(threadA); |
| std::thread tB(threadB); |
| tA.join(); |
| tB.join(); |
| } |
| |
| } // anonymous namespace |
| } // namespace dawn |