blob: 222465fd5c4ca2d9494605bc430aa8fa8f33fa23 [file] [log] [blame]
// Copyright 2024 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/hlsl/writer/raise/builtin_polyfill.h"
#include <string>
#include <tuple>
#include "src/tint/lang/core/fluent_types.h" // IWYU pragma: export
#include "src/tint/lang/core/ir/builder.h"
#include "src/tint/lang/core/ir/module.h"
#include "src/tint/lang/core/ir/validator.h"
#include "src/tint/lang/core/type/depth_multisampled_texture.h"
#include "src/tint/lang/core/type/depth_texture.h"
#include "src/tint/lang/core/type/manager.h"
#include "src/tint/lang/core/type/multisampled_texture.h"
#include "src/tint/lang/core/type/sampled_texture.h"
#include "src/tint/lang/core/type/storage_texture.h"
#include "src/tint/lang/core/type/texture.h"
#include "src/tint/lang/core/type/u32.h"
#include "src/tint/lang/core/type/vector.h"
#include "src/tint/lang/hlsl/builtin_fn.h"
#include "src/tint/lang/hlsl/ir/builtin_call.h"
#include "src/tint/lang/hlsl/ir/member_builtin_call.h"
#include "src/tint/lang/hlsl/ir/ternary.h"
#include "src/tint/lang/hlsl/type/int8_t4_packed.h"
#include "src/tint/lang/hlsl/type/uint8_t4_packed.h"
#include "src/tint/utils/containers/hashmap.h"
#include "src/tint/utils/math/hash.h"
namespace tint::hlsl::writer::raise {
namespace {
using namespace tint::core::fluent_types; // NOLINT
using namespace tint::core::number_suffixes; // NOLINT
/// PIMPL state for the transform.
struct State {
/// The IR module.
core::ir::Module& ir;
/// The IR builder.
core::ir::Builder b{ir};
/// The type manager.
core::type::Manager& ty{ir.Types()};
// Polyfill functions for bitcast expression, BitcastType indicates the source type and the
// destination type.
using BitcastType =
tint::UnorderedKeyWrapper<std::tuple<const core::type::Type*, const core::type::Type*>>;
Hashmap<BitcastType, core::ir::Function*, 4> bitcast_funcs_{};
/// Process the module.
void Process() {
// Find the bitcasts that need replacing.
Vector<core::ir::Bitcast*, 4> bitcast_worklist;
Vector<core::ir::CoreBuiltinCall*, 4> call_worklist;
for (auto* inst : ir.Instructions()) {
if (auto* bitcast = inst->As<core::ir::Bitcast>()) {
bitcast_worklist.Push(bitcast);
continue;
}
if (auto* call = inst->As<core::ir::CoreBuiltinCall>()) {
switch (call->Func()) {
case core::BuiltinFn::kAcosh:
case core::BuiltinFn::kAsinh:
case core::BuiltinFn::kAtanh:
case core::BuiltinFn::kAtomicAdd:
case core::BuiltinFn::kAtomicSub:
case core::BuiltinFn::kAtomicMin:
case core::BuiltinFn::kAtomicMax:
case core::BuiltinFn::kAtomicAnd:
case core::BuiltinFn::kAtomicOr:
case core::BuiltinFn::kAtomicXor:
case core::BuiltinFn::kAtomicLoad:
case core::BuiltinFn::kAtomicStore:
case core::BuiltinFn::kAtomicExchange:
case core::BuiltinFn::kAtomicCompareExchangeWeak:
case core::BuiltinFn::kCountOneBits:
case core::BuiltinFn::kDot4I8Packed:
case core::BuiltinFn::kDot4U8Packed:
case core::BuiltinFn::kFrexp:
case core::BuiltinFn::kModf:
case core::BuiltinFn::kPack2X16Float:
case core::BuiltinFn::kPack2X16Snorm:
case core::BuiltinFn::kPack2X16Unorm:
case core::BuiltinFn::kPack4X8Snorm:
case core::BuiltinFn::kPack4X8Unorm:
case core::BuiltinFn::kPack4XI8:
case core::BuiltinFn::kPack4XU8:
case core::BuiltinFn::kPack4XI8Clamp:
case core::BuiltinFn::kQuantizeToF16:
case core::BuiltinFn::kReverseBits:
case core::BuiltinFn::kSelect:
case core::BuiltinFn::kSign:
case core::BuiltinFn::kSubgroupAnd:
case core::BuiltinFn::kSubgroupOr:
case core::BuiltinFn::kSubgroupXor:
case core::BuiltinFn::kSubgroupShuffleXor:
case core::BuiltinFn::kSubgroupShuffleUp:
case core::BuiltinFn::kSubgroupShuffleDown:
case core::BuiltinFn::kSubgroupInclusiveAdd:
case core::BuiltinFn::kSubgroupInclusiveMul:
case core::BuiltinFn::kTextureDimensions:
case core::BuiltinFn::kTextureGather:
case core::BuiltinFn::kTextureGatherCompare:
case core::BuiltinFn::kTextureLoad:
case core::BuiltinFn::kTextureNumLayers:
case core::BuiltinFn::kTextureNumLevels:
case core::BuiltinFn::kTextureNumSamples:
case core::BuiltinFn::kTextureSample:
case core::BuiltinFn::kTextureSampleBias:
case core::BuiltinFn::kTextureSampleCompare:
case core::BuiltinFn::kTextureSampleCompareLevel:
case core::BuiltinFn::kTextureSampleGrad:
case core::BuiltinFn::kTextureSampleLevel:
case core::BuiltinFn::kTextureStore:
case core::BuiltinFn::kTrunc:
case core::BuiltinFn::kUnpack2X16Float:
case core::BuiltinFn::kUnpack2X16Snorm:
case core::BuiltinFn::kUnpack2X16Unorm:
case core::BuiltinFn::kUnpack4X8Snorm:
case core::BuiltinFn::kUnpack4X8Unorm:
case core::BuiltinFn::kUnpack4XI8:
case core::BuiltinFn::kUnpack4XU8:
call_worklist.Push(call);
break;
default:
break;
}
continue;
}
}
// Replace the bitcasts that we found.
for (auto* bitcast : bitcast_worklist) {
auto* src_type = bitcast->Val()->Type();
auto* dst_type = bitcast->Result(0)->Type();
auto* dst_deepest = dst_type->DeepestElement();
if (src_type == dst_type) {
ReplaceBitcastWithValue(bitcast);
} else if (src_type->DeepestElement()->Is<core::type::F16>()) {
ReplaceBitcastWithFromF16Polyfill(bitcast);
} else if (dst_deepest->Is<core::type::F16>()) {
ReplaceBitcastWithToF16Polyfill(bitcast);
} else {
ReplaceBitcastWithAs(bitcast);
}
}
// Replace the builtin calls that we found
for (auto* call : call_worklist) {
switch (call->Func()) {
case core::BuiltinFn::kAcosh:
Acosh(call);
break;
case core::BuiltinFn::kAsinh:
Asinh(call);
break;
case core::BuiltinFn::kAtanh:
Atanh(call);
break;
case core::BuiltinFn::kAtomicAdd:
AtomicAdd(call);
break;
case core::BuiltinFn::kAtomicSub:
AtomicSub(call);
break;
case core::BuiltinFn::kAtomicMin:
AtomicMin(call);
break;
case core::BuiltinFn::kAtomicMax:
AtomicMax(call);
break;
case core::BuiltinFn::kAtomicAnd:
AtomicAnd(call);
break;
case core::BuiltinFn::kAtomicOr:
AtomicOr(call);
break;
case core::BuiltinFn::kAtomicXor:
AtomicXor(call);
break;
case core::BuiltinFn::kAtomicLoad:
AtomicLoad(call);
break;
case core::BuiltinFn::kAtomicStore:
AtomicStore(call);
break;
case core::BuiltinFn::kAtomicExchange:
AtomicExchange(call);
break;
case core::BuiltinFn::kAtomicCompareExchangeWeak:
AtomicCompareExchangeWeak(call);
break;
case core::BuiltinFn::kCountOneBits:
BitcastToIntOverloadCall(call); // See crbug.com/tint/1550.
break;
case core::BuiltinFn::kDot4I8Packed:
Dot4I8Packed(call);
break;
case core::BuiltinFn::kDot4U8Packed:
Dot4U8Packed(call);
break;
case core::BuiltinFn::kFrexp:
Frexp(call);
break;
case core::BuiltinFn::kModf:
Modf(call);
break;
case core::BuiltinFn::kPack2X16Float:
Pack2x16Float(call);
break;
case core::BuiltinFn::kPack2X16Snorm:
Pack2x16Snorm(call);
break;
case core::BuiltinFn::kPack2X16Unorm:
Pack2x16Unorm(call);
break;
case core::BuiltinFn::kPack4X8Snorm:
Pack4x8Snorm(call);
break;
case core::BuiltinFn::kPack4X8Unorm:
Pack4x8Unorm(call);
break;
case core::BuiltinFn::kPack4XI8:
Pack4xI8(call);
break;
case core::BuiltinFn::kPack4XU8:
Pack4xU8(call);
break;
case core::BuiltinFn::kPack4XI8Clamp:
Pack4xI8Clamp(call);
break;
case core::BuiltinFn::kQuantizeToF16:
QuantizeToF16(call);
break;
case core::BuiltinFn::kReverseBits:
BitcastToIntOverloadCall(call); // See crbug.com/tint/1550.
break;
case core::BuiltinFn::kSelect:
Select(call);
break;
case core::BuiltinFn::kSign:
Sign(call);
break;
case core::BuiltinFn::kSubgroupAnd:
case core::BuiltinFn::kSubgroupOr:
case core::BuiltinFn::kSubgroupXor:
BitcastToIntOverloadCall(call);
break;
case core::BuiltinFn::kSubgroupShuffleXor:
case core::BuiltinFn::kSubgroupShuffleUp:
case core::BuiltinFn::kSubgroupShuffleDown:
SubgroupShuffle(call);
break;
case core::BuiltinFn::kSubgroupInclusiveAdd:
case core::BuiltinFn::kSubgroupInclusiveMul:
SubgroupInclusive(call);
break;
case core::BuiltinFn::kTextureDimensions:
TextureDimensions(call);
break;
case core::BuiltinFn::kTextureGather:
TextureGather(call);
break;
case core::BuiltinFn::kTextureGatherCompare:
TextureGatherCompare(call);
break;
case core::BuiltinFn::kTextureLoad:
TextureLoad(call);
break;
case core::BuiltinFn::kTextureNumLayers:
TextureNumLayers(call);
break;
case core::BuiltinFn::kTextureNumLevels:
TextureNumLevels(call);
break;
case core::BuiltinFn::kTextureNumSamples:
TextureNumSamples(call);
break;
case core::BuiltinFn::kTextureSample:
TextureSample(call);
break;
case core::BuiltinFn::kTextureSampleBias:
TextureSampleBias(call);
break;
case core::BuiltinFn::kTextureSampleCompare:
case core::BuiltinFn::kTextureSampleCompareLevel:
TextureSampleCompare(call);
break;
case core::BuiltinFn::kTextureSampleGrad:
TextureSampleGrad(call);
break;
case core::BuiltinFn::kTextureSampleLevel:
TextureSampleLevel(call);
break;
case core::BuiltinFn::kTextureStore:
TextureStore(call);
break;
case core::BuiltinFn::kTrunc:
Trunc(call);
break;
case core::BuiltinFn::kUnpack2X16Float:
Unpack2x16Float(call);
break;
case core::BuiltinFn::kUnpack2X16Snorm:
Unpack2x16Snorm(call);
break;
case core::BuiltinFn::kUnpack2X16Unorm:
Unpack2x16Unorm(call);
break;
case core::BuiltinFn::kUnpack4X8Snorm:
Unpack4x8Snorm(call);
break;
case core::BuiltinFn::kUnpack4X8Unorm:
Unpack4x8Unorm(call);
break;
case core::BuiltinFn::kUnpack4XI8:
Unpack4xI8(call);
break;
case core::BuiltinFn::kUnpack4XU8:
Unpack4xU8(call);
break;
default:
TINT_UNREACHABLE();
}
}
}
void Acosh(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
auto* result_ty = call->Result(0)->Type();
// log(x + sqrt(x*x - 1));
b.InsertBefore(call, [&] {
bool is_f16 = result_ty->DeepestElement()->Is<core::type::F16>();
auto* one =
b.MatchWidth(is_f16 ? b.ConstantValue(1_h) : b.ConstantValue(1_f), result_ty);
auto* mul = b.Multiply(result_ty, args[0], args[0]);
auto* sub = b.Subtract(result_ty, mul, one);
auto* sqrt = b.Call(result_ty, core::BuiltinFn::kSqrt, sub);
auto* add = b.Add(result_ty, args[0], sqrt);
b.CallWithResult(call->DetachResult(), core::BuiltinFn::kLog, add);
});
call->Destroy();
}
void Asinh(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
auto* result_ty = call->Result(0)->Type();
// log(x + sqrt(x*x + 1));
b.InsertBefore(call, [&] {
bool is_f16 = result_ty->DeepestElement()->Is<core::type::F16>();
auto* one =
b.MatchWidth(is_f16 ? b.ConstantValue(1_h) : b.ConstantValue(1_f), result_ty);
auto* mul = b.Multiply(result_ty, args[0], args[0]);
auto* add_one = b.Add(result_ty, mul, one);
auto* sqrt = b.Call(result_ty, core::BuiltinFn::kSqrt, add_one);
auto* add = b.Add(result_ty, args[0], sqrt);
b.CallWithResult(call->DetachResult(), core::BuiltinFn::kLog, add);
});
call->Destroy();
}
void Atanh(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
auto* result_ty = call->Result(0)->Type();
// log((1+x) / (1-x)) * 0.5
b.InsertBefore(call, [&] {
//
bool is_f16 = result_ty->DeepestElement()->Is<core::type::F16>();
auto* one =
b.MatchWidth(is_f16 ? b.ConstantValue(1_h) : b.ConstantValue(1_f), result_ty);
auto* half =
b.MatchWidth(is_f16 ? b.ConstantValue(0.5_h) : b.ConstantValue(0.5_f), result_ty);
auto* one_plus_x = b.Add(result_ty, one, args[0]);
auto* one_minus_x = b.Subtract(result_ty, one, args[0]);
auto* div = b.Divide(result_ty, one_plus_x, one_minus_x);
auto* log = b.Call(result_ty, core::BuiltinFn::kLog, div);
auto* mul = b.Multiply(result_ty, log, half);
call->Result(0)->ReplaceAllUsesWith(mul->Result(0));
});
call->Destroy();
}
void Interlocked(core::ir::CoreBuiltinCall* call, BuiltinFn fn) {
auto args = call->Args();
auto* type = args[1]->Type();
b.InsertBefore(call, [&] {
auto* original_value = b.Var(ty.ptr(function, type));
original_value->SetInitializer(b.Zero(type));
b.Call<hlsl::ir::BuiltinCall>(ty.void_(), fn, args[0], args[1], original_value);
b.LoadWithResult(call->DetachResult(), original_value)->Result(0);
});
call->Destroy();
}
void AtomicAnd(core::ir::CoreBuiltinCall* call) {
Interlocked(call, BuiltinFn::kInterlockedAnd);
}
void AtomicOr(core::ir::CoreBuiltinCall* call) { Interlocked(call, BuiltinFn::kInterlockedOr); }
void AtomicXor(core::ir::CoreBuiltinCall* call) {
Interlocked(call, BuiltinFn::kInterlockedXor);
}
void AtomicMin(core::ir::CoreBuiltinCall* call) {
Interlocked(call, BuiltinFn::kInterlockedMin);
}
void AtomicMax(core::ir::CoreBuiltinCall* call) {
Interlocked(call, BuiltinFn::kInterlockedMax);
}
void AtomicAdd(core::ir::CoreBuiltinCall* call) {
Interlocked(call, BuiltinFn::kInterlockedAdd);
}
void AtomicExchange(core::ir::CoreBuiltinCall* call) {
Interlocked(call, BuiltinFn::kInterlockedExchange);
}
// An atomic sub is a negated atomic add
void AtomicSub(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
auto* type = args[1]->Type();
b.InsertBefore(call, [&] {
auto* original_value = b.Var(ty.ptr(function, type));
original_value->SetInitializer(b.Zero(type));
auto* val = b.Subtract(type, b.Zero(type), args[1]);
b.Call<hlsl::ir::BuiltinCall>(ty.void_(), BuiltinFn::kInterlockedAdd, args[0], val,
original_value);
b.LoadWithResult(call->DetachResult(), original_value)->Result(0);
});
call->Destroy();
}
void AtomicCompareExchangeWeak(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
auto* type = args[1]->Type();
b.InsertBefore(call, [&] {
auto* original_value = b.Var(ty.ptr(function, type));
original_value->SetInitializer(b.Zero(type));
auto* cmp = args[1];
b.Call<hlsl::ir::BuiltinCall>(ty.void_(), BuiltinFn::kInterlockedCompareExchange,
args[0], cmp, args[2], original_value);
auto* o = b.Load(original_value);
b.ConstructWithResult(call->DetachResult(), o, b.Equal(ty.bool_(), o, cmp));
});
call->Destroy();
}
// An atomic load is an Or with 0
void AtomicLoad(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
auto* type = call->Result(0)->Type();
b.InsertBefore(call, [&] {
auto* original_value = b.Var(ty.ptr(function, type));
original_value->SetInitializer(b.Zero(type));
b.Call<hlsl::ir::BuiltinCall>(ty.void_(), BuiltinFn::kInterlockedOr, args[0],
b.Zero(type), original_value);
b.LoadWithResult(call->DetachResult(), original_value)->Result(0);
});
call->Destroy();
}
void AtomicStore(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
auto* type = args[1]->Type();
b.InsertBefore(call, [&] {
auto* original_value = b.Var(ty.ptr(function, type));
original_value->SetInitializer(b.Zero(type));
b.Call<hlsl::ir::BuiltinCall>(ty.void_(), BuiltinFn::kInterlockedExchange, args[0],
args[1], original_value);
});
call->Destroy();
}
void Select(core::ir::CoreBuiltinCall* call) {
Vector<core::ir::Value*, 4> args = call->Args();
auto* ternary = b.ir.CreateInstruction<hlsl::ir::Ternary>(call->DetachResult(), args);
ternary->InsertBefore(call);
call->Destroy();
}
// HLSL's trunc is broken for very large/small float values.
// See crbug.com/tint/1883
//
// Replace with:
// value < 0 ? ceil(value) : floor(value)
void Trunc(core::ir::CoreBuiltinCall* call) {
auto* val = call->Args()[0];
auto* type = call->Result(0)->Type();
Vector<core::ir::Value*, 4> args;
b.InsertBefore(call, [&] {
args.Push(b.Call(type, core::BuiltinFn::kFloor, val)->Result(0));
args.Push(b.Call(type, core::BuiltinFn::kCeil, val)->Result(0));
args.Push(b.LessThan(ty.MatchWidth(ty.bool_(), type), val, b.Zero(type))->Result(0));
});
auto* trunc = b.ir.CreateInstruction<hlsl::ir::Ternary>(call->DetachResult(), args);
trunc->InsertBefore(call);
call->Destroy();
}
/// Replaces an identity bitcast result with the value.
void ReplaceBitcastWithValue(core::ir::Bitcast* bitcast) {
bitcast->Result(0)->ReplaceAllUsesWith(bitcast->Val());
bitcast->Destroy();
}
void ReplaceBitcastWithAs(core::ir::Bitcast* bitcast) {
auto* dst_type = bitcast->Result(0)->Type();
auto* dst_deepest = dst_type->DeepestElement();
BuiltinFn fn = BuiltinFn::kNone;
tint::Switch(
dst_deepest, //
[&](const core::type::I32*) { fn = BuiltinFn::kAsint; }, //
[&](const core::type::U32*) { fn = BuiltinFn::kAsuint; }, //
[&](const core::type::F32*) { fn = BuiltinFn::kAsfloat; }, //
TINT_ICE_ON_NO_MATCH);
// TODO(crbug.com/361794783): work around DXC failing on 'as' casts of constant integral
// splats by wrapping it with an explicit vector constructor.
// e.g. asuint(123.xx) -> asuint(int2(123.xx)))
bool castToSrcType = false;
auto* src_type = bitcast->Val()->Type();
if (src_type->IsIntegerVector()) {
if (auto* c = bitcast->Val()->As<core::ir::Constant>()) {
castToSrcType = c->Value()->Is<core::constant::Splat>();
}
}
b.InsertBefore(bitcast, [&] {
auto* source = bitcast->Val();
if (castToSrcType) {
source = b.Construct(src_type, source)->Result(0);
}
b.CallWithResult<hlsl::ir::BuiltinCall>(bitcast->DetachResult(), fn, source);
});
bitcast->Destroy();
}
// Bitcast f16 types to others by converting the given f16 value to f32 and call
// f32tof16 to get the bits. This should be safe, because the conversion is precise
// for finite and infinite f16 value as they are exactly representable by f32.
core::ir::Function* CreateBitcastFromF16(const core::type::Type* src_type,
const core::type::Type* dst_type) {
return bitcast_funcs_.GetOrAdd(
BitcastType{{src_type, dst_type}}, [&]() -> core::ir::Function* {
TINT_ASSERT(src_type->Is<core::type::Vector>());
// Generate a helper function that performs the following (in HLSL):
//
// uint tint_bitcast_from_f16(vector<float16_t, 2> src) {
// uint2 r = f32tof16(float2(src));
// return uint((r.x & 65535u) | ((r.y & 65535u) << 16u));
// }
auto fn_name = b.ir.symbols.New(std::string("tint_bitcast_from_f16")).Name();
auto* f = b.Function(fn_name, dst_type);
auto* src = b.FunctionParam("src", src_type);
f->SetParams({src});
b.Append(f->Block(), [&] {
auto* src_vec = src_type->As<core::type::Vector>();
auto* cast = b.Convert(ty.vec(ty.f32(), src_vec->Width()), src);
auto* r =
b.Let("r", b.Call<hlsl::ir::BuiltinCall>(ty.vec(ty.u32(), src_vec->Width()),
hlsl::BuiltinFn::kF32Tof16, cast));
auto* x = b.And(ty.u32(), b.Swizzle(ty.u32(), r, {0_u}), 0xffff_u);
auto* y = b.ShiftLeft(
ty.u32(), b.And(ty.u32(), b.Swizzle(ty.u32(), r, {1_u}), 0xffff_u), 16_u);
auto* s = b.Or(ty.u32(), x, y);
core::ir::InstructionResult* result = nullptr;
switch (src_vec->Width()) {
case 2: {
result = s->Result(0);
break;
}
case 4: {
auto* z = b.And(ty.u32(), b.Swizzle(ty.u32(), r, {2_u}), 0xffff_u);
auto* w = b.ShiftLeft(
ty.u32(), b.And(ty.u32(), b.Swizzle(ty.u32(), r, {3_u}), 0xffff_u),
16_u);
auto* t = b.Or(ty.u32(), z, w);
auto* cons = b.Construct(ty.vec2<u32>(), s, t);
result = cons->Result(0);
break;
}
default:
TINT_UNREACHABLE();
}
tint::Switch(
dst_type->DeepestElement(), //
[&](const core::type::F32*) {
b.Return(f, b.Call<hlsl::ir::BuiltinCall>(dst_type, BuiltinFn::kAsfloat,
result));
},
[&](const core::type::I32*) {
b.Return(f, b.Call<hlsl::ir::BuiltinCall>(dst_type, BuiltinFn::kAsint,
result));
},
[&](const core::type::U32*) { b.Return(f, result); }, //
TINT_ICE_ON_NO_MATCH);
});
return f;
});
}
/// Replaces a bitcast with a call to the FromF16 polyfill for the given types
void ReplaceBitcastWithFromF16Polyfill(core::ir::Bitcast* bitcast) {
auto* src_type = bitcast->Val()->Type();
auto* dst_type = bitcast->Result(0)->Type();
auto* f = CreateBitcastFromF16(src_type, dst_type);
b.InsertBefore(bitcast,
[&] { b.CallWithResult(bitcast->DetachResult(), f, bitcast->Args()[0]); });
bitcast->Destroy();
}
// Bitcast other types to f16 types by reinterpreting their bits as f16 using
// f16tof32, and convert the result f32 to f16. This should be safe, because the
// conversion is precise for finite and infinite f16 result value as they are
// exactly representable by f32.
core::ir::Function* CreateBitcastToF16(const core::type::Type* src_type,
const core::type::Type* dst_type) {
return bitcast_funcs_.GetOrAdd(
BitcastType{{src_type, dst_type}}, [&]() -> core::ir::Function* {
TINT_ASSERT(dst_type->Is<core::type::Vector>());
// Generate a helper function that performs the following (in HLSL):
//
// vector<float16_t, 2> tint_bitcast_to_f16(float src) {
// uint v = asuint(src);
// float t_low = f16tof32(v & 65535u);
// float t_high = f16tof32((v >> 16u) & 65535u);
// return vector<float16_t, 2>(t_low.x, t_high.x);
// }
auto fn_name = b.ir.symbols.New(std::string("tint_bitcast_to_f16")).Name();
auto* f = b.Function(fn_name, dst_type);
auto* src = b.FunctionParam("src", src_type);
f->SetParams({src});
b.Append(f->Block(), [&] {
const core::type::Type* uint_ty = ty.MatchWidth(ty.u32(), src_type);
const core::type::Type* float_ty = ty.MatchWidth(ty.f32(), src_type);
core::ir::Instruction* v = nullptr;
tint::Switch(
src_type->DeepestElement(), //
[&](const core::type::U32*) { v = b.Let("v", src); }, //
[&](const core::type::I32*) {
v = b.Let("v", b.Call<hlsl::ir::BuiltinCall>(uint_ty,
BuiltinFn::kAsuint, src));
},
[&](const core::type::F32*) {
v = b.Let("v", b.Call<hlsl::ir::BuiltinCall>(uint_ty,
BuiltinFn::kAsuint, src));
},
TINT_ICE_ON_NO_MATCH);
bool src_vec = src_type->Is<core::type::Vector>();
core::ir::Value* mask = nullptr;
core::ir::Value* shift = nullptr;
if (src_vec) {
mask = b.Let("mask", b.Splat(uint_ty, 0xffff_u))->Result(0);
shift = b.Let("shift", b.Splat(uint_ty, 16_u))->Result(0);
} else {
mask = b.Value(b.Constant(0xffff_u));
shift = b.Value(b.Constant(16_u));
}
auto* l = b.And(uint_ty, v, mask);
auto* t_low = b.Let(
"t_low", b.Call<hlsl::ir::BuiltinCall>(float_ty, BuiltinFn::kF16Tof32, l));
auto* h = b.And(uint_ty, b.ShiftRight(uint_ty, v, shift), mask);
auto* t_high = b.Let(
"t_high", b.Call<hlsl::ir::BuiltinCall>(float_ty, BuiltinFn::kF16Tof32, h));
core::ir::Instruction* x = nullptr;
core::ir::Instruction* y = nullptr;
if (src_vec) {
x = b.Swizzle(ty.f32(), t_low, {0_u});
y = b.Swizzle(ty.f32(), t_high, {0_u});
} else {
x = t_low;
y = t_high;
}
x = b.Convert(ty.f16(), x);
y = b.Convert(ty.f16(), y);
auto dst_width = dst_type->As<core::type::Vector>()->Width();
TINT_ASSERT(dst_width == 2 || dst_width == 4);
if (dst_width == 2) {
b.Return(f, b.Construct(dst_type, x, y));
} else {
auto* z = b.Convert(ty.f16(), b.Swizzle(ty.f32(), t_low, {1_u}));
auto* w = b.Convert(ty.f16(), b.Swizzle(ty.f32(), t_high, {1_u}));
b.Return(f, b.Construct(dst_type, x, y, z, w));
}
});
return f;
});
}
// The HLSL `sign` method always returns an `int` result (scalar or vector). In WGSL the result
// is expected to be the same type as the argument. This injects a cast to the expected WGSL
// result type after the call to `hlsl.sign`.
core::ir::Instruction* BuildSign(core::ir::Value* value) {
const auto* result_ty = ty.MatchWidth(ty.i32(), value->Type());
auto* sign = b.Call<hlsl::ir::BuiltinCall>(result_ty, hlsl::BuiltinFn::kSign, value);
return b.Convert(value->Type(), sign);
}
void Sign(core::ir::BuiltinCall* call) {
b.InsertBefore(call, [&] {
auto* sign = BuildSign(call->Args()[0]);
sign->SetResults(Vector{call->DetachResult()});
});
call->Destroy();
}
/// Replaces a bitcast with a call to the ToF16 polyfill for the given types
void ReplaceBitcastWithToF16Polyfill(core::ir::Bitcast* bitcast) {
auto* src_type = bitcast->Val()->Type();
auto* dst_type = bitcast->Result(0)->Type();
auto* f = CreateBitcastToF16(src_type, dst_type);
b.InsertBefore(bitcast,
[&] { b.CallWithResult(bitcast->DetachResult(), f, bitcast->Args()[0]); });
bitcast->Destroy();
}
void TextureNumLayers(core::ir::CoreBuiltinCall* call) {
auto* tex = call->Args()[0];
auto* tex_type = tex->Type()->As<core::type::Texture>();
TINT_ASSERT(tex_type->Dim() == core::type::TextureDimension::k2dArray ||
tex_type->Dim() == core::type::TextureDimension::kCubeArray);
const core::type::Type* query_ty = ty.vec(ty.u32(), 3);
b.InsertBefore(call, [&] {
core::ir::Instruction* out = b.Var(ty.ptr(function, query_ty));
b.MemberCall<hlsl::ir::MemberBuiltinCall>(
ty.void_(), hlsl::BuiltinFn::kGetDimensions, tex,
Vector<core::ir::Value*, 3>{
b.Access(ty.ptr<function, u32>(), out, 0_u)->Result(0),
b.Access(ty.ptr<function, u32>(), out, 1_u)->Result(0),
b.Access(ty.ptr<function, u32>(), out, 2_u)->Result(0)});
out = b.Swizzle(ty.u32(), out, {2_u});
call->Result(0)->ReplaceAllUsesWith(out->Result(0));
});
call->Destroy();
}
void TextureNumLevels(core::ir::CoreBuiltinCall* call) {
auto* tex = call->Args()[0];
auto* tex_type = tex->Type()->As<core::type::Texture>();
Vector<uint32_t, 2> swizzle{};
uint32_t query_size = 0;
switch (tex_type->Dim()) {
case core::type::TextureDimension::kNone:
TINT_ICE() << "texture dimension is kNone";
case core::type::TextureDimension::k1d:
query_size = 2;
swizzle = {1_u};
break;
case core::type::TextureDimension::k2d:
case core::type::TextureDimension::kCube:
query_size = 3;
swizzle = {2_u};
break;
case core::type::TextureDimension::k2dArray:
case core::type::TextureDimension::k3d:
case core::type::TextureDimension::kCubeArray:
query_size = 4;
swizzle = {3_u};
break;
}
const core::type::Type* query_ty = ty.vec(ty.u32(), query_size);
b.InsertBefore(call, [&] {
Vector<core::ir::Value*, 5> args;
// Pass the `level` parameter so the `num_levels` overload is used.
args.Push(b.Value(0_u));
core::ir::Instruction* out = b.Var(ty.ptr(function, query_ty));
for (uint32_t i = 0; i < query_size; ++i) {
args.Push(b.Access(ty.ptr<function, u32>(), out, u32(i))->Result(0));
}
b.MemberCall<hlsl::ir::MemberBuiltinCall>(ty.void_(), hlsl::BuiltinFn::kGetDimensions,
tex, args);
out = b.Swizzle(ty.u32(), out, swizzle);
call->Result(0)->ReplaceAllUsesWith(out->Result(0));
});
call->Destroy();
}
void TextureDimensions(core::ir::CoreBuiltinCall* call) {
auto* tex = call->Args()[0];
auto* tex_type = tex->Type()->As<core::type::Texture>();
bool has_level = call->Args().Length() > 1;
bool is_ms =
tex_type
->IsAnyOf<core::type::MultisampledTexture, core::type::DepthMultisampledTexture>();
Vector<uint32_t, 2> swizzle{};
uint32_t query_size = 0;
switch (tex_type->Dim()) {
case core::type::TextureDimension::kNone:
TINT_ICE() << "texture dimension is kNone";
case core::type::TextureDimension::k1d:
query_size = 1;
break;
case core::type::TextureDimension::k2d:
if (is_ms) {
query_size = 3;
swizzle = {0_u, 1_u};
} else {
query_size = 2;
}
break;
case core::type::TextureDimension::k2dArray:
query_size = is_ms ? 4 : 3;
swizzle = {0_u, 1_u};
break;
case core::type::TextureDimension::k3d:
query_size = 3;
break;
case core::type::TextureDimension::kCube:
query_size = 2;
break;
case core::type::TextureDimension::kCubeArray:
query_size = 3;
swizzle = {0_u, 1_u};
break;
}
// Query with a `level` adds a `number_of_levels` output parameter
if (has_level) {
// If there was no swizzle, we will need to swizzle out the required query parameters as
// the query will increase by one item.
if (swizzle.IsEmpty()) {
for (uint32_t i = 0; i < query_size; ++i) {
swizzle.Push(i);
}
}
query_size += 1;
}
auto* query_ty = ty.MatchWidth(ty.u32(), query_size);
b.InsertBefore(call, [&] {
Vector<core::ir::Value*, 5> args;
// Push the level if needed
if (has_level) {
args.Push(b.Convert(ty.u32(), call->Args()[1])->Result(0));
}
core::ir::Instruction* query = b.Var(ty.ptr(function, query_ty));
if (query_size == 1) {
args.Push(query->Result(0));
} else {
for (uint32_t i = 0; i < query_size; ++i) {
args.Push(b.Access(ty.ptr<function, u32>(), query, u32(i))->Result(0));
}
}
b.MemberCall<hlsl::ir::MemberBuiltinCall>(ty.void_(), hlsl::BuiltinFn::kGetDimensions,
tex, args);
query = b.Load(query);
if (!swizzle.IsEmpty()) {
query = b.Swizzle(ty.MatchWidth(ty.u32(), swizzle.Length()), query, swizzle);
}
call->Result(0)->ReplaceAllUsesWith(query->Result(0));
});
call->Destroy();
}
void TextureNumSamples(core::ir::CoreBuiltinCall* call) {
auto* tex = call->Args()[0];
auto* tex_type = tex->Type()->As<core::type::Texture>();
TINT_ASSERT(tex_type->Dim() == core::type::TextureDimension::k2d);
TINT_ASSERT((tex_type->IsAnyOf<core::type::DepthMultisampledTexture,
core::type::MultisampledTexture>()));
const core::type::Type* query_ty = ty.vec(ty.u32(), 3);
b.InsertBefore(call, [&] {
core::ir::Instruction* out = b.Var(ty.ptr(function, query_ty));
b.MemberCall<hlsl::ir::MemberBuiltinCall>(
ty.void_(), hlsl::BuiltinFn::kGetDimensions, tex,
Vector<core::ir::Value*, 3>{
b.Access(ty.ptr<function, u32>(), out, 0_u)->Result(0),
b.Access(ty.ptr<function, u32>(), out, 1_u)->Result(0),
b.Access(ty.ptr<function, u32>(), out, 2_u)->Result(0)});
out = b.Swizzle(ty.u32(), out, {2_u});
call->Result(0)->ReplaceAllUsesWith(out->Result(0));
});
call->Destroy();
}
void TextureLoad(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
auto* tex = args[0];
auto* tex_type = tex->Type()->As<core::type::Texture>();
Vector<uint32_t, 2> swizzle;
const core::type::Type* ret_ty = tint::Switch(
tex_type, //
[&](const core::type::SampledTexture* sampled) { return sampled->Type(); },
[&](const core::type::StorageTexture* storage) { return storage->Type(); },
[&](const core::type::MultisampledTexture* ms) { return ms->Type(); },
[&](const core::type::DepthTexture*) {
swizzle.Push(0u);
return ty.f32();
},
[&](const core::type::DepthMultisampledTexture*) {
swizzle.Push(0);
return ty.f32();
},
TINT_ICE_ON_NO_MATCH);
bool is_ms = tex_type->Is<core::type::MultisampledTexture>() ||
tex_type->Is<core::type::DepthMultisampledTexture>();
bool is_storage = tex_type->Is<core::type::StorageTexture>();
b.InsertBefore(call, [&] {
Vector<core::ir::Value*, 2> call_args;
switch (tex_type->Dim()) {
case core::type::TextureDimension::k1d: {
auto* coord = b.Convert(ty.i32(), args[1]);
core::ir::Value* lvl = nullptr;
if (is_storage) {
lvl = b.Constant(0_i);
} else {
lvl = b.Convert(ty.i32(), args[2])->Result(0);
}
call_args.Push(b.Construct(ty.vec2<i32>(), coord, lvl)->Result(0));
break;
}
case core::type::TextureDimension::k2d: {
auto* coord = b.Convert(ty.vec2<i32>(), args[1]);
if (is_ms) {
// Pass coords and sample index as separate parameters
call_args.Push(coord->Result(0));
call_args.Push(b.Convert(ty.i32(), args[2])->Result(0));
} else {
core::ir::Value* lvl = nullptr;
if (is_storage) {
lvl = b.Constant(0_i);
} else {
lvl = b.Convert(ty.i32(), args[2])->Result(0);
}
call_args.Push(b.Construct(ty.vec3<i32>(), coord, lvl)->Result(0));
}
break;
}
case core::type::TextureDimension::k2dArray: {
auto* coord = b.Convert(ty.vec2<i32>(), args[1]);
auto* ary_idx = b.Convert(ty.i32(), args[2]);
core::ir::Value* lvl = nullptr;
if (is_storage) {
lvl = b.Constant(0_i);
} else {
lvl = b.Convert(ty.i32(), args[3])->Result(0);
}
call_args.Push(b.Construct(ty.vec4<i32>(), coord, ary_idx, lvl)->Result(0));
break;
}
case core::type::TextureDimension::k3d: {
auto* coord = b.Convert(ty.vec3<i32>(), args[1]);
core::ir::Value* lvl = nullptr;
if (is_storage) {
lvl = b.Constant(0_i);
} else {
lvl = b.Convert(ty.i32(), args[2])->Result(0);
}
call_args.Push(b.Construct(ty.vec4<i32>(), coord, lvl)->Result(0));
break;
}
default:
TINT_UNREACHABLE();
}
core::ir::Instruction* builtin = b.MemberCall<hlsl::ir::MemberBuiltinCall>(
ty.vec4(ret_ty), hlsl::BuiltinFn::kLoad, tex, call_args);
if (!swizzle.IsEmpty()) {
builtin = b.Swizzle(ty.f32(), builtin, swizzle);
} else {
builtin = b.Convert(call->Result(0)->Type(), builtin);
}
call->Result(0)->ReplaceAllUsesWith(builtin->Result(0));
});
call->Destroy();
}
// Just re-write the arguments so we have the needed arrays, and then the printer will turn it
// into the correct assignment instruction.
void TextureStore(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
auto* tex = args[0];
auto* tex_type = tex->Type()->As<core::type::StorageTexture>();
TINT_ASSERT(tex_type);
Vector<core::ir::Value*, 3> new_args;
new_args.Push(tex);
b.InsertBefore(call, [&] {
if (tex_type->Dim() == core::type::TextureDimension::k2dArray) {
auto* coords = args[1];
auto* array_idx = args[2];
auto* coords_ty = coords->Type()->As<core::type::Vector>();
TINT_ASSERT(coords_ty);
auto* new_coords = b.Construct(ty.vec3(coords_ty->Type()), coords,
b.Convert(coords_ty->Type(), array_idx));
new_args.Push(new_coords->Result(0));
new_args.Push(args[3]);
} else {
new_args.Push(args[1]);
new_args.Push(args[2]);
}
b.CallWithResult<hlsl::ir::BuiltinCall>(call->DetachResult(),
hlsl::BuiltinFn::kTextureStore, new_args);
});
call->Destroy();
}
void TextureGather(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
core::ir::Value* tex = nullptr;
hlsl::BuiltinFn fn = hlsl::BuiltinFn::kGather;
core::ir::Value* coords = nullptr;
Vector<core::ir::Value*, 4> params;
uint32_t idx = 0;
if (!args[idx]->Type()->Is<core::type::Texture>()) {
auto* comp = args[idx++]->As<core::ir::Constant>();
TINT_ASSERT(comp);
switch (comp->Value()->ValueAs<int32_t>()) {
case 0:
fn = hlsl::BuiltinFn::kGatherRed;
break;
case 1:
fn = hlsl::BuiltinFn::kGatherGreen;
break;
case 2:
fn = hlsl::BuiltinFn::kGatherBlue;
break;
case 3:
fn = hlsl::BuiltinFn::kGatherAlpha;
break;
default:
TINT_UNREACHABLE();
}
}
tex = args[idx++];
auto* tex_type = tex->Type()->As<core::type::Texture>();
TINT_ASSERT(tex_type);
bool is_depth = tex_type->Is<core::type::DepthTexture>();
params.Push(args[idx++]); // sampler
coords = args[idx++];
uint32_t offset_idx = 0;
switch (tex_type->Dim()) {
case core::type::TextureDimension::k2d:
params.Push(coords);
offset_idx = is_depth ? 3 : 4;
break;
case core::type::TextureDimension::k2dArray:
params.Push(b.Construct(ty.vec3<f32>(), coords, b.Convert<f32>(args[idx++]))
->Result(0));
offset_idx = is_depth ? 4 : 5;
break;
case core::type::TextureDimension::kCube:
params.Push(coords);
break;
case core::type::TextureDimension::kCubeArray:
params.Push(b.Construct(ty.vec4<f32>(), coords, b.Convert<f32>(args[idx++]))
->Result(0));
break;
default:
TINT_UNREACHABLE();
}
if (offset_idx > 0 && args.Length() > offset_idx) {
params.Push(args[offset_idx]);
}
b.MemberCallWithResult<hlsl::ir::MemberBuiltinCall>(call->DetachResult(), fn, tex,
params);
});
call->Destroy();
}
void TextureGatherCompare(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* tex = args[0];
Vector<core::ir::Value*, 4> params;
params.Push(args[1]);
auto* coords = args[2];
auto* tex_type = tex->Type()->As<core::type::Texture>();
TINT_ASSERT(tex_type);
switch (tex_type->Dim()) {
case core::type::TextureDimension::k2d:
params.Push(coords);
params.Push(args[3]);
if (args.Length() > 4) {
params.Push(args[4]);
}
break;
case core::type::TextureDimension::k2dArray:
params.Push(
b.Construct(ty.vec3<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
params.Push(args[4]);
if (args.Length() > 5) {
params.Push(args[5]);
}
break;
case core::type::TextureDimension::kCube:
params.Push(coords);
params.Push(args[3]);
break;
case core::type::TextureDimension::kCubeArray:
params.Push(
b.Construct(ty.vec4<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
params.Push(args[4]);
break;
default:
TINT_UNREACHABLE();
}
b.MemberCallWithResult<hlsl::ir::MemberBuiltinCall>(
call->DetachResult(), hlsl::BuiltinFn::kGatherCmp, tex, params);
});
call->Destroy();
}
void TextureSample(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
core::ir::Value* tex = args[0];
Vector<core::ir::Value*, 4> params;
auto* tex_type = tex->Type()->As<core::type::Texture>();
TINT_ASSERT(tex_type);
params.Push(args[1]); // sampler
core::ir::Value* coords = args[2];
switch (tex_type->Dim()) {
case core::type::TextureDimension::k1d:
case core::type::TextureDimension::k2d:
params.Push(coords);
if (args.Length() > 3) {
params.Push(args[3]);
}
break;
case core::type::TextureDimension::k2dArray:
params.Push(
b.Construct(ty.vec3<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
if (args.Length() > 4) {
params.Push(args[4]);
}
break;
case core::type::TextureDimension::k3d:
case core::type::TextureDimension::kCube:
params.Push(coords);
if (args.Length() > 3) {
params.Push(args[3]);
}
break;
case core::type::TextureDimension::kCubeArray:
params.Push(
b.Construct(ty.vec4<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
break;
default:
TINT_UNREACHABLE();
}
core::ir::Instruction* result = b.MemberCall<hlsl::ir::MemberBuiltinCall>(
ty.vec4<f32>(), hlsl::BuiltinFn::kSample, tex, params);
if (tex_type->Is<core::type::DepthTexture>()) {
// Swizzle x from vec4 result for depth textures
TINT_ASSERT(call->Result(0)->Type()->Is<core::type::F32>());
result = b.Swizzle(ty.f32(), result, {0});
}
result->SetResults(Vector{call->DetachResult()});
});
call->Destroy();
}
void TextureSampleBias(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
core::ir::Value* tex = args[0];
Vector<core::ir::Value*, 4> params;
auto* tex_type = tex->Type()->As<core::type::Texture>();
TINT_ASSERT(tex_type);
params.Push(args[1]); // sampler
core::ir::Value* coords = args[2];
switch (tex_type->Dim()) {
case core::type::TextureDimension::k2d:
params.Push(coords);
params.Push(args[3]); // bias
if (args.Length() > 4) {
params.Push(args[4]);
}
break;
case core::type::TextureDimension::k2dArray:
params.Push(
b.Construct(ty.vec3<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
params.Push(args[4]);
if (args.Length() > 5) {
params.Push(args[5]);
}
break;
case core::type::TextureDimension::k3d:
case core::type::TextureDimension::kCube:
params.Push(coords);
params.Push(args[3]);
if (args.Length() > 4) {
params.Push(args[4]);
}
break;
case core::type::TextureDimension::kCubeArray:
params.Push(
b.Construct(ty.vec4<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
params.Push(args[4]);
break;
default:
TINT_UNREACHABLE();
}
b.MemberCallWithResult<hlsl::ir::MemberBuiltinCall>(
call->DetachResult(), hlsl::BuiltinFn::kSampleBias, tex, params);
});
call->Destroy();
}
void TextureSampleCompare(core::ir::CoreBuiltinCall* call) {
hlsl::BuiltinFn fn = call->Func() == core::BuiltinFn::kTextureSampleCompare
? hlsl::BuiltinFn::kSampleCmp
: hlsl::BuiltinFn::kSampleCmpLevelZero;
auto args = call->Args();
b.InsertBefore(call, [&] {
core::ir::Value* tex = args[0];
Vector<core::ir::Value*, 4> params;
auto* tex_type = tex->Type()->As<core::type::Texture>();
TINT_ASSERT(tex_type);
params.Push(args[1]); // sampler
core::ir::Value* coords = args[2];
switch (tex_type->Dim()) {
case core::type::TextureDimension::k2d:
params.Push(coords);
params.Push(args[3]); // depth ref
if (args.Length() > 4) {
params.Push(args[4]);
}
break;
case core::type::TextureDimension::k2dArray:
params.Push(
b.Construct(ty.vec3<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
params.Push(args[4]);
if (args.Length() > 5) {
params.Push(args[5]);
}
break;
case core::type::TextureDimension::kCube:
params.Push(coords);
params.Push(args[3]);
if (args.Length() > 4) {
params.Push(args[4]);
}
break;
case core::type::TextureDimension::kCubeArray:
params.Push(
b.Construct(ty.vec4<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
params.Push(args[4]);
break;
default:
TINT_UNREACHABLE();
}
b.MemberCallWithResult<hlsl::ir::MemberBuiltinCall>(call->DetachResult(), fn, tex,
params);
});
call->Destroy();
}
void TextureSampleGrad(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
core::ir::Value* tex = args[0];
Vector<core::ir::Value*, 4> params;
auto* tex_type = tex->Type()->As<core::type::Texture>();
TINT_ASSERT(tex_type);
params.Push(args[1]); // sampler
core::ir::Value* coords = args[2];
switch (tex_type->Dim()) {
case core::type::TextureDimension::k2d:
params.Push(coords);
params.Push(args[3]); // ddx
params.Push(args[4]); // ddy
if (args.Length() > 5) {
params.Push(args[5]);
}
break;
case core::type::TextureDimension::k2dArray:
params.Push(
b.Construct(ty.vec3<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
params.Push(args[4]);
params.Push(args[5]);
if (args.Length() > 6) {
params.Push(args[6]);
}
break;
case core::type::TextureDimension::k3d:
case core::type::TextureDimension::kCube:
params.Push(coords);
params.Push(args[3]);
params.Push(args[4]);
if (args.Length() > 5) {
params.Push(args[5]);
}
break;
case core::type::TextureDimension::kCubeArray:
params.Push(
b.Construct(ty.vec4<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
params.Push(args[4]);
params.Push(args[5]);
break;
default:
TINT_UNREACHABLE();
}
b.MemberCallWithResult<hlsl::ir::MemberBuiltinCall>(
call->DetachResult(), hlsl::BuiltinFn::kSampleGrad, tex, params);
});
call->Destroy();
}
void TextureSampleLevel(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
core::ir::Value* tex = args[0];
Vector<core::ir::Value*, 4> params;
auto* tex_type = tex->Type()->As<core::type::Texture>();
TINT_ASSERT(tex_type);
params.Push(args[1]); // sampler
core::ir::Value* coords = args[2];
switch (tex_type->Dim()) {
case core::type::TextureDimension::k2d:
params.Push(coords);
params.Push(b.Convert<f32>(args[3])->Result(0)); // Level
if (args.Length() > 4) {
params.Push(args[4]);
}
break;
case core::type::TextureDimension::k2dArray:
params.Push(
b.Construct(ty.vec3<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
params.Push(b.Convert<f32>(args[4])->Result(0)); // Level
if (args.Length() > 5) {
params.Push(args[5]);
}
break;
case core::type::TextureDimension::k3d:
case core::type::TextureDimension::kCube:
params.Push(coords);
params.Push(b.Convert<f32>(args[3])->Result(0)); // Level
if (args.Length() > 4) {
params.Push(args[4]);
}
break;
case core::type::TextureDimension::kCubeArray:
params.Push(
b.Construct(ty.vec4<f32>(), coords, b.Convert<f32>(args[3]))->Result(0));
params.Push(b.Convert<f32>(args[4])->Result(0)); // Level
break;
default:
TINT_UNREACHABLE();
}
core::ir::Instruction* result = b.MemberCall<hlsl::ir::MemberBuiltinCall>(
ty.vec4<f32>(), hlsl::BuiltinFn::kSampleLevel, tex, params);
if (tex_type->Is<core::type::DepthTexture>()) {
// Swizzle x from vec4 result for depth textures
TINT_ASSERT(call->Result(0)->Type()->Is<core::type::F32>());
result = b.Swizzle(ty.f32(), result, {0});
}
result->SetResults(Vector{call->DetachResult()});
});
call->Destroy();
}
void Pack2x16Float(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* bc =
b.Call<hlsl::ir::BuiltinCall>(ty.vec2<u32>(), hlsl::BuiltinFn::kF32Tof16, args[0]);
auto* lower = b.Swizzle(ty.u32(), bc, {0});
auto* upper = b.ShiftLeft(ty.u32(), b.Swizzle(ty.u32(), bc, {1}), 16_u);
auto* res = b.Or(ty.u32(), lower, upper);
call->Result(0)->ReplaceAllUsesWith(res->Result(0));
});
call->Destroy();
}
void Unpack2x16Float(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* x = b.And(ty.u32(), args[0], 0xffff_u);
auto* y = b.ShiftRight(ty.u32(), args[0], 16_u);
auto* conv = b.Construct(ty.vec2<u32>(), x, y);
b.CallWithResult<hlsl::ir::BuiltinCall>(call->DetachResult(),
hlsl::BuiltinFn::kF16Tof32, conv);
});
call->Destroy();
}
void Pack2x16Snorm(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* clamp_lower = b.Splat(ty.vec2<f32>(), -1_f);
auto* clamp_upper = b.Splat(ty.vec2<f32>(), 1_f);
auto* clamp =
b.Call(ty.vec2<f32>(), core::BuiltinFn::kClamp, args[0], clamp_lower, clamp_upper);
auto* mul = b.Multiply(ty.vec2<f32>(), clamp, 32767_f);
auto* round = b.Call(ty.vec2<f32>(), core::BuiltinFn::kRound, mul);
auto* conv = b.Convert(ty.vec2<i32>(), round);
auto* res = b.And(ty.vec2<i32>(), conv, b.Splat(ty.vec2<i32>(), 0xffff_i));
auto* lower = b.Swizzle(ty.i32(), res, {0});
auto* upper = b.ShiftLeft(ty.i32(), b.Swizzle(ty.i32(), res, {1}), 16_u);
b.CallWithResult<hlsl::ir::BuiltinCall>(call->DetachResult(), hlsl::BuiltinFn::kAsuint,
b.Or(ty.i32(), lower, upper));
});
call->Destroy();
}
void Unpack2x16Snorm(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* conv = b.Convert(ty.i32(), args[0]);
auto* x = b.ShiftLeft(ty.i32(), conv, 16_u);
auto* vec = b.Construct(ty.vec2<i32>(), x, conv);
auto* v = b.ShiftRight(ty.vec2<i32>(), vec, b.Composite(ty.vec2<u32>(), 16_u));
auto* flt = b.Convert(ty.vec2<f32>(), v);
auto* scale = b.Divide(ty.vec2<f32>(), flt, 32767_f);
auto* lower = b.Splat(ty.vec2<f32>(), -1_f);
auto* upper = b.Splat(ty.vec2<f32>(), 1_f);
b.CallWithResult(call->DetachResult(), core::BuiltinFn::kClamp, scale, lower, upper);
});
call->Destroy();
}
void Pack2x16Unorm(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* clamp_lower = b.Splat(ty.vec2<f32>(), 0_f);
auto* clamp_upper = b.Splat(ty.vec2<f32>(), 1_f);
auto* clamp =
b.Call(ty.vec2<f32>(), core::BuiltinFn::kClamp, args[0], clamp_lower, clamp_upper);
auto* mul = b.Multiply(ty.vec2<f32>(), clamp, 65535_f);
auto* round = b.Call(ty.vec2<f32>(), core::BuiltinFn::kRound, mul);
auto* conv = b.Convert(ty.vec2<u32>(), round);
auto* lower = b.Swizzle(ty.u32(), conv, {0});
auto* upper = b.ShiftLeft(ty.u32(), b.Swizzle(ty.u32(), conv, {1}), 16_u);
auto* result = b.Or(ty.u32(), lower, upper);
call->Result(0)->ReplaceAllUsesWith(result->Result(0));
});
call->Destroy();
}
void Unpack2x16Unorm(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* x = b.And(ty.u32(), args[0], 0xffff_u);
auto* y = b.ShiftRight(ty.u32(), args[0], 16_u);
auto* conv = b.Construct(ty.vec2<u32>(), x, y);
auto* flt_conv = b.Convert(ty.vec2<f32>(), conv);
auto* scale = b.Divide(ty.vec2<f32>(), flt_conv, 0xffff_f);
call->Result(0)->ReplaceAllUsesWith(scale->Result(0));
});
call->Destroy();
}
void Pack4x8Snorm(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* clamp_lower = b.Splat(ty.vec4<f32>(), -1_f);
auto* clamp_upper = b.Splat(ty.vec4<f32>(), 1_f);
auto* clamp =
b.Call(ty.vec4<f32>(), core::BuiltinFn::kClamp, args[0], clamp_lower, clamp_upper);
auto* mul = b.Multiply(ty.vec4<f32>(), clamp, 127_f);
auto* round = b.Call(ty.vec4<f32>(), core::BuiltinFn::kRound, mul);
auto* conv = b.Convert(ty.vec4<i32>(), round);
auto* band = b.And(ty.vec4<i32>(), conv, b.Splat(ty.vec4<i32>(), 0xff_i));
auto* x = b.Swizzle(ty.i32(), band, {0});
auto* y = b.ShiftLeft(ty.i32(), b.Swizzle(ty.i32(), band, {1}), 8_u);
auto* z = b.ShiftLeft(ty.i32(), b.Swizzle(ty.i32(), band, {2}), 16_u);
auto* w = b.ShiftLeft(ty.i32(), b.Swizzle(ty.i32(), band, {3}), 24_u);
b.CallWithResult<hlsl::ir::BuiltinCall>(
call->DetachResult(), hlsl::BuiltinFn::kAsuint,
b.Or(ty.i32(), x, b.Or(ty.i32(), y, b.Or(ty.i32(), z, w))));
});
call->Destroy();
}
void Unpack4x8Snorm(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* conv = b.Convert(ty.i32(), args[0]);
auto* x = b.ShiftLeft(ty.i32(), conv, 24_u);
auto* y = b.ShiftLeft(ty.i32(), conv, 16_u);
auto* z = b.ShiftLeft(ty.i32(), conv, 8_u);
auto* cons = b.Construct(ty.vec4<i32>(), x, y, z, conv);
auto* shr = b.ShiftRight(ty.vec4<i32>(), cons, b.Composite(ty.vec4<u32>(), 24_u));
auto* flt = b.Convert(ty.vec4<f32>(), shr);
auto* scale = b.Divide(ty.vec4<f32>(), flt, 127_f);
auto* lower = b.Splat(ty.vec4<f32>(), -1_f);
auto* upper = b.Splat(ty.vec4<f32>(), 1_f);
b.CallWithResult(call->DetachResult(), core::BuiltinFn::kClamp, scale, lower, upper);
});
call->Destroy();
}
void Pack4x8Unorm(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* clamp_lower = b.Splat(ty.vec4<f32>(), 0_f);
auto* clamp_upper = b.Splat(ty.vec4<f32>(), 1_f);
auto* clamp =
b.Call(ty.vec4<f32>(), core::BuiltinFn::kClamp, args[0], clamp_lower, clamp_upper);
auto* mul = b.Multiply(ty.vec4<f32>(), clamp, 255_f);
auto* round = b.Call(ty.vec4<f32>(), core::BuiltinFn::kRound, mul);
auto* conv = b.Convert(ty.vec4<u32>(), round);
auto* x = b.Swizzle(ty.u32(), conv, {0});
auto* y = b.ShiftLeft(ty.u32(), b.Swizzle(ty.u32(), conv, {1}), 8_u);
auto* z = b.ShiftLeft(ty.u32(), b.Swizzle(ty.u32(), conv, {2}), 16_u);
auto* w = b.ShiftLeft(ty.u32(), b.Swizzle(ty.u32(), conv, {3}), 24_u);
auto* res = b.Or(ty.u32(), x, b.Or(ty.u32(), y, b.Or(ty.u32(), z, w)));
call->Result(0)->ReplaceAllUsesWith(res->Result(0));
});
call->Destroy();
}
void Unpack4x8Unorm(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* val = args[0];
auto* x = b.And(ty.u32(), val, 0xff_u);
auto* y = b.And(ty.u32(), b.ShiftRight(ty.u32(), val, 8_u), 0xff_u);
auto* z = b.And(ty.u32(), b.ShiftRight(ty.u32(), val, 16_u), 0xff_u);
auto* w = b.ShiftRight(ty.u32(), val, 24_u);
auto* cons = b.Construct(ty.vec4<u32>(), x, y, z, w);
auto* conv = b.Convert(ty.vec4<f32>(), cons);
auto* scale = b.Divide(ty.vec4<f32>(), conv, 255_f);
call->Result(0)->ReplaceAllUsesWith(scale->Result(0));
});
call->Destroy();
}
void Pack4xI8(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* type = ty.Get<hlsl::type::Int8T4Packed>();
auto* packed = b.Call<hlsl::ir::BuiltinCall>(type, hlsl::BuiltinFn::kPackS8, args[0]);
auto* conv = b.Convert(ty.u32(), packed);
call->Result(0)->ReplaceAllUsesWith(conv->Result(0));
});
call->Destroy();
}
void Unpack4xI8(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* type = ty.Get<hlsl::type::Int8T4Packed>();
auto* conv = b.Convert(type, args[0]);
b.CallWithResult<hlsl::ir::BuiltinCall>(call->DetachResult(),
hlsl::BuiltinFn::kUnpackS8S32, conv);
});
call->Destroy();
}
void Pack4xU8(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* type = ty.Get<hlsl::type::Uint8T4Packed>();
auto* packed = b.Call<hlsl::ir::BuiltinCall>(type, hlsl::BuiltinFn::kPackU8, args[0]);
auto* conv = b.Convert(ty.u32(), packed);
call->Result(0)->ReplaceAllUsesWith(conv->Result(0));
});
call->Destroy();
}
void Unpack4xU8(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* type = ty.Get<hlsl::type::Uint8T4Packed>();
auto* conv = b.Convert(type, args[0]);
b.CallWithResult<hlsl::ir::BuiltinCall>(call->DetachResult(),
hlsl::BuiltinFn::kUnpackU8U32, conv);
});
call->Destroy();
}
void Pack4xI8Clamp(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* type = ty.Get<hlsl::type::Int8T4Packed>();
auto* packed =
b.Call<hlsl::ir::BuiltinCall>(type, hlsl::BuiltinFn::kPackClampS8, args[0]);
auto* conv = b.Convert(ty.u32(), packed);
call->Result(0)->ReplaceAllUsesWith(conv->Result(0));
});
call->Destroy();
}
void Dot4I8Packed(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* acc = b.Var("accumulator", b.Zero(ty.i32()));
b.CallWithResult<hlsl::ir::BuiltinCall>(
call->DetachResult(), hlsl::BuiltinFn::kDot4AddI8Packed, args[0], args[1], acc);
});
call->Destroy();
}
void Dot4U8Packed(core::ir::CoreBuiltinCall* call) {
auto args = call->Args();
b.InsertBefore(call, [&] {
auto* acc = b.Var("accumulator", b.Zero(ty.u32()));
b.CallWithResult<hlsl::ir::BuiltinCall>(
call->DetachResult(), hlsl::BuiltinFn::kDot4AddU8Packed, args[0], args[1], acc);
});
call->Destroy();
}
void Frexp(core::ir::CoreBuiltinCall* call) {
auto arg = call->Args()[0];
b.InsertBefore(call, [&] {
auto* arg_ty = arg->Type();
auto* arg_i32_ty = ty.MatchWidth(ty.i32(), arg_ty);
// Note: WGSL's frexp expects an i32 for exp, but HLSL expects f32 (same type as first
// arg), so we use a temp f32 var that we convert to i32 later.
auto* exp_out = b.Var(ty.ptr<function>(arg_ty));
// HLSL frexp writes exponent part to second out param, and returns the fraction
// (mantissa) part.
core::ir::Instruction* fract = b.Call<hlsl::ir::BuiltinCall>(
arg_ty, hlsl::BuiltinFn::kFrexp, arg, b.Load(exp_out));
// The returned fraction is always positive, but for WGSL, we want it to keep the sign
// of the input value.
auto* arg_sign = BuildSign(arg);
fract = b.Multiply(arg_ty, arg_sign, fract);
// Replace the call with new result struct
b.ConstructWithResult(call->DetachResult(), fract,
b.Convert(arg_i32_ty, b.Load(exp_out)));
});
call->Destroy();
}
void Modf(core::ir::CoreBuiltinCall* call) {
auto arg = call->Args()[0];
b.InsertBefore(call, [&] {
auto* arg_ty = arg->Type();
auto* whole = b.Var(ty.ptr<function>(arg_ty));
// HLSL modf writes whole (integer) part to second out param, and returns the fractional
// part.
auto* call_result =
b.Call<hlsl::ir::BuiltinCall>(arg_ty, hlsl::BuiltinFn::kModf, arg, b.Load(whole));
// Replace the call with new result struct
b.ConstructWithResult(call->DetachResult(), call_result, b.Load(whole));
});
call->Destroy();
}
void QuantizeToF16(core::ir::CoreBuiltinCall* call) {
auto* u32_type = ty.MatchWidth(ty.u32(), call->Result(0)->Type());
b.InsertBefore(call, [&] {
auto* inner = b.Call<hlsl::ir::BuiltinCall>(u32_type, hlsl::BuiltinFn::kF32Tof16,
call->Args()[0]);
b.CallWithResult<hlsl::ir::BuiltinCall>(call->DetachResult(),
hlsl::BuiltinFn::kF16Tof32, inner);
});
call->Destroy();
}
// Some HLSL methods do not support a signed int overload or the signed int overload has bugs.
// This helper function wraps the argument in `asuint` and the result in `asint` to use the
// unsigned int overload. It currently supports only single argument function signatures.
void BitcastToIntOverloadCall(core::ir::CoreBuiltinCall* call) {
TINT_ASSERT(call->Args().Length() == 1);
auto* arg = call->Args()[0];
auto* arg_type = arg->Type()->UnwrapRef();
if (arg_type->IsSignedIntegerScalarOrVector()) {
auto* result_ty = call->Result(0)->Type();
auto* u32_type = ty.MatchWidth(ty.u32(), result_ty);
b.InsertBefore(call, [&] {
core::ir::Value* val = arg;
// Bitcast of literal int vectors fails in DXC so extract arg to a var. See
// github.com/microsoft/DirectXShaderCompiler/issues/6851.
if (arg_type->IsSignedIntegerVector() && arg->Is<core::ir::Constant>()) {
val = b.Let("arg", arg)->Result(0);
}
auto* inner =
b.Call<hlsl::ir::BuiltinCall>(u32_type, hlsl::BuiltinFn::kAsuint, val);
auto* func = b.Call(u32_type, call->Func(), inner);
b.CallWithResult<hlsl::ir::BuiltinCall>(call->DetachResult(),
hlsl::BuiltinFn::kAsint, func);
});
call->Destroy();
}
}
// The following subgroup builtin functions are translated to HLSL as follows:
// +---------------------+----------------------------------------------------------------+
// | WGSL | HLSL |
// +---------------------+----------------------------------------------------------------+
// | subgroupShuffleXor | WaveReadLaneAt with index equal subgroup_invocation_id ^ mask |
// | subgroupShuffleUp | WaveReadLaneAt with index equal subgroup_invocation_id - delta |
// | subgroupShuffleDown | WaveReadLaneAt with index equal subgroup_invocation_id + delta |
// +---------------------+----------------------------------------------------------------+
void SubgroupShuffle(core::ir::CoreBuiltinCall* call) {
TINT_ASSERT(call->Args().Length() == 2);
b.InsertBefore(call, [&] {
auto* id = b.Call<hlsl::ir::BuiltinCall>(ty.u32(), hlsl::BuiltinFn::kWaveGetLaneIndex);
auto* arg2 = call->Args()[1];
core::ir::Instruction* inst = nullptr;
switch (call->Func()) {
case core::BuiltinFn::kSubgroupShuffleXor:
inst = b.Xor(ty.u32(), id, arg2);
break;
case core::BuiltinFn::kSubgroupShuffleUp:
inst = b.Subtract(ty.u32(), id, arg2);
break;
case core::BuiltinFn::kSubgroupShuffleDown:
inst = b.Add(ty.u32(), id, arg2);
break;
default:
TINT_UNREACHABLE();
}
b.CallWithResult<hlsl::ir::BuiltinCall>(
call->DetachResult(), hlsl::BuiltinFn::kWaveReadLaneAt, call->Args()[0], inst);
});
call->Destroy();
}
// The following subgroup builtin functions are translated to HLSL as follows:
// +-----------------------+----------------------+
// | WGSL | HLSL |
// +-----------------------+----------------------+
// | subgroupInclusiveAdd | WavePrefixSum(x) + x |
// | subgroupInclusiveMul | WavePrefixMul(x) * x |
// +-----------------------+----------------------+
void SubgroupInclusive(core::ir::CoreBuiltinCall* call) {
TINT_ASSERT(call->Args().Length() == 1);
b.InsertBefore(call, [&] {
auto builtin_sel = core::BuiltinFn::kNone;
switch (call->Func()) {
case core::BuiltinFn::kSubgroupInclusiveAdd:
builtin_sel = core::BuiltinFn::kSubgroupExclusiveAdd;
break;
case core::BuiltinFn::kSubgroupInclusiveMul:
builtin_sel = core::BuiltinFn::kSubgroupExclusiveMul;
break;
default:
TINT_UNREACHABLE();
}
auto* arg1 = call->Args()[0];
auto call_type = arg1->Type();
auto* exclusive_call = b.Call<core::ir::CoreBuiltinCall>(call_type, builtin_sel, arg1);
core::ir::Instruction* inst = nullptr;
switch (call->Func()) {
case core::BuiltinFn::kSubgroupInclusiveAdd:
inst = b.Add(call_type, exclusive_call, arg1);
break;
case core::BuiltinFn::kSubgroupInclusiveMul:
inst = b.Multiply(call_type, exclusive_call, arg1);
break;
default:
TINT_UNREACHABLE();
}
call->Result(0)->ReplaceAllUsesWith(inst->Result(0));
});
call->Destroy();
}
};
} // namespace
Result<SuccessType> BuiltinPolyfill(core::ir::Module& ir) {
auto result = ValidateAndDumpIfNeeded(ir, "hlsl.BuiltinPolyfill",
core::ir::Capabilities{
core::ir::Capability::kAllowClipDistancesOnF32,
});
if (result != Success) {
return result.Failure();
}
State{ir}.Process();
return Success;
}
} // namespace tint::hlsl::writer::raise