blob: 2208df346c21857a5001e368287282689a8a2c41 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/ast/stage_attribute.h"
#include "src/tint/writer/msl/test_helper.h"
using namespace tint::number_suffixes; // NOLINT
namespace tint::writer::msl {
namespace {
using MslGeneratorImplTest = TestHelper;
TEST_F(MslGeneratorImplTest, InvalidProgram) {
Diagnostics().add_error(diag::System::Writer, "make the program invalid");
ASSERT_FALSE(IsValid());
auto program = std::make_unique<Program>(std::move(*this));
ASSERT_FALSE(program->IsValid());
auto result = Generate(program.get(), Options{});
EXPECT_EQ(result.error, "input program is not valid");
}
TEST_F(MslGeneratorImplTest, Generate) {
Func("my_func", utils::Empty, ty.void_(), utils::Empty,
utils::Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1_i),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
kernel void my_func() {
return;
}
)");
}
struct MslBuiltinData {
ast::BuiltinValue builtin;
const char* attribute_name;
};
inline std::ostream& operator<<(std::ostream& out, MslBuiltinData data) {
out << data.builtin;
return out;
}
using MslBuiltinConversionTest = TestParamHelper<MslBuiltinData>;
TEST_P(MslBuiltinConversionTest, Emit) {
auto params = GetParam();
GeneratorImpl& gen = Build();
EXPECT_EQ(gen.builtin_to_attribute(params.builtin), std::string(params.attribute_name));
}
INSTANTIATE_TEST_SUITE_P(
MslGeneratorImplTest,
MslBuiltinConversionTest,
testing::Values(
MslBuiltinData{ast::BuiltinValue::kPosition, "position"},
MslBuiltinData{ast::BuiltinValue::kVertexIndex, "vertex_id"},
MslBuiltinData{ast::BuiltinValue::kInstanceIndex, "instance_id"},
MslBuiltinData{ast::BuiltinValue::kFrontFacing, "front_facing"},
MslBuiltinData{ast::BuiltinValue::kFragDepth, "depth(any)"},
MslBuiltinData{ast::BuiltinValue::kLocalInvocationId, "thread_position_in_threadgroup"},
MslBuiltinData{ast::BuiltinValue::kLocalInvocationIndex, "thread_index_in_threadgroup"},
MslBuiltinData{ast::BuiltinValue::kGlobalInvocationId, "thread_position_in_grid"},
MslBuiltinData{ast::BuiltinValue::kWorkgroupId, "threadgroup_position_in_grid"},
MslBuiltinData{ast::BuiltinValue::kNumWorkgroups, "threadgroups_per_grid"},
MslBuiltinData{ast::BuiltinValue::kSampleIndex, "sample_id"},
MslBuiltinData{ast::BuiltinValue::kSampleMask, "sample_mask"},
MslBuiltinData{ast::BuiltinValue::kPointSize, "point_size"}));
TEST_F(MslGeneratorImplTest, HasInvariantAttribute_True) {
auto* out = Structure("Out", utils::Vector{
Member("pos", ty.vec4<f32>(),
utils::Vector{
Builtin(ast::BuiltinValue::kPosition),
Invariant(),
}),
});
Func("vert_main", utils::Empty, ty.Of(out), utils::Vector{Return(Construct(ty.Of(out)))},
utils::Vector{
Stage(ast::PipelineStage::kVertex),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_TRUE(gen.HasInvariant());
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
#if __METAL_VERSION__ >= 210
#define TINT_INVARIANT @invariant
#else
#define TINT_INVARIANT
#endif
struct Out {
float4 pos [[position]] TINT_INVARIANT;
};
vertex Out vert_main() {
return {};
}
)");
}
TEST_F(MslGeneratorImplTest, HasInvariantAttribute_False) {
auto* out = Structure("Out", utils::Vector{
Member("pos", ty.vec4<f32>(),
utils::Vector{
Builtin(ast::BuiltinValue::kPosition),
}),
});
Func("vert_main", utils::Empty, ty.Of(out), utils::Vector{Return(Construct(ty.Of(out)))},
utils::Vector{
Stage(ast::PipelineStage::kVertex),
});
GeneratorImpl& gen = Build();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_FALSE(gen.HasInvariant());
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
struct Out {
float4 pos [[position]];
};
vertex Out vert_main() {
return {};
}
)");
}
TEST_F(MslGeneratorImplTest, WorkgroupMatrix) {
GlobalVar("m", ty.mat2x2<f32>(), ast::StorageClass::kWorkgroup);
Func("comp_main", utils::Empty, ty.void_(), utils::Vector{Decl(Let("x", nullptr, Expr("m")))},
utils::Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1_i),
});
GeneratorImpl& gen = SanitizeAndBuild();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
struct tint_symbol_3 {
float2x2 m;
};
void comp_main_inner(uint local_invocation_index, threadgroup float2x2* const tint_symbol) {
{
*(tint_symbol) = float2x2(float2(0.0f), float2(0.0f));
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float2x2 const x = *(tint_symbol);
}
kernel void comp_main(threadgroup tint_symbol_3* tint_symbol_2 [[threadgroup(0)]], uint local_invocation_index [[thread_index_in_threadgroup]]) {
threadgroup float2x2* const tint_symbol_1 = &((*(tint_symbol_2)).m);
comp_main_inner(local_invocation_index, tint_symbol_1);
return;
}
)");
auto allocations = gen.DynamicWorkgroupAllocations();
ASSERT_TRUE(allocations.count("comp_main"));
ASSERT_EQ(allocations["comp_main"].size(), 1u);
EXPECT_EQ(allocations["comp_main"][0], 2u * 2u * sizeof(float));
}
TEST_F(MslGeneratorImplTest, WorkgroupMatrixInArray) {
GlobalVar("m", ty.array(ty.mat2x2<f32>(), 4_i), ast::StorageClass::kWorkgroup);
Func("comp_main", utils::Empty, ty.void_(), utils::Vector{Decl(Let("x", nullptr, Expr("m")))},
utils::Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1_i),
});
GeneratorImpl& gen = SanitizeAndBuild();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
template<typename T, size_t N>
struct tint_array {
const constant T& operator[](size_t i) const constant { return elements[i]; }
device T& operator[](size_t i) device { return elements[i]; }
const device T& operator[](size_t i) const device { return elements[i]; }
thread T& operator[](size_t i) thread { return elements[i]; }
const thread T& operator[](size_t i) const thread { return elements[i]; }
threadgroup T& operator[](size_t i) threadgroup { return elements[i]; }
const threadgroup T& operator[](size_t i) const threadgroup { return elements[i]; }
T elements[N];
};
struct tint_symbol_3 {
tint_array<float2x2, 4> m;
};
void comp_main_inner(uint local_invocation_index, threadgroup tint_array<float2x2, 4>* const tint_symbol) {
for(uint idx = local_invocation_index; (idx < 4u); idx = (idx + 1u)) {
uint const i = idx;
(*(tint_symbol))[i] = float2x2(float2(0.0f), float2(0.0f));
}
threadgroup_barrier(mem_flags::mem_threadgroup);
tint_array<float2x2, 4> const x = *(tint_symbol);
}
kernel void comp_main(threadgroup tint_symbol_3* tint_symbol_2 [[threadgroup(0)]], uint local_invocation_index [[thread_index_in_threadgroup]]) {
threadgroup tint_array<float2x2, 4>* const tint_symbol_1 = &((*(tint_symbol_2)).m);
comp_main_inner(local_invocation_index, tint_symbol_1);
return;
}
)");
auto allocations = gen.DynamicWorkgroupAllocations();
ASSERT_TRUE(allocations.count("comp_main"));
ASSERT_EQ(allocations["comp_main"].size(), 1u);
EXPECT_EQ(allocations["comp_main"][0], 4u * 2u * 2u * sizeof(float));
}
TEST_F(MslGeneratorImplTest, WorkgroupMatrixInStruct) {
Structure("S1", utils::Vector{
Member("m1", ty.mat2x2<f32>()),
Member("m2", ty.mat4x4<f32>()),
});
Structure("S2", utils::Vector{
Member("s", ty.type_name("S1")),
});
GlobalVar("s", ty.type_name("S2"), ast::StorageClass::kWorkgroup);
Func("comp_main", utils::Empty, ty.void_(), utils::Vector{Decl(Let("x", nullptr, Expr("s")))},
utils::Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1_i),
});
GeneratorImpl& gen = SanitizeAndBuild();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
struct S1 {
float2x2 m1;
float4x4 m2;
};
struct S2 {
S1 s;
};
struct tint_symbol_4 {
S2 s;
};
void comp_main_inner(uint local_invocation_index, threadgroup S2* const tint_symbol_1) {
{
S2 const tint_symbol = {};
*(tint_symbol_1) = tint_symbol;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
S2 const x = *(tint_symbol_1);
}
kernel void comp_main(threadgroup tint_symbol_4* tint_symbol_3 [[threadgroup(0)]], uint local_invocation_index [[thread_index_in_threadgroup]]) {
threadgroup S2* const tint_symbol_2 = &((*(tint_symbol_3)).s);
comp_main_inner(local_invocation_index, tint_symbol_2);
return;
}
)");
auto allocations = gen.DynamicWorkgroupAllocations();
ASSERT_TRUE(allocations.count("comp_main"));
ASSERT_EQ(allocations["comp_main"].size(), 1u);
EXPECT_EQ(allocations["comp_main"][0], (2 * 2 * sizeof(float)) + (4u * 4u * sizeof(float)));
}
TEST_F(MslGeneratorImplTest, WorkgroupMatrix_Multiples) {
GlobalVar("m1", ty.mat2x2<f32>(), ast::StorageClass::kWorkgroup);
GlobalVar("m2", ty.mat2x3<f32>(), ast::StorageClass::kWorkgroup);
GlobalVar("m3", ty.mat2x4<f32>(), ast::StorageClass::kWorkgroup);
GlobalVar("m4", ty.mat3x2<f32>(), ast::StorageClass::kWorkgroup);
GlobalVar("m5", ty.mat3x3<f32>(), ast::StorageClass::kWorkgroup);
GlobalVar("m6", ty.mat3x4<f32>(), ast::StorageClass::kWorkgroup);
GlobalVar("m7", ty.mat4x2<f32>(), ast::StorageClass::kWorkgroup);
GlobalVar("m8", ty.mat4x3<f32>(), ast::StorageClass::kWorkgroup);
GlobalVar("m9", ty.mat4x4<f32>(), ast::StorageClass::kWorkgroup);
Func("main1", utils::Empty, ty.void_(),
utils::Vector{
Decl(Let("a1", nullptr, Expr("m1"))),
Decl(Let("a2", nullptr, Expr("m2"))),
Decl(Let("a3", nullptr, Expr("m3"))),
},
utils::Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1_i),
});
Func("main2", utils::Empty, ty.void_(),
utils::Vector{
Decl(Let("a1", nullptr, Expr("m4"))),
Decl(Let("a2", nullptr, Expr("m5"))),
Decl(Let("a3", nullptr, Expr("m6"))),
},
utils::Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1_i),
});
Func("main3", utils::Empty, ty.void_(),
utils::Vector{
Decl(Let("a1", nullptr, Expr("m7"))),
Decl(Let("a2", nullptr, Expr("m8"))),
Decl(Let("a3", nullptr, Expr("m9"))),
},
utils::Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1_i),
});
Func("main4_no_usages", utils::Empty, ty.void_(), utils::Empty,
utils::Vector{
Stage(ast::PipelineStage::kCompute),
WorkgroupSize(1_i),
});
GeneratorImpl& gen = SanitizeAndBuild();
ASSERT_TRUE(gen.Generate()) << gen.error();
EXPECT_EQ(gen.result(), R"(#include <metal_stdlib>
using namespace metal;
struct tint_symbol_7 {
float2x2 m1;
float2x3 m2;
float2x4 m3;
};
struct tint_symbol_15 {
float3x2 m4;
float3x3 m5;
float3x4 m6;
};
struct tint_symbol_23 {
float4x2 m7;
float4x3 m8;
float4x4 m9;
};
void main1_inner(uint local_invocation_index, threadgroup float2x2* const tint_symbol, threadgroup float2x3* const tint_symbol_1, threadgroup float2x4* const tint_symbol_2) {
{
*(tint_symbol) = float2x2(float2(0.0f), float2(0.0f));
*(tint_symbol_1) = float2x3(float3(0.0f), float3(0.0f));
*(tint_symbol_2) = float2x4(float4(0.0f), float4(0.0f));
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float2x2 const a1 = *(tint_symbol);
float2x3 const a2 = *(tint_symbol_1);
float2x4 const a3 = *(tint_symbol_2);
}
kernel void main1(threadgroup tint_symbol_7* tint_symbol_4 [[threadgroup(0)]], uint local_invocation_index [[thread_index_in_threadgroup]]) {
threadgroup float2x2* const tint_symbol_3 = &((*(tint_symbol_4)).m1);
threadgroup float2x3* const tint_symbol_5 = &((*(tint_symbol_4)).m2);
threadgroup float2x4* const tint_symbol_6 = &((*(tint_symbol_4)).m3);
main1_inner(local_invocation_index, tint_symbol_3, tint_symbol_5, tint_symbol_6);
return;
}
void main2_inner(uint local_invocation_index_1, threadgroup float3x2* const tint_symbol_8, threadgroup float3x3* const tint_symbol_9, threadgroup float3x4* const tint_symbol_10) {
{
*(tint_symbol_8) = float3x2(float2(0.0f), float2(0.0f), float2(0.0f));
*(tint_symbol_9) = float3x3(float3(0.0f), float3(0.0f), float3(0.0f));
*(tint_symbol_10) = float3x4(float4(0.0f), float4(0.0f), float4(0.0f));
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float3x2 const a1 = *(tint_symbol_8);
float3x3 const a2 = *(tint_symbol_9);
float3x4 const a3 = *(tint_symbol_10);
}
kernel void main2(threadgroup tint_symbol_15* tint_symbol_12 [[threadgroup(0)]], uint local_invocation_index_1 [[thread_index_in_threadgroup]]) {
threadgroup float3x2* const tint_symbol_11 = &((*(tint_symbol_12)).m4);
threadgroup float3x3* const tint_symbol_13 = &((*(tint_symbol_12)).m5);
threadgroup float3x4* const tint_symbol_14 = &((*(tint_symbol_12)).m6);
main2_inner(local_invocation_index_1, tint_symbol_11, tint_symbol_13, tint_symbol_14);
return;
}
void main3_inner(uint local_invocation_index_2, threadgroup float4x2* const tint_symbol_16, threadgroup float4x3* const tint_symbol_17, threadgroup float4x4* const tint_symbol_18) {
{
*(tint_symbol_16) = float4x2(float2(0.0f), float2(0.0f), float2(0.0f), float2(0.0f));
*(tint_symbol_17) = float4x3(float3(0.0f), float3(0.0f), float3(0.0f), float3(0.0f));
*(tint_symbol_18) = float4x4(float4(0.0f), float4(0.0f), float4(0.0f), float4(0.0f));
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float4x2 const a1 = *(tint_symbol_16);
float4x3 const a2 = *(tint_symbol_17);
float4x4 const a3 = *(tint_symbol_18);
}
kernel void main3(threadgroup tint_symbol_23* tint_symbol_20 [[threadgroup(0)]], uint local_invocation_index_2 [[thread_index_in_threadgroup]]) {
threadgroup float4x2* const tint_symbol_19 = &((*(tint_symbol_20)).m7);
threadgroup float4x3* const tint_symbol_21 = &((*(tint_symbol_20)).m8);
threadgroup float4x4* const tint_symbol_22 = &((*(tint_symbol_20)).m9);
main3_inner(local_invocation_index_2, tint_symbol_19, tint_symbol_21, tint_symbol_22);
return;
}
kernel void main4_no_usages() {
return;
}
)");
auto allocations = gen.DynamicWorkgroupAllocations();
ASSERT_TRUE(allocations.count("main1"));
ASSERT_TRUE(allocations.count("main2"));
ASSERT_TRUE(allocations.count("main3"));
EXPECT_EQ(allocations.count("main4_no_usages"), 0u);
ASSERT_EQ(allocations["main1"].size(), 1u);
EXPECT_EQ(allocations["main1"][0], 20u * sizeof(float));
ASSERT_EQ(allocations["main2"].size(), 1u);
EXPECT_EQ(allocations["main2"][0], 32u * sizeof(float));
ASSERT_EQ(allocations["main3"].size(), 1u);
EXPECT_EQ(allocations["main3"][0], 40u * sizeof(float));
}
} // namespace
} // namespace tint::writer::msl