blob: 09182382d32155449921f656749bd41ea7b46732 [file] [log] [blame]
// Copyright 2022 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/wgsl/ast/transform/direct_variable_access.h"
#include <algorithm>
#include <string>
#include <utility>
#include "src/tint/lang/core/fluent_types.h"
#include "src/tint/lang/core/type/abstract_int.h"
#include "src/tint/lang/wgsl/ast/transform/hoist_to_decl_before.h"
#include "src/tint/lang/wgsl/ast/traverse_expressions.h"
#include "src/tint/lang/wgsl/program/clone_context.h"
#include "src/tint/lang/wgsl/program/program_builder.h"
#include "src/tint/lang/wgsl/resolver/resolve.h"
#include "src/tint/lang/wgsl/sem/call.h"
#include "src/tint/lang/wgsl/sem/function.h"
#include "src/tint/lang/wgsl/sem/index_accessor_expression.h"
#include "src/tint/lang/wgsl/sem/member_accessor_expression.h"
#include "src/tint/lang/wgsl/sem/module.h"
#include "src/tint/lang/wgsl/sem/statement.h"
#include "src/tint/lang/wgsl/sem/struct.h"
#include "src/tint/lang/wgsl/sem/variable.h"
#include "src/tint/utils/containers/reverse.h"
#include "src/tint/utils/macros/scoped_assignment.h"
#include "src/tint/utils/text/string_stream.h"
TINT_INSTANTIATE_TYPEINFO(tint::ast::transform::DirectVariableAccess);
TINT_INSTANTIATE_TYPEINFO(tint::ast::transform::DirectVariableAccess::Config);
using namespace tint::core::number_suffixes; // NOLINT
using namespace tint::core::fluent_types; // NOLINT
namespace tint::ast::transform {
namespace {
/// AccessRoot describes the root of an AccessShape.
struct AccessRoot {
/// The pointer-unwrapped type of the *transformed* variable.
/// This may be different for pointers in 'private' and 'function' address space, as the pointer
/// parameter type is to the *base object* instead of the input pointer type.
tint::core::type::Type const* type = nullptr;
/// The originating module-scope variable ('private', 'storage', 'uniform', 'workgroup'),
/// function-scope variable ('function'), or pointer parameter in the source program.
tint::sem::Variable const* variable = nullptr;
/// The address space of the variable or pointer type.
tint::core::AddressSpace address_space = tint::core::AddressSpace::kUndefined;
/// @return a hash code for this object
tint::HashCode HashCode() const { return Hash(type, variable); }
};
/// Inequality operator for AccessRoot
bool operator!=(const AccessRoot& a, const AccessRoot& b) {
return a.type != b.type || a.variable != b.variable;
}
/// DynamicIndex is used by DirectVariableAccess::State::AccessOp to indicate an array, matrix or
/// vector index.
struct DynamicIndex {
/// @return a hash code for this object
tint::HashCode HashCode() const { return 42 /* empty struct: any number will do */; }
};
/// Inequality operator for DynamicIndex
bool operator!=(const DynamicIndex&, const DynamicIndex&) {
return false; // empty struct: two DynamicIndex objects are always equal
}
/// AccessOp describes a single access in an access chain.
/// The access is one of:
/// Symbol - a struct member access.
/// DynamicIndex - a runtime index on an array, matrix column, or vector element.
using AccessOp = std::variant<tint::Symbol, DynamicIndex>;
/// A vector of AccessOp. Describes the static "path" from a root variable to an element
/// within the variable. Array accessors index expressions are held externally to the
/// AccessShape, so AccessShape will be considered equal even if the array, matrix or vector
/// index values differ.
///
/// For example, consider the following:
///
/// ```
/// struct A {
/// x : array<i32, 8>,
/// y : u32,
/// };
/// struct B {
/// x : i32,
/// y : array<A, 4>
/// };
/// var<workgroup> C : B;
/// ```
///
/// The following AccessShape would describe the following:
///
/// +==============================+===============+=================================+
/// | AccessShape | Type | Expression |
/// +==============================+===============+=================================+
/// | [ Variable 'C', Symbol 'x' ] | i32 | C.x |
/// +------------------------------+---------------+---------------------------------+
/// | [ Variable 'C', Symbol 'y' ] | array<A, 4> | C.y |
/// +------------------------------+---------------+---------------------------------+
/// | [ Variable 'C', Symbol 'y', | A | C.y[dyn_idx[0]] |
/// | DynamicIndex ] | | |
/// +------------------------------+---------------+---------------------------------+
/// | [ Variable 'C', Symbol 'y', | array<i32, 8> | C.y[dyn_idx[0]].x |
/// | DynamicIndex, Symbol 'x' ] | | |
/// +------------------------------+---------------+---------------------------------+
/// | [ Variable 'C', Symbol 'y', | i32 | C.y[dyn_idx[0]].x[dyn_idx[1]] |
/// | DynamicIndex, Symbol 'x', | | |
/// | DynamicIndex ] | | |
/// +------------------------------+---------------+---------------------------------+
/// | [ Variable 'C', Symbol 'y', | u32 | C.y[dyn_idx[0]].y |
/// | DynamicIndex, Symbol 'y' ] | | |
/// +------------------------------+---------------+---------------------------------+
///
/// Where: `dyn_idx` is the AccessChain::dynamic_indices.
struct AccessShape {
// The originating variable.
AccessRoot root;
/// The chain of access ops.
tint::Vector<AccessOp, 8> ops;
/// @returns the number of DynamicIndex operations in #ops.
uint32_t NumDynamicIndices() const {
uint32_t count = 0;
for (auto& op : ops) {
if (std::holds_alternative<DynamicIndex>(op)) {
count++;
}
}
return count;
}
/// @return a hash code for this object
tint::HashCode HashCode() const { return Hash(root, ops); }
};
/// Equality operator for AccessShape
bool operator==(const AccessShape& a, const AccessShape& b) {
return !(a.root != b.root) && a.ops == b.ops;
}
/// Inequality operator for AccessShape
bool operator!=(const AccessShape& a, const AccessShape& b) {
return !(a == b);
}
/// AccessChain describes a chain of access expressions originating from a variable.
struct AccessChain : AccessShape {
/// The array accessor index expressions. This vector is indexed by the `DynamicIndex`s in
/// #indices.
Vector<const sem::ValueExpression*, 8> dynamic_indices;
/// If true, then this access chain is used as an argument to call a variant.
bool used_in_call = false;
};
} // namespace
/// The PIMPL state for the DirectVariableAccess transform
struct DirectVariableAccess::State {
/// Constructor
/// @param src the source Program
/// @param options the transform options
State(const Program& src, const Options& options)
: ctx{&b, &src, /* auto_clone_symbols */ true}, opts(options) {}
/// The main function for the transform.
/// @returns the ApplyResult
ApplyResult Run() {
// If there are no functions with pointer parameters, then this transform can be skipped.
if (!AnyPointerParameters()) {
return SkipTransform;
}
// Stage 1:
// Walk all the expressions of the program, starting with the expression leaves.
// Whenever we find an identifier resolving to a var, pointer parameter or pointer let to
// another chain, start constructing an access chain. When chains are accessed, these chains
// are grown and moved up the expression tree. After this stage, we are left with all the
// expression access chains to variables that we may need to transform.
for (auto* node : ctx.src->ASTNodes().Objects()) {
if (auto* expr = sem.GetVal(node)) {
AppendAccessChain(expr);
}
}
// Stage 2:
// Walk the functions in dependency order, starting with the entry points.
// Construct the set of function 'variants' by examining the calls made by each function to
// their call target. Each variant holds a map of pointer parameter to access chains, and
// will have the pointer parameters replaced with an array of u32s, used to perform the
// pointer indexing in the variant.
// Function call pointer arguments are replaced with an array of these dynamic indices.
auto decls = sem.Module()->DependencyOrderedDeclarations();
for (auto* decl : tint::Reverse(decls)) {
if (auto* fn = sem.Get<sem::Function>(decl)) {
auto* fn_info = FnInfoFor(fn);
ProcessFunction(fn, fn_info);
TransformFunction(fn, fn_info);
}
}
// Stage 3:
// Filter out access chains that do not need transforming.
// Ensure that chain dynamic index expressions are evaluated once at the correct place
ProcessAccessChains();
// Stage 4:
// Replace all the access chain expressions in all functions with reconstructed expression
// using the originating global variable, and any dynamic indices passed in to the function
// variant.
TransformAccessChainExpressions();
// Stage 5:
// Actually kick the clone.
CloneState state;
clone_state = &state;
ctx.Clone();
return resolver::Resolve(b);
}
private:
/// Holds symbols of the transformed pointer parameter.
/// If both symbols are valid, then #base_ptr and #indices are both program-unique symbols
/// derived from the original parameter name.
/// If only one symbol is valid, then this is the original parameter symbol.
struct PtrParamSymbols {
/// The symbol of the base pointer parameter.
Symbol base_ptr;
/// The symbol of the dynamic indicies parameter.
Symbol indices;
};
/// FnVariant describes a unique variant of a function, specialized by the AccessShape of the
/// pointer arguments - also known as the variant's "signature".
///
/// To help understand what a variant is, consider the following WGSL:
///
/// ```
/// fn F(a : ptr<storage, u32>, b : u32, c : ptr<storage, u32>) {
/// return *a + b + *c;
/// }
///
/// @group(0) @binding(0) var<storage> S0 : u32;
/// @group(0) @binding(0) var<storage> S1 : array<u32, 64>;
///
/// fn x() {
/// F(&S0, 0, &S0); // (A)
/// F(&S0, 0, &S0); // (B)
/// F(&S1[0], 1, &S0); // (C)
/// F(&S1[5], 2, &S0); // (D)
/// F(&S1[5], 3, &S1[3]); // (E)
/// F(&S1[7], 4, &S1[2]); // (F)
/// }
/// ```
///
/// Given the calls in x(), function F() will have 3 variants:
/// (1) F<S0,S0> - called by (A) and (B).
/// Note that only 'uniform', 'storage' and 'workgroup' pointer
/// parameters are considered for a variant signature, and so
/// the argument for parameter 'b' is not included in the
/// signature.
/// (2) F<S1[dyn_idx],S0> - called by (C) and (D).
/// Note that the array index value is external to the
/// AccessShape, and so is not part of the variant signature.
/// (3) F<S1[dyn_idx],S1[dyn_idx]> - called by (E) and (F).
///
/// Each variant of the function will be emitted as a separate function by the transform, and
/// would look something like:
///
/// ```
/// // variant F<S0,S0> (1)
/// fn F_S0_S0(b : u32) {
/// return S0 + b + S0;
/// }
///
/// type S1_X = array<u32, 1>;
///
/// // variant F<S1[dyn_idx],S0> (2)
/// fn F_S1_X_S0(a : S1_X, b : u32) {
/// return S1[a[0]] + b + S0;
/// }
///
/// // variant F<S1[dyn_idx],S1[dyn_idx]> (3)
/// fn F_S1_X_S1_X(a : S1_X, b : u32, c : S1_X) {
/// return S1[a[0]] + b + S1[c[0]];
/// }
///
/// @group(0) @binding(0) var<storage> S0 : u32;
/// @group(0) @binding(0) var<storage> S1 : array<u32, 64>;
///
/// fn x() {
/// F_S0_S0(0); // (A)
/// F(&S0, 0, &S0); // (B)
/// F_S1_X_S0(S1_X(0), 1); // (C)
/// F_S1_X_S0(S1_X(5), 2); // (D)
/// F_S1_X_S1_X(S1_X(5), 3, S1_X(3)); // (E)
/// F_S1_X_S1_X(S1_X(7), 4, S1_X(2)); // (F)
/// }
/// ```
struct FnVariant {
/// The signature of the variant is a map of each of the function's 'uniform', 'storage' and
/// 'workgroup' pointer parameters to the caller's AccessShape.
using Signature = Hashmap<const sem::Parameter*, AccessShape, 4>;
/// The unique name of the variant.
/// The symbol is in the `ctx.dst` program namespace.
Symbol name;
/// A map of direct calls made by this variant to the name of other function variants.
Hashmap<const sem::Call*, Symbol, 4> calls;
/// A map of input program parameter to output parameter symbols.
Hashmap<const sem::Parameter*, PtrParamSymbols, 4> ptr_param_symbols;
/// The declaration order of the variant, in relation to other variants of the same
/// function. Used to ensure deterministic ordering of the transform, as map iteration is
/// not deterministic between compilers.
size_t order = 0;
};
/// FnInfo holds information about a function in the input program.
struct FnInfo {
/// A map of variant signature to the variant data.
Hashmap<FnVariant::Signature, FnVariant, 8> variants;
/// A map of expressions that have been hoisted to a 'let' declaration in the function.
Hashmap<const sem::ValueExpression*, Symbol, 8> hoisted_exprs;
/// @returns the variants of the function in a deterministically ordered vector.
tint::Vector<std::pair<const FnVariant::Signature*, FnVariant*>, 8> SortedVariants() {
tint::Vector<std::pair<const FnVariant::Signature*, FnVariant*>, 8> out;
out.Reserve(variants.Count());
for (auto& it : variants) {
out.Push({&it.key.Value(), &it.value});
}
out.Sort([&](auto& va, auto& vb) { return va.second->order < vb.second->order; });
return out;
}
};
/// The program builder
ProgramBuilder b;
/// The clone context
program::CloneContext ctx;
/// The transform options
const Options& opts;
/// Alias to the semantic info in ctx.src
const sem::Info& sem = ctx.src->Sem();
/// Alias to the symbols in ctx.src
const SymbolTable& sym = ctx.src->Symbols();
/// Map of semantic function to the function info
Hashmap<const sem::Function*, FnInfo*, 8> fns;
/// Map of AccessShape to the name of a type alias for the an array<u32, N> used for the
/// dynamic indices of an access chain, passed down as the transformed type of a variant's
/// pointer parameter.
Hashmap<AccessShape, Symbol, 8> dynamic_index_array_aliases;
/// Map of semantic expression to AccessChain
Hashmap<const sem::ValueExpression*, AccessChain*, 32> access_chains;
/// Allocator for FnInfo
BlockAllocator<FnInfo> fn_info_allocator;
/// Allocator for AccessChain
BlockAllocator<AccessChain> access_chain_allocator;
/// Helper used for hoisting expressions to lets
HoistToDeclBefore hoist{ctx};
/// Map of string to unique symbol (no collisions in output program).
Hashmap<std::string, Symbol, 8> unique_symbols;
/// CloneState holds pointers to the current function, variant and variant's parameters.
struct CloneState {
/// The current function being cloned
FnInfo* current_function = nullptr;
/// The current function variant being built
FnVariant* current_variant = nullptr;
/// The signature of the current function variant being built
const FnVariant::Signature* current_variant_sig = nullptr;
};
/// The clone state.
/// Only valid during the lifetime of the program::CloneContext::Clone().
CloneState* clone_state = nullptr;
/// @returns true if any user functions have parameters of a pointer type.
bool AnyPointerParameters() const {
for (auto* fn : ctx.src->AST().Functions()) {
for (auto* param : fn->params) {
if (sem.Get(param)->Type()->Is<core::type::Pointer>()) {
return true;
}
}
}
return false;
}
/// AppendAccessChain creates or extends an existing AccessChain for the given expression,
/// modifying the #access_chains map.
void AppendAccessChain(const sem::ValueExpression* expr) {
// take_chain moves the AccessChain from the expression `from` to the expression `expr`.
// Returns nullptr if `from` did not hold an access chain.
auto take_chain = [&](const sem::ValueExpression* from) -> AccessChain* {
if (auto* chain = AccessChainFor(from)) {
access_chains.Remove(from);
access_chains.Add(expr, chain);
return chain;
}
return nullptr;
};
Switch(
expr,
[&](const sem::VariableUser* user) {
// Expression resolves to a variable.
auto* variable = user->Variable();
auto create_new_chain = [&] {
auto* chain = access_chain_allocator.Create();
chain->root.variable = variable;
chain->root.type = variable->Type();
chain->root.address_space = variable->AddressSpace();
if (auto* ptr = chain->root.type->As<core::type::Pointer>()) {
chain->root.address_space = ptr->AddressSpace();
}
access_chains.Add(expr, chain);
};
Switch(
variable->Declaration(),
[&](const Var*) {
if (variable->AddressSpace() != core::AddressSpace::kHandle) {
// Start a new access chain for the non-handle 'var' access
create_new_chain();
}
},
[&](const Parameter*) {
if (variable->Type()->Is<core::type::Pointer>()) {
// Start a new access chain for the pointer parameter access
create_new_chain();
}
},
[&](const Let*) {
if (variable->Type()->Is<core::type::Pointer>()) {
// variable is a pointer-let.
auto* init = sem.GetVal(variable->Declaration()->initializer);
// Note: We do not use take_chain() here, as we need to preserve the
// AccessChain on the let's initializer, as the let needs its
// initializer updated, and the let may be used multiple times. Instead
// we copy the let's AccessChain into a a new AccessChain.
if (auto* init_chain = AccessChainFor(init)) {
access_chains.Add(expr, access_chain_allocator.Create(*init_chain));
}
}
});
},
[&](const sem::StructMemberAccess* a) {
// Structure member access.
// Append the Symbol of the member name to the chain, and move the chain to the
// member access expression.
if (auto* chain = take_chain(a->Object())) {
chain->ops.Push(a->Member()->Name());
}
},
[&](const sem::IndexAccessorExpression* a) {
// Array, matrix or vector index.
// Store the index expression into AccessChain::dynamic_indices, append a
// DynamicIndex to the chain, and move the chain to the index accessor expression.
if (auto* chain = take_chain(a->Object())) {
chain->ops.Push(DynamicIndex{});
chain->dynamic_indices.Push(a->Index());
}
},
[&](const sem::ValueExpression* e) {
if (auto* unary = e->Declaration()->As<UnaryOpExpression>()) {
// Unary op.
// If this is a '&' or '*', simply move the chain to the unary op expression.
if (unary->op == core::UnaryOp::kAddressOf ||
unary->op == core::UnaryOp::kIndirection) {
take_chain(sem.GetVal(unary->expr));
}
}
});
}
/// MaybeHoistDynamicIndices examines the AccessChain::dynamic_indices member of @p chain,
/// hoisting all expressions to their own uniquely named 'let' if none of the following are
/// true:
/// 1. The index expression is a constant value.
/// 2. The index expression's statement is the same as @p usage.
/// 3. The index expression is an identifier resolving to a 'let', 'const' or parameter, AND
/// that identifier resolves to the same variable at @p usage.
///
/// A dynamic index will only be hoisted once. The hoisting applies to all variants of the
/// function that holds the dynamic index expression.
void MaybeHoistDynamicIndices(AccessChain* chain, const sem::Statement* usage) {
for (auto& idx : chain->dynamic_indices) {
if (idx->ConstantValue()) {
// Dynamic index is constant.
continue; // Hoisting not required.
}
if (idx->Stmt() == usage) {
// The index expression is owned by the statement of usage.
continue; // Hoisting not required
}
if (auto* idx_variable_user = idx->UnwrapMaterialize()->As<sem::VariableUser>()) {
auto* idx_variable = idx_variable_user->Variable();
if (idx_variable->Declaration()->IsAnyOf<Let, Parameter>()) {
// Dynamic index is an immutable variable
continue; // Hoisting not required.
}
}
// The dynamic index needs to be hoisted (if it hasn't been already).
auto fn = FnInfoFor(idx->Stmt()->Function());
fn->hoisted_exprs.GetOrAdd(idx, [this, idx] {
// Create a name for the new 'let'
auto name = b.Symbols().New("ptr_index_save");
// Insert a new 'let' just above the dynamic index statement.
hoist.InsertBefore(idx->Stmt(), [this, idx, name] {
return b.Decl(b.Let(name, ctx.CloneWithoutTransform(idx->Declaration())));
});
return name;
});
}
}
/// BuildDynamicIndex builds the AST expression node for the dynamic index expression used in an
/// AccessChain. This is similar to just cloning the expression, but BuildDynamicIndex()
/// also:
/// * Collapses constant value index expressions down to the computed value. This acts as an
/// constant folding optimization and reduces noise from the transform.
/// * Casts the resulting expression to a u32 if @p cast_to_u32 is true, and the expression type
/// isn't implicitly usable as a u32. This is to help feed the expression into a
/// `array<u32, N>` argument passed to a callee variant function.
const Expression* BuildDynamicIndex(const sem::ValueExpression* idx, bool cast_to_u32) {
if (auto* val = idx->ConstantValue()) {
// Expression evaluated to a constant value. Just emit that constant.
return b.Expr(val->ValueAs<AInt>());
}
// Expression is not a constant, clone the expression.
// Note: If the dynamic index expression was hoisted to a let, then cloning will return an
// identifier expression to the hoisted let.
auto* expr = ctx.Clone(idx->Declaration());
if (cast_to_u32) {
// The index may be fed to a dynamic index array<u32, N> argument, so the index
// expression may need casting to u32.
if (!idx->UnwrapMaterialize()
->Type()
->UnwrapRef()
->IsAnyOf<core::type::U32, core::type::AbstractInt>()) {
expr = b.Call<u32>(expr);
}
}
return expr;
}
/// ProcessFunction scans the direct calls made by the function @p fn, adding new variants to
/// the callee functions and transforming the call expression to pass dynamic indices instead of
/// true pointers.
/// If the function @p fn has pointer parameters that must be transformed to a caller variant,
/// and the function is not called, then the function is dropped from the output of the
/// transform, as it cannot be generated.
/// @note ProcessFunction must be called in dependency order for the program, starting with the
/// entry points.
void ProcessFunction(const sem::Function* fn, FnInfo* fn_info) {
if (fn_info->variants.IsEmpty()) {
// Function has no variants pre-generated by callers.
if (MustBeCalled(fn)) {
// Drop the function, as it wasn't called and cannot be generated.
ctx.Remove(ctx.src->AST().GlobalDeclarations(), fn->Declaration());
return;
}
// Function was not called. Create a single variant with an empty signature.
FnVariant variant;
variant.name = ctx.Clone(fn->Declaration()->name->symbol);
variant.order = 0; // Unaltered comes first.
fn_info->variants.Add(FnVariant::Signature{}, std::move(variant));
}
// Process each of the direct calls made by this function.
for (auto* call : fn->DirectCalls()) {
ProcessCall(fn_info, call);
}
}
/// ProcessCall creates new variants of the callee function by permuting the call for each of
/// the variants of @p caller. ProcessCall also registers the clone callback to transform the
/// call expression to pass dynamic indices instead of true pointers.
void ProcessCall(FnInfo* caller, const sem::Call* call) {
auto* target = call->Target()->As<sem::Function>();
if (!target) {
// Call target is not a user-declared function.
return; // Not interested in this call.
}
if (!HasPointerParameter(target)) {
return; // Not interested in this call.
}
bool call_needs_transforming = false;
// Build the call target function variant for each variant of the caller.
for (auto caller_variant_it : caller->SortedVariants()) {
auto& caller_signature = *caller_variant_it.first;
auto& caller_variant = *caller_variant_it.second;
// Build the target variant's signature.
FnVariant::Signature target_signature;
for (size_t i = 0; i < call->Arguments().Length(); i++) {
const auto* arg = call->Arguments()[i];
const auto* param = target->Parameters()[i];
const auto* param_ty = param->Type()->As<core::type::Pointer>();
if (!param_ty) {
continue; // Parameter type is not a pointer.
}
// Fetch the access chain for the argument.
auto* arg_chain = AccessChainFor(arg);
if (!arg_chain) {
continue; // Argument does not have an access chain
}
// Construct the absolute AccessShape by considering the AccessShape of the caller
// variant's argument. This will propagate back through pointer parameters, to the
// outermost caller.
auto absolute = AbsoluteAccessShape(caller_signature, *arg_chain);
// If the address space of the root variable of the access chain does not require
// transformation, then there's nothing to do.
if (!AddressSpaceRequiresTransform(absolute.root.address_space)) {
continue;
}
// Record that this chain was used in a function call.
// This preserves the chain during the access chain filtering stage.
arg_chain->used_in_call = true;
if (IsPrivateOrFunction(absolute.root.address_space)) {
// Pointers in 'private' and 'function' address spaces need to be passed by
// pointer argument.
absolute.root.variable = param;
}
// Add the parameter's absolute AccessShape to the target's signature.
target_signature.Add(param, std::move(absolute));
}
// Construct a new FnVariant if this is the first caller of the target signature
auto* target_info = FnInfoFor(target);
auto& target_variant = target_info->variants.GetOrAdd(target_signature, [&] {
if (target_signature.IsEmpty()) {
// Call target does not require any argument changes.
FnVariant variant;
variant.name = ctx.Clone(target->Declaration()->name->symbol);
variant.order = 0; // Unaltered comes first.
return variant;
}
// Build an appropriate variant function name.
// This is derived from the original function name and the pointer parameter
// chains.
StringStream ss;
ss << target->Declaration()->name->symbol.Name();
for (auto* param : target->Parameters()) {
if (auto indices = target_signature.Get(param)) {
ss << "_" << AccessShapeName(*indices);
}
}
// Build the pointer parameter symbols.
Hashmap<const sem::Parameter*, PtrParamSymbols, 4> ptr_param_symbols;
for (auto& param_it : target_signature) {
auto* param = param_it.key.Value();
auto& shape = param_it.value;
// Parameter needs replacing with either zero, one or two parameters:
// If the parameter is in the 'private' or 'function' address space, then the
// originating pointer is always passed down. This always comes first.
// If the access chain has dynamic indices, then we create an array<u32, N>
// parameter to hold the dynamic indices.
bool requires_base_ptr_param = IsPrivateOrFunction(shape.root.address_space);
bool requires_indices_param = shape.NumDynamicIndices() > 0;
PtrParamSymbols symbols;
if (requires_base_ptr_param && requires_indices_param) {
auto original_name = param->Declaration()->name->symbol;
symbols.base_ptr = UniqueSymbolWithSuffix(original_name, "_base");
symbols.indices = UniqueSymbolWithSuffix(original_name, "_indices");
} else if (requires_base_ptr_param) {
symbols.base_ptr = ctx.Clone(param->Declaration()->name->symbol);
} else if (requires_indices_param) {
symbols.indices = ctx.Clone(param->Declaration()->name->symbol);
}
// Remember this base pointer name.
ptr_param_symbols.Add(param, symbols);
}
// Build the variant.
FnVariant variant;
variant.name = b.Symbols().New(ss.str());
variant.order = target_info->variants.Count() + 1;
variant.ptr_param_symbols = std::move(ptr_param_symbols);
return variant;
});
// Record the call made by caller variant to the target variant.
caller_variant.calls.Add(call, target_variant.name);
if (!target_signature.IsEmpty()) {
// The call expression will need transforming for at least one caller variant.
call_needs_transforming = true;
}
}
if (call_needs_transforming) {
// Register the clone callback to correctly transform the call expression into the
// appropriate variant calls.
TransformCall(call);
}
}
/// @returns true if the address space @p address_space requires transforming given the
/// transform's options.
bool AddressSpaceRequiresTransform(core::AddressSpace address_space) const {
switch (address_space) {
case core::AddressSpace::kUniform:
case core::AddressSpace::kStorage:
case core::AddressSpace::kWorkgroup:
return true;
case core::AddressSpace::kPrivate:
return opts.transform_private;
case core::AddressSpace::kFunction:
return opts.transform_function;
default:
return false;
}
}
/// @returns the AccessChain for the expression @p expr, or nullptr if the expression does
/// not hold an access chain.
AccessChain* AccessChainFor(const sem::ValueExpression* expr) const {
if (auto chain = access_chains.Get(expr)) {
return *chain;
}
return nullptr;
}
/// @returns the absolute AccessShape for @p indices, by replacing the originating pointer
/// parameter with the AccessChain of variant's signature.
AccessShape AbsoluteAccessShape(const FnVariant::Signature& signature,
const AccessShape& shape) const {
if (auto* root_param = shape.root.variable->As<sem::Parameter>()) {
if (auto incoming_chain = signature.Get(root_param)) {
// Access chain originates from a parameter, which will be transformed into an array
// of dynamic indices. Concatenate the signature's AccessShape for the parameter
// to the chain's indices, skipping over the chain's initial parameter index.
auto absolute = *incoming_chain;
for (auto& op : shape.ops) {
absolute.ops.Push(op);
}
return absolute;
}
}
// Chain does not originate from a parameter, so is already absolute.
return shape;
}
/// TransformFunction registers the clone callback to transform the function @p fn into the
/// (potentially multiple) function's variants. TransformFunction will assign the current
/// function and variant to #clone_state, which can be used by the other clone callbacks.
void TransformFunction(const sem::Function* fn, FnInfo* fn_info) {
// Register a custom handler for the specific function
ctx.Replace(fn->Declaration(), [this, fn, fn_info] {
// For the scope of this lambda, assign current_function to fn_info.
TINT_SCOPED_ASSIGNMENT(clone_state->current_function, fn_info);
// This callback expects a single function returned. As we're generating potentially
// many variant functions, keep a record of the last created variant, and explicitly add
// this to the module if it isn't the last. We'll return the last created variant,
// taking the place of the original function.
const Function* pending_variant = nullptr;
// For each variant of fn...
for (auto variant_it : fn_info->SortedVariants()) {
if (pending_variant) {
b.AST().AddFunction(pending_variant);
}
auto& variant_sig = *variant_it.first;
auto& variant = *variant_it.second;
// For the rest of this scope, assign the current variant and variant signature.
TINT_SCOPED_ASSIGNMENT(clone_state->current_variant_sig, &variant_sig);
TINT_SCOPED_ASSIGNMENT(clone_state->current_variant, &variant);
// Build the variant's parameters.
// Pointer parameters in the 'uniform', 'storage' or 'workgroup' address space are
// either replaced with an array of dynamic indices, or are dropped (if there are no
// dynamic indices).
tint::Vector<const Parameter*, 8> params;
for (auto* param : fn->Parameters()) {
if (auto incoming_shape = variant_sig.Get(param)) {
auto& symbols = *variant.ptr_param_symbols.Get(param);
if (symbols.base_ptr.IsValid()) {
auto base_ptr_ty = b.ty.ptr(
incoming_shape->root.address_space,
CreateASTTypeFor(ctx, incoming_shape->root.type->UnwrapPtrOrRef()));
params.Push(b.Param(symbols.base_ptr, base_ptr_ty));
}
if (symbols.indices.IsValid()) {
// Variant has dynamic indices for this variant, replace it.
auto dyn_idx_arr_type = DynamicIndexArrayType(*incoming_shape);
params.Push(b.Param(symbols.indices, dyn_idx_arr_type));
}
} else {
// Just a regular parameter. Just clone the original parameter.
params.Push(ctx.Clone(param->Declaration()));
}
}
// Build the variant by cloning the source function. The other clone callbacks will
// use clone_state->current_variant and clone_state->current_variant_sig to produce
// the variant.
auto ret_ty = ctx.Clone(fn->Declaration()->return_type);
auto body = ctx.Clone(fn->Declaration()->body);
auto attrs = ctx.Clone(fn->Declaration()->attributes);
auto ret_attrs = ctx.Clone(fn->Declaration()->return_type_attributes);
pending_variant =
b.create<Function>(b.Ident(variant.name), std::move(params), ret_ty, body,
std::move(attrs), std::move(ret_attrs));
}
return pending_variant;
});
}
/// TransformCall registers the clone callback to transform the call expression @p call to call
/// the correct target variant, and to replace pointers arguments with an array of dynamic
/// indices.
void TransformCall(const sem::Call* call) {
// Register a custom handler for the specific call expression
ctx.Replace(call->Declaration(), [this, call] {
auto target_variant = clone_state->current_variant->calls.Get(call);
if (!target_variant) {
// The current variant does not need to transform this call.
return ctx.CloneWithoutTransform(call->Declaration());
}
// Build the new call expressions's arguments.
tint::Vector<const Expression*, 8> new_args;
for (size_t arg_idx = 0; arg_idx < call->Arguments().Length(); arg_idx++) {
auto* arg = call->Arguments()[arg_idx];
auto* param = call->Target()->Parameters()[arg_idx];
auto* param_ty = param->Type()->As<core::type::Pointer>();
if (!param_ty) {
// Parameter is not a pointer.
// Just clone the unaltered argument.
new_args.Push(ctx.Clone(arg->Declaration()));
continue; // Parameter is not a pointer
}
auto* chain = AccessChainFor(arg);
if (!chain) {
// No access chain means the argument is not a pointer that needs transforming.
// Just clone the unaltered argument.
new_args.Push(ctx.Clone(arg->Declaration()));
continue;
}
// Construct the absolute AccessShape by considering the AccessShape of the caller
// variant's argument. This will propagate back through pointer parameters, to the
// outermost caller.
auto full_indices = AbsoluteAccessShape(*clone_state->current_variant_sig, *chain);
// If the parameter is a pointer in the 'private' or 'function' address space, then
// we need to pass an additional pointer argument to the base object.
if (IsPrivateOrFunction(param_ty->AddressSpace())) {
auto* root_expr = BuildAccessRootExpr(chain->root, /* deref */ false);
if (!chain->root.variable->Is<sem::Parameter>()) {
root_expr = b.AddressOf(root_expr);
}
new_args.Push(root_expr);
}
// Get or create the dynamic indices array.
if (auto dyn_idx_arr_ty = DynamicIndexArrayType(full_indices)) {
// Build an array of dynamic indices to pass as the replacement for the pointer.
tint::Vector<const Expression*, 8> dyn_idx_args;
if (auto* root_param = chain->root.variable->As<sem::Parameter>()) {
// Access chain originates from a pointer parameter.
if (auto incoming_chain =
clone_state->current_variant_sig->Get(root_param)) {
auto indices =
clone_state->current_variant->ptr_param_symbols.Get(root_param)
->indices;
// This pointer parameter will have been replaced with a array<u32, N>
// holding the variant's dynamic indices for the pointer. Unpack these
// directly into the array constructor's arguments.
auto N = incoming_chain->NumDynamicIndices();
for (uint32_t i = 0; i < N; i++) {
dyn_idx_args.Push(b.IndexAccessor(indices, u32(i)));
}
}
}
// Pass the dynamic indices of the access chain into the array constructor.
for (auto& dyn_idx : chain->dynamic_indices) {
dyn_idx_args.Push(BuildDynamicIndex(dyn_idx, /* cast_to_u32 */ true));
}
// Construct the dynamic index array, and push as an argument.
new_args.Push(b.Call(dyn_idx_arr_ty, std::move(dyn_idx_args)));
}
}
// Make the call to the target's variant.
return b.Call(*target_variant, std::move(new_args));
});
}
/// ProcessAccessChains performs the following:
/// * Removes all AccessChains from expressions that are not either used as a pointer argument
/// in a call, or originates from a pointer parameter.
/// * Hoists the dynamic index expressions of AccessChains to 'let' statements, to prevent
/// multiple evaluation of the expressions, and avoid expressions resolving to different
/// variables based on lexical scope.
void ProcessAccessChains() {
auto chain_exprs = access_chains.Keys();
chain_exprs.Sort([](const auto& expr_a, const auto& expr_b) {
return expr_a->Declaration()->node_id.value < expr_b->Declaration()->node_id.value;
});
for (auto* expr : chain_exprs) {
auto* chain = *access_chains.Get(expr);
if (!chain->used_in_call && !chain->root.variable->Is<sem::Parameter>()) {
// Chain was not used in a function call, and does not originate from a
// parameter. This chain does not need transforming. Drop it.
access_chains.Remove(expr);
continue;
}
// Chain requires transforming.
// We need to be careful that the chain does not use expressions with side-effects which
// cannot be repeatedly evaluated. In this situation we can hoist the dynamic index
// expressions to their own uniquely named lets (if required).
MaybeHoistDynamicIndices(chain, expr->Stmt());
}
}
/// TransformAccessChainExpressions registers the clone callback to:
/// * Transform all expressions that have an AccessChain (which aren't arguments to function
/// calls, these are handled by TransformCall()), into the equivalent expression using a
/// module-scope variable.
/// * Replace expressions that have been hoisted to a let, with an identifier expression to that
/// let.
void TransformAccessChainExpressions() {
// Register a custom handler for all non-function call expressions
ctx.ReplaceAll([this](const Expression* ast_expr) -> const Expression* {
if (!clone_state->current_variant) {
// Expression does not belong to a function variant.
return nullptr; // Just clone the expression.
}
auto* expr = sem.GetVal(ast_expr);
if (!expr) {
// No semantic node for the expression.
return nullptr; // Just clone the expression.
}
// If the expression has been hoisted to a 'let', then replace the expression with an
// identifier to the hoisted let.
if (auto hoisted = clone_state->current_function->hoisted_exprs.Get(expr)) {
return b.Expr(*hoisted);
}
auto* chain = AccessChainFor(expr);
if (!chain) {
// The expression does not have an AccessChain.
return nullptr; // Just clone the expression.
}
auto* root_param = chain->root.variable->As<sem::Parameter>();
if (!root_param) {
// The expression has an access chain, but does not originate with a pointer
// parameter. We don't need to change anything here.
return nullptr; // Just clone the expression.
}
auto incoming_shape = clone_state->current_variant_sig->Get(root_param);
if (!incoming_shape) {
// The root parameter of the access chain is not part of the variant's signature.
return nullptr; // Just clone the expression.
}
// Expression holds an access chain to a pointer parameter that needs transforming.
// Reconstruct the expression using the variant's incoming shape.
auto* chain_expr = BuildAccessRootExpr(incoming_shape->root, /* deref */ true);
// Chain starts with a pointer parameter.
// Replace this with the variant's incoming shape. This will bring the expression up to
// the incoming pointer.
size_t next_dyn_idx_from_indices = 0;
auto& indices =
clone_state->current_variant->ptr_param_symbols.Get(root_param)->indices;
for (auto param_access : incoming_shape->ops) {
chain_expr = BuildAccessExpr(chain_expr, param_access, [&] {
return b.IndexAccessor(indices, AInt(next_dyn_idx_from_indices++));
});
}
// Now build the expression chain within the function.
// For each access in the chain (excluding the pointer parameter)...
size_t next_dyn_idx_from_chain = 0;
for (auto& op : chain->ops) {
chain_expr = BuildAccessExpr(chain_expr, op, [&] {
return BuildDynamicIndex(chain->dynamic_indices[next_dyn_idx_from_chain++],
false);
});
}
// BuildAccessExpr() always returns a non-pointer.
// If the expression we're replacing is a pointer, take the address.
if (expr->Type()->Is<core::type::Pointer>()) {
chain_expr = b.AddressOf(chain_expr);
}
return chain_expr;
});
}
/// @returns the FnInfo for the given function, constructing a new FnInfo if @p fn doesn't
/// already have one.
FnInfo* FnInfoFor(const sem::Function* fn) {
return fns.GetOrAdd(fn, [this] { return fn_info_allocator.Create(); });
}
/// @returns the type alias used to hold the dynamic indices for @p shape, declaring a new alias
/// if this is the first call for the given shape.
Type DynamicIndexArrayType(const AccessShape& shape) {
auto name = dynamic_index_array_aliases.GetOrAdd(shape, [&] {
// Count the number of dynamic indices
uint32_t num_dyn_indices = shape.NumDynamicIndices();
if (num_dyn_indices == 0) {
return Symbol{};
}
auto symbol = b.Symbols().New(AccessShapeName(shape));
b.Alias(symbol, b.ty.array(b.ty.u32(), u32(num_dyn_indices)));
return symbol;
});
return name.IsValid() ? b.ty(name) : Type{};
}
/// @returns a name describing the given shape
std::string AccessShapeName(const AccessShape& shape) {
StringStream ss;
if (IsPrivateOrFunction(shape.root.address_space)) {
ss << "F";
} else {
ss << shape.root.variable->Declaration()->name->symbol.Name();
}
for (auto& op : shape.ops) {
ss << "_";
if (std::holds_alternative<DynamicIndex>(op)) {
/// The op uses a dynamic (runtime-expression) index.
ss << "X";
continue;
}
auto* member = std::get_if<Symbol>(&op);
if (DAWN_LIKELY(member)) {
ss << member->Name();
continue;
}
TINT_ICE() << "unhandled variant for access chain";
}
return ss.str();
}
/// Builds an expresion to the root of an access, returning the new expression.
/// @param root the AccessRoot
/// @param deref if true, the returned expression will always be a reference type.
const Expression* BuildAccessRootExpr(const AccessRoot& root, bool deref) {
if (auto* param = root.variable->As<sem::Parameter>()) {
if (auto symbols = clone_state->current_variant->ptr_param_symbols.Get(param)) {
if (deref) {
return b.Deref(b.Expr(symbols->base_ptr));
}
return b.Expr(symbols->base_ptr);
}
}
const Expression* expr = b.Expr(ctx.Clone(root.variable->Declaration()->name->symbol));
if (deref) {
if (root.variable->Type()->Is<core::type::Pointer>()) {
expr = b.Deref(expr);
}
}
return expr;
}
/// Builds a single access in an access chain, returning the new expression.
/// The returned expression will always be of a reference type.
/// @param expr the input expression
/// @param access the access to perform on the current expression
/// @param dynamic_index a function that obtains the next dynamic index
const Expression* BuildAccessExpr(const Expression* expr,
const AccessOp& access,
std::function<const Expression*()> dynamic_index) {
if (std::holds_alternative<DynamicIndex>(access)) {
/// The access uses a dynamic (runtime-expression) index.
auto* idx = dynamic_index();
return b.IndexAccessor(expr, idx);
}
auto* member = std::get_if<Symbol>(&access);
if (DAWN_LIKELY(member)) {
/// The access is a member access.
return b.MemberAccessor(expr, ctx.Clone(*member));
}
TINT_ICE() << "unhandled variant type for access chain";
}
/// @returns a new Symbol starting with @p symbol concatenated with @p suffix, and possibly an
/// underscore and number, if the symbol is already taken.
Symbol UniqueSymbolWithSuffix(Symbol symbol, const std::string& suffix) {
auto str = symbol.Name() + suffix;
return unique_symbols.GetOrAdd(str, [&] { return b.Symbols().New(str); });
}
/// @returns true if the function @p fn has at least one pointer parameter.
static bool HasPointerParameter(const sem::Function* fn) {
for (auto* param : fn->Parameters()) {
if (param->Type()->Is<core::type::Pointer>()) {
return true;
}
}
return false;
}
/// @returns true if the function @p fn has at least one pointer parameter in an address space
/// that must be replaced. If this function is not called, then the function cannot be sensibly
/// generated, and must be stripped.
static bool MustBeCalled(const sem::Function* fn) {
for (auto* param : fn->Parameters()) {
if (auto* ptr = param->Type()->As<core::type::Pointer>()) {
switch (ptr->AddressSpace()) {
case core::AddressSpace::kUniform:
case core::AddressSpace::kStorage:
case core::AddressSpace::kWorkgroup:
return true;
default:
return false;
}
}
}
return false;
}
/// @returns true if the given address space is 'private' or 'function'.
static bool IsPrivateOrFunction(const core::AddressSpace sc) {
return sc == core::AddressSpace::kPrivate || sc == core::AddressSpace::kFunction;
}
};
DirectVariableAccess::Config::Config() = default;
DirectVariableAccess::Config::Config(const Options& opt) : options(opt) {}
DirectVariableAccess::Config::~Config() = default;
DirectVariableAccess::DirectVariableAccess() = default;
DirectVariableAccess::~DirectVariableAccess() = default;
Transform::ApplyResult DirectVariableAccess::Apply(const Program& program,
const DataMap& inputs,
DataMap&) const {
Options options;
if (auto* cfg = inputs.Get<Config>()) {
options = cfg->options;
}
return State(program, options).Run();
}
} // namespace tint::ast::transform