blob: 8909e6e35957e3db5e814e22c912e92d8e4e167b [file] [log] [blame]
// Copyright 2021 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <numeric>
#include <string>
#include <vector>
#include "dawn/tests/DawnTest.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
class ShaderTests : public DawnTest {
public:
wgpu::Buffer CreateBuffer(const uint32_t count) {
std::vector<uint32_t> data(count, 0);
uint64_t bufferSize = static_cast<uint64_t>(data.size() * sizeof(uint32_t));
return utils::CreateBufferFromData(device, data.data(), bufferSize,
wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc);
}
wgpu::ComputePipeline CreateComputePipeline(
const std::string& shader,
const char* entryPoint,
const std::vector<wgpu::ConstantEntry>* constants = nullptr) {
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = utils::CreateShaderModule(device, shader.c_str());
csDesc.compute.entryPoint = entryPoint;
if (constants) {
csDesc.compute.constants = constants->data();
csDesc.compute.constantCount = constants->size();
}
return device.CreateComputePipeline(&csDesc);
}
};
// Test that log2 is being properly calculated, base on crbug.com/1046622
TEST_P(ShaderTests, ComputeLog2) {
uint32_t const kSteps = 19;
std::vector<uint32_t> expected{0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 32};
wgpu::Buffer buffer = CreateBuffer(kSteps);
std::string shader = R"(
struct Buf {
data : array<u32, 19>
}
@group(0) @binding(0) var<storage, read_write> buf : Buf;
@compute @workgroup_size(1) fn main() {
let factor : f32 = 1.0001;
buf.data[0] = u32(log2(1.0 * factor));
buf.data[1] = u32(log2(2.0 * factor));
buf.data[2] = u32(log2(3.0 * factor));
buf.data[3] = u32(log2(4.0 * factor));
buf.data[4] = u32(log2(7.0 * factor));
buf.data[5] = u32(log2(8.0 * factor));
buf.data[6] = u32(log2(15.0 * factor));
buf.data[7] = u32(log2(16.0 * factor));
buf.data[8] = u32(log2(31.0 * factor));
buf.data[9] = u32(log2(32.0 * factor));
buf.data[10] = u32(log2(63.0 * factor));
buf.data[11] = u32(log2(64.0 * factor));
buf.data[12] = u32(log2(127.0 * factor));
buf.data[13] = u32(log2(128.0 * factor));
buf.data[14] = u32(log2(255.0 * factor));
buf.data[15] = u32(log2(256.0 * factor));
buf.data[16] = u32(log2(511.0 * factor));
buf.data[17] = u32(log2(512.0 * factor));
buf.data[18] = u32(log2(4294967295.0 * factor));
})";
wgpu::ComputePipeline pipeline = CreateComputePipeline(shader, "main");
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, buffer}});
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.DispatchWorkgroups(1);
pass.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expected.data(), buffer, 0, kSteps);
}
TEST_P(ShaderTests, BadWGSL) {
DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("skip_validation"));
std::string shader = R"(
I am an invalid shader and should never pass validation!
})";
ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, shader.c_str()));
}
// Tests that shaders using non-struct function parameters and return values for shader stage I/O
// can compile and link successfully.
TEST_P(ShaderTests, WGSLParamIO) {
std::string vertexShader = R"(
@vertex
fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4<f32> {
var pos = array<vec2<f32>, 3>(
vec2<f32>(-1.0, 1.0),
vec2<f32>( 1.0, 1.0),
vec2<f32>( 0.0, -1.0));
return vec4<f32>(pos[VertexIndex], 0.0, 1.0);
})";
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, vertexShader.c_str());
std::string fragmentShader = R"(
@fragment
fn main(@builtin(position) fragCoord : vec4<f32>) -> @location(0) vec4<f32> {
return vec4<f32>(fragCoord.xy, 0.0, 1.0);
})";
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, fragmentShader.c_str());
utils::ComboRenderPipelineDescriptor rpDesc;
rpDesc.vertex.module = vsModule;
rpDesc.cFragment.module = fsModule;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&rpDesc);
}
// Tests that a vertex shader using struct function parameters and return values for shader stage
// I/O can compile and link successfully against a fragement shader using compatible non-struct I/O.
TEST_P(ShaderTests, WGSLMixedStructParamIO) {
std::string vertexShader = R"(
struct VertexIn {
@location(0) position : vec3<f32>,
@location(1) color : vec4<f32>,
}
struct VertexOut {
@location(0) color : vec4<f32>,
@builtin(position) position : vec4<f32>,
}
@vertex
fn main(input : VertexIn) -> VertexOut {
var output : VertexOut;
output.position = vec4<f32>(input.position, 1.0);
output.color = input.color;
return output;
})";
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, vertexShader.c_str());
std::string fragmentShader = R"(
@fragment
fn main(@location(0) color : vec4<f32>) -> @location(0) vec4<f32> {
return color;
})";
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, fragmentShader.c_str());
utils::ComboRenderPipelineDescriptor rpDesc;
rpDesc.vertex.module = vsModule;
rpDesc.cFragment.module = fsModule;
rpDesc.vertex.bufferCount = 1;
rpDesc.cBuffers[0].attributeCount = 2;
rpDesc.cBuffers[0].arrayStride = 28;
rpDesc.cAttributes[0].shaderLocation = 0;
rpDesc.cAttributes[0].format = wgpu::VertexFormat::Float32x3;
rpDesc.cAttributes[1].shaderLocation = 1;
rpDesc.cAttributes[1].format = wgpu::VertexFormat::Float32x4;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&rpDesc);
}
// Tests that shaders using struct function parameters and return values for shader stage I/O
// can compile and link successfully.
TEST_P(ShaderTests, WGSLStructIO) {
std::string vertexShader = R"(
struct VertexIn {
@location(0) position : vec3<f32>,
@location(1) color : vec4<f32>,
}
struct VertexOut {
@location(0) color : vec4<f32>,
@builtin(position) position : vec4<f32>,
}
@vertex
fn main(input : VertexIn) -> VertexOut {
var output : VertexOut;
output.position = vec4<f32>(input.position, 1.0);
output.color = input.color;
return output;
})";
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, vertexShader.c_str());
std::string fragmentShader = R"(
struct FragmentIn {
@location(0) color : vec4<f32>,
@builtin(position) fragCoord : vec4<f32>,
}
@fragment
fn main(input : FragmentIn) -> @location(0) vec4<f32> {
return input.color * input.fragCoord;
})";
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, fragmentShader.c_str());
utils::ComboRenderPipelineDescriptor rpDesc;
rpDesc.vertex.module = vsModule;
rpDesc.cFragment.module = fsModule;
rpDesc.vertex.bufferCount = 1;
rpDesc.cBuffers[0].attributeCount = 2;
rpDesc.cBuffers[0].arrayStride = 28;
rpDesc.cAttributes[0].shaderLocation = 0;
rpDesc.cAttributes[0].format = wgpu::VertexFormat::Float32x3;
rpDesc.cAttributes[1].shaderLocation = 1;
rpDesc.cAttributes[1].format = wgpu::VertexFormat::Float32x4;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&rpDesc);
}
// Tests that shaders I/O structs that us compatible locations but are not sorted by hand can link.
TEST_P(ShaderTests, WGSLUnsortedStructIO) {
std::string vertexShader = R"(
struct VertexIn {
@location(0) position : vec3<f32>,
@location(1) color : vec4<f32>,
}
struct VertexOut {
@builtin(position) position : vec4<f32>,
@location(0) color : vec4<f32>,
}
@vertex
fn main(input : VertexIn) -> VertexOut {
var output : VertexOut;
output.position = vec4<f32>(input.position, 1.0);
output.color = input.color;
return output;
})";
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, vertexShader.c_str());
std::string fragmentShader = R"(
struct FragmentIn {
@location(0) color : vec4<f32>,
@builtin(position) fragCoord : vec4<f32>,
}
@fragment
fn main(input : FragmentIn) -> @location(0) vec4<f32> {
return input.color * input.fragCoord;
})";
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, fragmentShader.c_str());
utils::ComboRenderPipelineDescriptor rpDesc;
rpDesc.vertex.module = vsModule;
rpDesc.cFragment.module = fsModule;
rpDesc.vertex.bufferCount = 1;
rpDesc.cBuffers[0].attributeCount = 2;
rpDesc.cBuffers[0].arrayStride = 28;
rpDesc.cAttributes[0].shaderLocation = 0;
rpDesc.cAttributes[0].format = wgpu::VertexFormat::Float32x3;
rpDesc.cAttributes[1].shaderLocation = 1;
rpDesc.cAttributes[1].format = wgpu::VertexFormat::Float32x4;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&rpDesc);
}
// Tests that shaders I/O structs can be shared between vertex and fragment shaders.
TEST_P(ShaderTests, WGSLSharedStructIO) {
std::string shader = R"(
struct VertexIn {
@location(0) position : vec3<f32>,
@location(1) color : vec4<f32>,
}
struct VertexOut {
@location(0) color : vec4<f32>,
@builtin(position) position : vec4<f32>,
}
@vertex
fn vertexMain(input : VertexIn) -> VertexOut {
var output : VertexOut;
output.position = vec4<f32>(input.position, 1.0);
output.color = input.color;
return output;
}
@fragment
fn fragmentMain(input : VertexOut) -> @location(0) vec4<f32> {
return input.color;
})";
wgpu::ShaderModule shaderModule = utils::CreateShaderModule(device, shader.c_str());
utils::ComboRenderPipelineDescriptor rpDesc;
rpDesc.vertex.module = shaderModule;
rpDesc.vertex.entryPoint = "vertexMain";
rpDesc.cFragment.module = shaderModule;
rpDesc.cFragment.entryPoint = "fragmentMain";
rpDesc.vertex.bufferCount = 1;
rpDesc.cBuffers[0].attributeCount = 2;
rpDesc.cBuffers[0].arrayStride = 28;
rpDesc.cAttributes[0].shaderLocation = 0;
rpDesc.cAttributes[0].format = wgpu::VertexFormat::Float32x3;
rpDesc.cAttributes[1].shaderLocation = 1;
rpDesc.cAttributes[1].format = wgpu::VertexFormat::Float32x4;
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&rpDesc);
}
// This is a regression test for an issue caused by the FirstIndexOffset transfrom being done before
// the BindingRemapper, causing an intermediate AST to be invalid (and fail the overall
// compilation).
TEST_P(ShaderTests, FirstIndexOffsetRegisterConflictInHLSLTransforms) {
// TODO(crbug.com/dawn/658): Crashes on bots because there are two entrypoints in the shader.
DAWN_SUPPRESS_TEST_IF(IsOpenGL() || IsOpenGLES());
const char* shader = R"(
// Dumped WGSL:
struct Inputs {
@location(1) attrib1 : u32,
// The extra register added to handle base_vertex for vertex_index conflicts with [1]
@builtin(vertex_index) vertexIndex: u32,
}
// [1] a binding point that conflicts with the regitster
struct S1 { data : array<vec4<u32>, 20> }
@group(0) @binding(1) var<uniform> providedData1 : S1;
@vertex fn vsMain(input : Inputs) -> @builtin(position) vec4<f32> {
_ = providedData1.data[input.vertexIndex][0];
return vec4<f32>();
}
@fragment fn fsMain() -> @location(0) vec4<f32> {
return vec4<f32>();
}
)";
auto module = utils::CreateShaderModule(device, shader);
utils::ComboRenderPipelineDescriptor rpDesc;
rpDesc.vertex.module = module;
rpDesc.vertex.entryPoint = "vsMain";
rpDesc.cFragment.module = module;
rpDesc.cFragment.entryPoint = "fsMain";
rpDesc.vertex.bufferCount = 1;
rpDesc.cBuffers[0].attributeCount = 1;
rpDesc.cBuffers[0].arrayStride = 16;
rpDesc.cAttributes[0].shaderLocation = 1;
rpDesc.cAttributes[0].format = wgpu::VertexFormat::Uint8x2;
device.CreateRenderPipeline(&rpDesc);
}
// Test that WGSL built-in variable @sample_index can be used in fragment shaders.
TEST_P(ShaderTests, SampleIndex) {
// TODO(crbug.com/dawn/673): Work around or enforce via validation that sample variables are not
// supported on some platforms.
DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("disable_sample_variables"));
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
@vertex
fn main(@location(0) pos : vec4<f32>) -> @builtin(position) vec4<f32> {
return pos;
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
@fragment fn main(@builtin(sample_index) sampleIndex : u32)
-> @location(0) vec4<f32> {
return vec4<f32>(f32(sampleIndex), 1.0, 0.0, 1.0);
})");
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.primitive.topology = wgpu::PrimitiveTopology::TriangleList;
descriptor.vertex.bufferCount = 1;
descriptor.cBuffers[0].arrayStride = 4 * sizeof(float);
descriptor.cBuffers[0].attributeCount = 1;
descriptor.cAttributes[0].format = wgpu::VertexFormat::Float32x4;
descriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
device.CreateRenderPipeline(&descriptor);
}
// Test overridable constants without numeric identifiers
TEST_P(ShaderTests, OverridableConstants) {
uint32_t const kCount = 11;
std::vector<uint32_t> expected(kCount);
std::iota(expected.begin(), expected.end(), 0);
wgpu::Buffer buffer = CreateBuffer(kCount);
std::string shader = R"(
override c0: bool; // type: bool
override c1: bool = false; // default override
override c2: f32; // type: float32
override c3: f32 = 0.0; // default override
override c4: f32 = 4.0; // default
override c5: i32; // type: int32
override c6: i32 = 0; // default override
override c7: i32 = 7; // default
override c8: u32; // type: uint32
override c9: u32 = 0u; // default override
override c10: u32 = 10u; // default
struct Buf {
data : array<u32, 11>
}
@group(0) @binding(0) var<storage, read_write> buf : Buf;
@compute @workgroup_size(1) fn main() {
buf.data[0] = u32(c0);
buf.data[1] = u32(c1);
buf.data[2] = u32(c2);
buf.data[3] = u32(c3);
buf.data[4] = u32(c4);
buf.data[5] = u32(c5);
buf.data[6] = u32(c6);
buf.data[7] = u32(c7);
buf.data[8] = u32(c8);
buf.data[9] = u32(c9);
buf.data[10] = u32(c10);
})";
std::vector<wgpu::ConstantEntry> constants;
constants.push_back({nullptr, "c0", 0});
constants.push_back({nullptr, "c1", 1});
constants.push_back({nullptr, "c2", 2});
constants.push_back({nullptr, "c3", 3});
// c4 is not assigned, testing default value
constants.push_back({nullptr, "c5", 5});
constants.push_back({nullptr, "c6", 6});
// c7 is not assigned, testing default value
constants.push_back({nullptr, "c8", 8});
constants.push_back({nullptr, "c9", 9});
// c10 is not assigned, testing default value
wgpu::ComputePipeline pipeline = CreateComputePipeline(shader, "main", &constants);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, buffer}});
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.DispatchWorkgroups(1);
pass.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expected.data(), buffer, 0, kCount);
}
// Test one shader shared by two pipelines with different constants overridden
TEST_P(ShaderTests, OverridableConstantsSharedShader) {
std::vector<uint32_t> expected1{1};
wgpu::Buffer buffer1 = CreateBuffer(expected1.size());
std::vector<uint32_t> expected2{2};
wgpu::Buffer buffer2 = CreateBuffer(expected2.size());
std::string shader = R"(
override a: u32;
struct Buf {
data : array<u32, 1>
}
@group(0) @binding(0) var<storage, read_write> buf : Buf;
@compute @workgroup_size(1) fn main() {
buf.data[0] = a;
})";
std::vector<wgpu::ConstantEntry> constants1;
constants1.push_back({nullptr, "a", 1});
std::vector<wgpu::ConstantEntry> constants2;
constants2.push_back({nullptr, "a", 2});
wgpu::ComputePipeline pipeline1 = CreateComputePipeline(shader, "main", &constants1);
wgpu::ComputePipeline pipeline2 = CreateComputePipeline(shader, "main", &constants2);
wgpu::BindGroup bindGroup1 =
utils::MakeBindGroup(device, pipeline1.GetBindGroupLayout(0), {{0, buffer1}});
wgpu::BindGroup bindGroup2 =
utils::MakeBindGroup(device, pipeline2.GetBindGroupLayout(0), {{0, buffer2}});
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline1);
pass.SetBindGroup(0, bindGroup1);
pass.DispatchWorkgroups(1);
pass.SetPipeline(pipeline2);
pass.SetBindGroup(0, bindGroup2);
pass.DispatchWorkgroups(1);
pass.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expected1.data(), buffer1, 0, expected1.size());
EXPECT_BUFFER_U32_RANGE_EQ(expected2.data(), buffer2, 0, expected2.size());
}
// Test overridable constants work with workgroup size
TEST_P(ShaderTests, OverridableConstantsWorkgroupSize) {
std::string shader = R"(
override x: u32;
struct Buf {
data : array<u32, 1>
}
@group(0) @binding(0) var<storage, read_write> buf : Buf;
@compute @workgroup_size(x) fn main(
@builtin(local_invocation_id) local_invocation_id : vec3<u32>
) {
if (local_invocation_id.x >= x - 1) {
buf.data[0] = local_invocation_id.x + 1;
}
})";
const uint32_t workgroup_size_x_1 = 16u;
const uint32_t workgroup_size_x_2 = 64u;
std::vector<uint32_t> expected1{workgroup_size_x_1};
wgpu::Buffer buffer1 = CreateBuffer(expected1.size());
std::vector<uint32_t> expected2{workgroup_size_x_2};
wgpu::Buffer buffer2 = CreateBuffer(expected2.size());
std::vector<wgpu::ConstantEntry> constants1;
constants1.push_back({nullptr, "x", static_cast<double>(workgroup_size_x_1)});
std::vector<wgpu::ConstantEntry> constants2;
constants2.push_back({nullptr, "x", static_cast<double>(workgroup_size_x_2)});
wgpu::ComputePipeline pipeline1 = CreateComputePipeline(shader, "main", &constants1);
wgpu::ComputePipeline pipeline2 = CreateComputePipeline(shader, "main", &constants2);
wgpu::BindGroup bindGroup1 =
utils::MakeBindGroup(device, pipeline1.GetBindGroupLayout(0), {{0, buffer1}});
wgpu::BindGroup bindGroup2 =
utils::MakeBindGroup(device, pipeline2.GetBindGroupLayout(0), {{0, buffer2}});
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline1);
pass.SetBindGroup(0, bindGroup1);
pass.DispatchWorkgroups(1);
pass.SetPipeline(pipeline2);
pass.SetBindGroup(0, bindGroup2);
pass.DispatchWorkgroups(1);
pass.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expected1.data(), buffer1, 0, expected1.size());
EXPECT_BUFFER_U32_RANGE_EQ(expected2.data(), buffer2, 0, expected2.size());
}
// Test overridable constants with numeric identifiers
TEST_P(ShaderTests, OverridableConstantsNumericIdentifiers) {
uint32_t const kCount = 4;
std::vector<uint32_t> expected{1u, 2u, 3u, 0u};
wgpu::Buffer buffer = CreateBuffer(kCount);
std::string shader = R"(
@id(1001) override c1: u32; // some big numeric id
@id(1) override c2: u32 = 0u; // id == 1 might collide with some generated constant id
@id(1003) override c3: u32 = 3u; // default
@id(1004) override c4: u32; // default unspecified
struct Buf {
data : array<u32, 4>
}
@group(0) @binding(0) var<storage, read_write> buf : Buf;
@compute @workgroup_size(1) fn main() {
buf.data[0] = c1;
buf.data[1] = c2;
buf.data[2] = c3;
buf.data[3] = c4;
})";
std::vector<wgpu::ConstantEntry> constants;
constants.push_back({nullptr, "1001", 1});
constants.push_back({nullptr, "1", 2});
// c3 is not assigned, testing default value
constants.push_back({nullptr, "1004", 0});
wgpu::ComputePipeline pipeline = CreateComputePipeline(shader, "main", &constants);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, buffer}});
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.DispatchWorkgroups(1);
pass.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expected.data(), buffer, 0, kCount);
}
// Test overridable constants precision
// D3D12 HLSL shader uses defines so we want float number to have enough precision
TEST_P(ShaderTests, OverridableConstantsPrecision) {
uint32_t const kCount = 2;
float const kValue1 = 3.14159;
float const kValue2 = 3.141592653589793238;
std::vector<float> expected{kValue1, kValue2};
wgpu::Buffer buffer = CreateBuffer(kCount);
std::string shader = R"(
@id(1001) override c1: f32;
@id(1002) override c2: f32;
struct Buf {
data : array<f32, 2>
}
@group(0) @binding(0) var<storage, read_write> buf : Buf;
@compute @workgroup_size(1) fn main() {
buf.data[0] = c1;
buf.data[1] = c2;
})";
std::vector<wgpu::ConstantEntry> constants;
constants.push_back({nullptr, "1001", kValue1});
constants.push_back({nullptr, "1002", kValue2});
wgpu::ComputePipeline pipeline = CreateComputePipeline(shader, "main", &constants);
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, buffer}});
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bindGroup);
pass.DispatchWorkgroups(1);
pass.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
EXPECT_BUFFER_FLOAT_RANGE_EQ(expected.data(), buffer, 0, kCount);
}
// Test overridable constants for different entry points
TEST_P(ShaderTests, OverridableConstantsMultipleEntryPoints) {
uint32_t const kCount = 1;
std::vector<uint32_t> expected1{1u};
std::vector<uint32_t> expected2{2u};
std::vector<uint32_t> expected3{3u};
wgpu::Buffer buffer1 = CreateBuffer(kCount);
wgpu::Buffer buffer2 = CreateBuffer(kCount);
wgpu::Buffer buffer3 = CreateBuffer(kCount);
std::string shader = R"(
@id(1001) override c1: u32;
@id(1002) override c2: u32;
@id(1003) override c3: u32;
struct Buf {
data : array<u32, 1>
}
@group(0) @binding(0) var<storage, read_write> buf : Buf;
@compute @workgroup_size(1) fn main1() {
buf.data[0] = c1;
}
@compute @workgroup_size(1) fn main2() {
buf.data[0] = c2;
}
@compute @workgroup_size(c3) fn main3() {
buf.data[0] = 3u;
}
)";
std::vector<wgpu::ConstantEntry> constants1;
constants1.push_back({nullptr, "1001", 1});
std::vector<wgpu::ConstantEntry> constants2;
constants2.push_back({nullptr, "1002", 2});
std::vector<wgpu::ConstantEntry> constants3;
constants3.push_back({nullptr, "1003", 1});
wgpu::ShaderModule shaderModule = utils::CreateShaderModule(device, shader.c_str());
wgpu::ComputePipelineDescriptor csDesc1;
csDesc1.compute.module = shaderModule;
csDesc1.compute.entryPoint = "main1";
csDesc1.compute.constants = constants1.data();
csDesc1.compute.constantCount = constants1.size();
wgpu::ComputePipeline pipeline1 = device.CreateComputePipeline(&csDesc1);
wgpu::ComputePipelineDescriptor csDesc2;
csDesc2.compute.module = shaderModule;
csDesc2.compute.entryPoint = "main2";
csDesc2.compute.constants = constants2.data();
csDesc2.compute.constantCount = constants2.size();
wgpu::ComputePipeline pipeline2 = device.CreateComputePipeline(&csDesc2);
wgpu::ComputePipelineDescriptor csDesc3;
csDesc3.compute.module = shaderModule;
csDesc3.compute.entryPoint = "main3";
csDesc3.compute.constants = constants3.data();
csDesc3.compute.constantCount = constants3.size();
wgpu::ComputePipeline pipeline3 = device.CreateComputePipeline(&csDesc3);
wgpu::BindGroup bindGroup1 =
utils::MakeBindGroup(device, pipeline1.GetBindGroupLayout(0), {{0, buffer1}});
wgpu::BindGroup bindGroup2 =
utils::MakeBindGroup(device, pipeline2.GetBindGroupLayout(0), {{0, buffer2}});
wgpu::BindGroup bindGroup3 =
utils::MakeBindGroup(device, pipeline3.GetBindGroupLayout(0), {{0, buffer3}});
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline1);
pass.SetBindGroup(0, bindGroup1);
pass.DispatchWorkgroups(1);
pass.SetPipeline(pipeline2);
pass.SetBindGroup(0, bindGroup2);
pass.DispatchWorkgroups(1);
pass.SetPipeline(pipeline3);
pass.SetBindGroup(0, bindGroup3);
pass.DispatchWorkgroups(1);
pass.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
EXPECT_BUFFER_U32_RANGE_EQ(expected1.data(), buffer1, 0, kCount);
EXPECT_BUFFER_U32_RANGE_EQ(expected2.data(), buffer2, 0, kCount);
EXPECT_BUFFER_U32_RANGE_EQ(expected3.data(), buffer3, 0, kCount);
}
// Test overridable constants with render pipeline
// Draw a triangle covering the render target, with vertex position and color values from
// overridable constants
TEST_P(ShaderTests, OverridableConstantsRenderPipeline) {
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
@id(1111) override xright: f32;
@id(2222) override ytop: f32;
@vertex
fn main(@builtin(vertex_index) VertexIndex : u32)
-> @builtin(position) vec4<f32> {
var pos = array<vec2<f32>, 3>(
vec2<f32>(-1.0, ytop),
vec2<f32>(-1.0, -ytop),
vec2<f32>(xright, 0.0));
return vec4<f32>(pos[VertexIndex], 0.0, 1.0);
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
@id(1000) override intensity: f32 = 0.0;
@fragment fn main()
-> @location(0) vec4<f32> {
return vec4<f32>(intensity, intensity, intensity, 1.0);
})");
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(device, 1, 1);
utils::ComboRenderPipelineDescriptor descriptor;
descriptor.vertex.module = vsModule;
descriptor.cFragment.module = fsModule;
descriptor.primitive.topology = wgpu::PrimitiveTopology::TriangleList;
descriptor.cTargets[0].format = renderPass.colorFormat;
std::vector<wgpu::ConstantEntry> vertexConstants;
vertexConstants.push_back({nullptr, "1111", 3.0}); // x right
vertexConstants.push_back({nullptr, "2222", 3.0}); // y top
descriptor.vertex.constants = vertexConstants.data();
descriptor.vertex.constantCount = vertexConstants.size();
std::vector<wgpu::ConstantEntry> fragmentConstants;
fragmentConstants.push_back({nullptr, "1000", 1.0}); // color intensity
descriptor.cFragment.constants = fragmentConstants.data();
descriptor.cFragment.constantCount = fragmentConstants.size();
wgpu::RenderPipeline pipeline = device.CreateRenderPipeline(&descriptor);
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(pipeline);
pass.Draw(3);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(255, 255, 255, 255), renderPass.color, 0, 0);
}
// This is a regression test for crbug.com/dawn:1363 where the BindingRemapper transform was run
// before the SingleEntryPoint transform, causing one of the other entry points to have conflicting
// bindings.
TEST_P(ShaderTests, ConflictingBindingsDueToTransformOrder) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
@group(0) @binding(0) var<uniform> b0 : u32;
@group(0) @binding(1) var<uniform> b1 : u32;
@vertex fn vertex() -> @builtin(position) vec4<f32> {
_ = b0;
return vec4<f32>(0.0);
}
@fragment fn fragment() -> @location(0) vec4<f32> {
_ = b0;
_ = b1;
return vec4<f32>(0.0);
}
)");
utils::ComboRenderPipelineDescriptor desc;
desc.vertex.module = module;
desc.vertex.entryPoint = "vertex";
desc.cFragment.module = module;
desc.cFragment.entryPoint = "fragment";
device.CreateRenderPipeline(&desc);
}
// Check that chromium_disable_uniformity_analysis can be used. It is normally disallowed as unsafe
// but DawnTests allow all unsafe APIs by default.
// TODO(crbug.com/tint/1728): Enable again when uniformity failures are errors again
TEST_P(ShaderTests, DISABLED_CheckUsageOf_chromium_disable_uniformity_analysis) {
wgpu::ShaderModule module = utils::CreateShaderModule(device, R"(
enable chromium_disable_uniformity_analysis;
@compute @workgroup_size(8) fn uniformity_error(
@builtin(local_invocation_id) local_invocation_id : vec3<u32>
) {
if (local_invocation_id.x == 0u) {
workgroupBarrier();
}
}
)");
ASSERT_DEVICE_ERROR(utils::CreateShaderModule(device, R"(
@compute @workgroup_size(8) fn uniformity_error(
@builtin(local_invocation_id) local_invocation_id : vec3<u32>
) {
if (local_invocation_id.x == 0u) {
workgroupBarrier();
}
}
)"));
}
// Test that it is not possible to override the builtins in a way that breaks the robustness
// transform.
TEST_P(ShaderTests, ShaderOverridingRobustnessBuiltins) {
// TODO(dawn:1585): The OpenGL backend doesn't use the Renamer tint transform yet.
DAWN_SUPPRESS_TEST_IF(IsOpenGL() || IsOpenGLES());
// Make the test compute pipeline.
wgpu::ComputePipelineDescriptor cDesc;
cDesc.compute.module = utils::CreateShaderModule(device, R"(
// A fake min() function that always returns 0.
fn min(a : u32, b : u32) -> u32 {
return 0;
}
@group(0) @binding(0) var<storage, read_write> result : u32;
@compute @workgroup_size(1) fn little_bobby_tables() {
// Prevent the SingleEntryPoint transform from removing our min().
let forceUseOfMin = min(0, 1);
let values = array<u32, 2>(1, 2);
let index = 1u;
// Robustness adds transforms values[index] into values[min(index, 1u)].
// - If our min() is called, the this will be values[0] which is 1.
// - If the correct min() is called, the this will be values[1] which is 2.
result = values[index];
}
)");
cDesc.compute.entryPoint = "little_bobby_tables";
wgpu::ComputePipeline pipeline = device.CreateComputePipeline(&cDesc);
// Test 4-byte buffer that will receive the result.
wgpu::BufferDescriptor bufDesc;
bufDesc.size = 4;
bufDesc.usage = wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc;
wgpu::Buffer buf = device.CreateBuffer(&bufDesc);
wgpu::BindGroup bg = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0), {{0, buf}});
// Run the compute pipeline.
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.SetBindGroup(0, bg);
pass.DispatchWorkgroups(1);
pass.End();
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// See the comment in the shader for why we expect a 2 here.
EXPECT_BUFFER_U32_EQ(2, buf, 0);
}
DAWN_INSTANTIATE_TEST(ShaderTests,
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());