blob: 3f4ad43ea4f914235e0de80fa722a2ba57b666e9 [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef DAWNNATIVE_DEVICE_H_
#define DAWNNATIVE_DEVICE_H_
#include "dawn_native/Commands.h"
#include "dawn_native/Error.h"
#include "dawn_native/Extensions.h"
#include "dawn_native/Format.h"
#include "dawn_native/Forward.h"
#include "dawn_native/Limits.h"
#include "dawn_native/ObjectBase.h"
#include "dawn_native/Toggles.h"
#include "dawn_native/DawnNative.h"
#include "dawn_native/dawn_platform.h"
#include <utility>
namespace dawn_platform {
class WorkerTaskPool;
} // namespace dawn_platform
namespace dawn_native {
class AdapterBase;
class AsyncTaskManager;
class AttachmentState;
class AttachmentStateBlueprint;
class BindGroupLayoutBase;
class CallbackTaskManager;
class DynamicUploader;
class ErrorScopeStack;
class ExternalTextureBase;
class OwnedCompilationMessages;
class PersistentCache;
class StagingBufferBase;
struct CallbackTask;
struct InternalPipelineStore;
struct ShaderModuleParseResult;
class DeviceBase : public RefCounted {
public:
DeviceBase(AdapterBase* adapter, const DeviceDescriptor* descriptor);
virtual ~DeviceBase();
void HandleError(InternalErrorType type, const char* message);
bool ConsumedError(MaybeError maybeError) {
if (DAWN_UNLIKELY(maybeError.IsError())) {
ConsumeError(maybeError.AcquireError());
return true;
}
return false;
}
template <typename T>
bool ConsumedError(ResultOrError<T> resultOrError, T* result) {
if (DAWN_UNLIKELY(resultOrError.IsError())) {
ConsumeError(resultOrError.AcquireError());
return true;
}
*result = resultOrError.AcquireSuccess();
return false;
}
MaybeError ValidateObject(const ObjectBase* object) const;
AdapterBase* GetAdapter() const;
dawn_platform::Platform* GetPlatform() const;
// Returns the Format corresponding to the wgpu::TextureFormat or an error if the format
// isn't a valid wgpu::TextureFormat or isn't supported by this device.
// The pointer returned has the same lifetime as the device.
ResultOrError<const Format*> GetInternalFormat(wgpu::TextureFormat format) const;
// Returns the Format corresponding to the wgpu::TextureFormat and assumes the format is
// valid and supported.
// The reference returned has the same lifetime as the device.
const Format& GetValidInternalFormat(wgpu::TextureFormat format) const;
virtual ResultOrError<Ref<CommandBufferBase>> CreateCommandBuffer(
CommandEncoder* encoder,
const CommandBufferDescriptor* descriptor) = 0;
ExecutionSerial GetCompletedCommandSerial() const;
ExecutionSerial GetLastSubmittedCommandSerial() const;
ExecutionSerial GetFutureSerial() const;
ExecutionSerial GetPendingCommandSerial() const;
// Many Dawn objects are completely immutable once created which means that if two
// creations are given the same arguments, they can return the same object. Reusing
// objects will help make comparisons between objects by a single pointer comparison.
//
// Technically no object is immutable as they have a reference count, and an
// application with reference-counting issues could "see" that objects are reused.
// This is solved by automatic-reference counting, and also the fact that when using
// the client-server wire every creation will get a different proxy object, with a
// different reference count.
//
// When trying to create an object, we give both the descriptor and an example of what
// the created object will be, the "blueprint". The blueprint is just a FooBase object
// instead of a backend Foo object. If the blueprint doesn't match an object in the
// cache, then the descriptor is used to make a new object.
ResultOrError<Ref<BindGroupLayoutBase>> GetOrCreateBindGroupLayout(
const BindGroupLayoutDescriptor* descriptor,
PipelineCompatibilityToken pipelineCompatibilityToken = PipelineCompatibilityToken(0));
void UncacheBindGroupLayout(BindGroupLayoutBase* obj);
BindGroupLayoutBase* GetEmptyBindGroupLayout();
void UncacheComputePipeline(ComputePipelineBase* obj);
ResultOrError<Ref<PipelineLayoutBase>> GetOrCreatePipelineLayout(
const PipelineLayoutDescriptor* descriptor);
void UncachePipelineLayout(PipelineLayoutBase* obj);
void UncacheRenderPipeline(RenderPipelineBase* obj);
ResultOrError<Ref<SamplerBase>> GetOrCreateSampler(const SamplerDescriptor* descriptor);
void UncacheSampler(SamplerBase* obj);
ResultOrError<Ref<ShaderModuleBase>> GetOrCreateShaderModule(
const ShaderModuleDescriptor* descriptor,
ShaderModuleParseResult* parseResult,
OwnedCompilationMessages* compilationMessages);
void UncacheShaderModule(ShaderModuleBase* obj);
Ref<AttachmentState> GetOrCreateAttachmentState(AttachmentStateBlueprint* blueprint);
Ref<AttachmentState> GetOrCreateAttachmentState(
const RenderBundleEncoderDescriptor* descriptor);
Ref<AttachmentState> GetOrCreateAttachmentState(const RenderPipelineDescriptor* descriptor);
Ref<AttachmentState> GetOrCreateAttachmentState(const RenderPassDescriptor* descriptor);
void UncacheAttachmentState(AttachmentState* obj);
// Object creation methods that be used in a reentrant manner.
ResultOrError<Ref<BindGroupBase>> CreateBindGroup(const BindGroupDescriptor* descriptor);
ResultOrError<Ref<BindGroupLayoutBase>> CreateBindGroupLayout(
const BindGroupLayoutDescriptor* descriptor,
bool allowInternalBinding = false);
ResultOrError<Ref<BufferBase>> CreateBuffer(const BufferDescriptor* descriptor);
ResultOrError<Ref<ComputePipelineBase>> CreateComputePipeline(
const ComputePipelineDescriptor* descriptor);
MaybeError CreateComputePipelineAsync(
const ComputePipelineDescriptor* descriptor,
WGPUCreateComputePipelineAsyncCallback callback,
void* userdata);
ResultOrError<Ref<ExternalTextureBase>> CreateExternalTexture(
const ExternalTextureDescriptor* descriptor);
ResultOrError<Ref<PipelineLayoutBase>> CreatePipelineLayout(
const PipelineLayoutDescriptor* descriptor);
ResultOrError<Ref<QuerySetBase>> CreateQuerySet(const QuerySetDescriptor* descriptor);
ResultOrError<Ref<RenderBundleEncoder>> CreateRenderBundleEncoder(
const RenderBundleEncoderDescriptor* descriptor);
ResultOrError<Ref<RenderPipelineBase>> CreateRenderPipeline(
const RenderPipelineDescriptor* descriptor);
MaybeError CreateRenderPipelineAsync(const RenderPipelineDescriptor* descriptor,
WGPUCreateRenderPipelineAsyncCallback callback,
void* userdata);
ResultOrError<Ref<SamplerBase>> CreateSampler(const SamplerDescriptor* descriptor);
ResultOrError<Ref<ShaderModuleBase>> CreateShaderModule(
const ShaderModuleDescriptor* descriptor,
OwnedCompilationMessages* compilationMessages = nullptr);
ResultOrError<Ref<SwapChainBase>> CreateSwapChain(Surface* surface,
const SwapChainDescriptor* descriptor);
ResultOrError<Ref<TextureBase>> CreateTexture(const TextureDescriptor* descriptor);
ResultOrError<Ref<TextureViewBase>> CreateTextureView(
TextureBase* texture,
const TextureViewDescriptor* descriptor);
// Implementation of API object creation methods. DO NOT use them in a reentrant manner.
BindGroupBase* APICreateBindGroup(const BindGroupDescriptor* descriptor);
BindGroupLayoutBase* APICreateBindGroupLayout(const BindGroupLayoutDescriptor* descriptor);
BufferBase* APICreateBuffer(const BufferDescriptor* descriptor);
CommandEncoder* APICreateCommandEncoder(const CommandEncoderDescriptor* descriptor);
ComputePipelineBase* APICreateComputePipeline(const ComputePipelineDescriptor* descriptor);
PipelineLayoutBase* APICreatePipelineLayout(const PipelineLayoutDescriptor* descriptor);
QuerySetBase* APICreateQuerySet(const QuerySetDescriptor* descriptor);
void APICreateComputePipelineAsync(const ComputePipelineDescriptor* descriptor,
WGPUCreateComputePipelineAsyncCallback callback,
void* userdata);
void APICreateRenderPipelineAsync(const RenderPipelineDescriptor* descriptor,
WGPUCreateRenderPipelineAsyncCallback callback,
void* userdata);
RenderBundleEncoder* APICreateRenderBundleEncoder(
const RenderBundleEncoderDescriptor* descriptor);
RenderPipelineBase* APICreateRenderPipeline(const RenderPipelineDescriptor* descriptor);
ExternalTextureBase* APICreateExternalTexture(const ExternalTextureDescriptor* descriptor);
SamplerBase* APICreateSampler(const SamplerDescriptor* descriptor);
ShaderModuleBase* APICreateShaderModule(const ShaderModuleDescriptor* descriptor);
SwapChainBase* APICreateSwapChain(Surface* surface, const SwapChainDescriptor* descriptor);
TextureBase* APICreateTexture(const TextureDescriptor* descriptor);
InternalPipelineStore* GetInternalPipelineStore();
// For Dawn Wire
BufferBase* APICreateErrorBuffer();
QueueBase* APIGetQueue();
bool APIGetLimits(SupportedLimits* limits);
void APIInjectError(wgpu::ErrorType type, const char* message);
bool APITick();
void APISetDeviceLostCallback(wgpu::DeviceLostCallback callback, void* userdata);
void APISetUncapturedErrorCallback(wgpu::ErrorCallback callback, void* userdata);
void APISetLoggingCallback(wgpu::LoggingCallback callback, void* userdata);
void APIPushErrorScope(wgpu::ErrorFilter filter);
bool APIPopErrorScope(wgpu::ErrorCallback callback, void* userdata);
MaybeError ValidateIsAlive() const;
PersistentCache* GetPersistentCache();
virtual ResultOrError<std::unique_ptr<StagingBufferBase>> CreateStagingBuffer(
size_t size) = 0;
virtual MaybeError CopyFromStagingToBuffer(StagingBufferBase* source,
uint64_t sourceOffset,
BufferBase* destination,
uint64_t destinationOffset,
uint64_t size) = 0;
virtual MaybeError CopyFromStagingToTexture(const StagingBufferBase* source,
const TextureDataLayout& src,
TextureCopy* dst,
const Extent3D& copySizePixels) = 0;
DynamicUploader* GetDynamicUploader() const;
// The device state which is a combination of creation state and loss state.
//
// - BeingCreated: the device didn't finish creation yet and the frontend cannot be used
// (both for the application calling WebGPU, or re-entrant calls). No work exists on
// the GPU timeline.
// - Alive: the device is usable and might have work happening on the GPU timeline.
// - BeingDisconnected: the device is no longer usable because we are waiting for all
// work on the GPU timeline to finish. (this is to make validation prevent the
// application from adding more work during the transition from Available to
// Disconnected)
// - Disconnected: there is no longer work happening on the GPU timeline and the CPU data
// structures can be safely destroyed without additional synchronization.
enum class State {
BeingCreated,
Alive,
BeingDisconnected,
Disconnected,
};
State GetState() const;
bool IsLost() const;
std::vector<const char*> GetEnabledExtensions() const;
std::vector<const char*> GetTogglesUsed() const;
bool IsExtensionEnabled(Extension extension) const;
bool IsToggleEnabled(Toggle toggle) const;
bool IsValidationEnabled() const;
bool IsRobustnessEnabled() const;
size_t GetLazyClearCountForTesting();
void IncrementLazyClearCountForTesting();
size_t GetDeprecationWarningCountForTesting();
void EmitDeprecationWarning(const char* warning);
void EmitLog(const char* message);
void EmitLog(WGPULoggingType loggingType, const char* message);
void APILoseForTesting();
QueueBase* GetQueue() const;
// AddFutureSerial is used to update the mFutureSerial with the max serial needed to be
// ticked in order to clean up all pending callback work or to execute asynchronous resource
// writes. It should be given the serial that a callback is tracked with, so that once that
// serial is completed, it can be resolved and cleaned up. This is so that when there is no
// gpu work (the last submitted serial has not moved beyond the completed serial), Tick can
// still check if we have pending work to take care of, rather than hanging and never
// reaching the serial the work will be executed on.
void AddFutureSerial(ExecutionSerial serial);
// Check for passed fences and set the new completed serial
MaybeError CheckPassedSerials();
MaybeError Tick();
virtual uint32_t GetOptimalBytesPerRowAlignment() const = 0;
virtual uint64_t GetOptimalBufferToTextureCopyOffsetAlignment() const = 0;
virtual float GetTimestampPeriodInNS() const = 0;
AsyncTaskManager* GetAsyncTaskManager() const;
CallbackTaskManager* GetCallbackTaskManager() const;
dawn_platform::WorkerTaskPool* GetWorkerTaskPool() const;
void AddComputePipelineAsyncCallbackTask(Ref<ComputePipelineBase> pipeline,
std::string errorMessage,
WGPUCreateComputePipelineAsyncCallback callback,
void* userdata,
size_t blueprintHash);
void AddRenderPipelineAsyncCallbackTask(Ref<RenderPipelineBase> pipeline,
std::string errorMessage,
WGPUCreateRenderPipelineAsyncCallback callback,
void* userdata,
size_t blueprintHash);
PipelineCompatibilityToken GetNextPipelineCompatibilityToken();
const std::string& GetLabel() const;
void APISetLabel(const char* label);
protected:
void SetToggle(Toggle toggle, bool isEnabled);
void ForceSetToggle(Toggle toggle, bool isEnabled);
MaybeError Initialize(QueueBase* defaultQueue);
void ShutDownBase();
// Incrememt mLastSubmittedSerial when we submit the next serial
void IncrementLastSubmittedCommandSerial();
private:
virtual ResultOrError<Ref<BindGroupBase>> CreateBindGroupImpl(
const BindGroupDescriptor* descriptor) = 0;
virtual ResultOrError<Ref<BindGroupLayoutBase>> CreateBindGroupLayoutImpl(
const BindGroupLayoutDescriptor* descriptor,
PipelineCompatibilityToken pipelineCompatibilityToken) = 0;
virtual ResultOrError<Ref<BufferBase>> CreateBufferImpl(
const BufferDescriptor* descriptor) = 0;
virtual ResultOrError<Ref<ComputePipelineBase>> CreateComputePipelineImpl(
const ComputePipelineDescriptor* descriptor) = 0;
virtual ResultOrError<Ref<PipelineLayoutBase>> CreatePipelineLayoutImpl(
const PipelineLayoutDescriptor* descriptor) = 0;
virtual ResultOrError<Ref<QuerySetBase>> CreateQuerySetImpl(
const QuerySetDescriptor* descriptor) = 0;
virtual ResultOrError<Ref<RenderPipelineBase>> CreateRenderPipelineImpl(
const RenderPipelineDescriptor* descriptor) = 0;
virtual ResultOrError<Ref<SamplerBase>> CreateSamplerImpl(
const SamplerDescriptor* descriptor) = 0;
virtual ResultOrError<Ref<ShaderModuleBase>> CreateShaderModuleImpl(
const ShaderModuleDescriptor* descriptor,
ShaderModuleParseResult* parseResult) = 0;
virtual ResultOrError<Ref<SwapChainBase>> CreateSwapChainImpl(
const SwapChainDescriptor* descriptor) = 0;
// Note that previousSwapChain may be nullptr, or come from a different backend.
virtual ResultOrError<Ref<NewSwapChainBase>> CreateSwapChainImpl(
Surface* surface,
NewSwapChainBase* previousSwapChain,
const SwapChainDescriptor* descriptor) = 0;
virtual ResultOrError<Ref<TextureBase>> CreateTextureImpl(
const TextureDescriptor* descriptor) = 0;
virtual ResultOrError<Ref<TextureViewBase>> CreateTextureViewImpl(
TextureBase* texture,
const TextureViewDescriptor* descriptor) = 0;
virtual void SetLabelImpl();
virtual MaybeError TickImpl() = 0;
void FlushCallbackTaskQueue();
ResultOrError<Ref<BindGroupLayoutBase>> CreateEmptyBindGroupLayout();
std::pair<Ref<ComputePipelineBase>, size_t> GetCachedComputePipeline(
const ComputePipelineDescriptor* descriptor);
std::pair<Ref<RenderPipelineBase>, size_t> GetCachedRenderPipeline(
const RenderPipelineDescriptor* descriptor);
Ref<ComputePipelineBase> AddOrGetCachedComputePipeline(
Ref<ComputePipelineBase> computePipeline,
size_t blueprintHash);
Ref<RenderPipelineBase> AddOrGetCachedRenderPipeline(Ref<RenderPipelineBase> renderPipeline,
size_t blueprintHash);
virtual void CreateComputePipelineAsyncImpl(const ComputePipelineDescriptor* descriptor,
size_t blueprintHash,
WGPUCreateComputePipelineAsyncCallback callback,
void* userdata);
virtual void CreateRenderPipelineAsyncImpl(const RenderPipelineDescriptor* descriptor,
size_t blueprintHash,
WGPUCreateRenderPipelineAsyncCallback callback,
void* userdata);
void ApplyToggleOverrides(const DeviceDescriptor* deviceDescriptor);
void ApplyExtensions(const DeviceDescriptor* deviceDescriptor);
void SetDefaultToggles();
void ConsumeError(std::unique_ptr<ErrorData> error);
// Each backend should implement to check their passed fences if there are any and return a
// completed serial. Return 0 should indicate no fences to check.
virtual ResultOrError<ExecutionSerial> CheckAndUpdateCompletedSerials() = 0;
// During shut down of device, some operations might have been started since the last submit
// and waiting on a serial that doesn't have a corresponding fence enqueued. Fake serials to
// make all commands look completed.
void AssumeCommandsComplete();
bool IsDeviceIdle();
// mCompletedSerial tracks the last completed command serial that the fence has returned.
// mLastSubmittedSerial tracks the last submitted command serial.
// During device removal, the serials could be artificially incremented
// to make it appear as if commands have been compeleted. They can also be artificially
// incremented when no work is being done in the GPU so CPU operations don't have to wait on
// stale serials.
// mFutureSerial tracks the largest serial we need to tick to for asynchronous commands or
// callbacks to fire
ExecutionSerial mCompletedSerial = ExecutionSerial(0);
ExecutionSerial mLastSubmittedSerial = ExecutionSerial(0);
ExecutionSerial mFutureSerial = ExecutionSerial(0);
// ShutDownImpl is used to clean up and release resources used by device, does not wait for
// GPU or check errors.
virtual void ShutDownImpl() = 0;
// WaitForIdleForDestruction waits for GPU to finish, checks errors and gets ready for
// destruction. This is only used when properly destructing the device. For a real
// device loss, this function doesn't need to be called since the driver already closed all
// resources.
virtual MaybeError WaitForIdleForDestruction() = 0;
wgpu::ErrorCallback mUncapturedErrorCallback = nullptr;
void* mUncapturedErrorUserdata = nullptr;
wgpu::LoggingCallback mLoggingCallback = nullptr;
void* mLoggingUserdata = nullptr;
wgpu::DeviceLostCallback mDeviceLostCallback = nullptr;
void* mDeviceLostUserdata = nullptr;
std::unique_ptr<ErrorScopeStack> mErrorScopeStack;
// The Device keeps a ref to the Instance so that any live Device keeps the Instance alive.
// The Instance shouldn't need to ref child objects so this shouldn't introduce ref cycles.
// The Device keeps a simple pointer to the Adapter because the Adapter is owned by the
// Instance.
Ref<InstanceBase> mInstance;
AdapterBase* mAdapter = nullptr;
// The object caches aren't exposed in the header as they would require a lot of
// additional includes.
struct Caches;
std::unique_ptr<Caches> mCaches;
Ref<BindGroupLayoutBase> mEmptyBindGroupLayout;
std::unique_ptr<DynamicUploader> mDynamicUploader;
std::unique_ptr<AsyncTaskManager> mAsyncTaskManager;
Ref<QueueBase> mQueue;
struct DeprecationWarnings;
std::unique_ptr<DeprecationWarnings> mDeprecationWarnings;
State mState = State::BeingCreated;
FormatTable mFormatTable;
TogglesSet mEnabledToggles;
TogglesSet mOverridenToggles;
size_t mLazyClearCountForTesting = 0;
std::atomic_uint64_t mNextPipelineCompatibilityToken;
CombinedLimits mLimits;
ExtensionsSet mEnabledExtensions;
std::unique_ptr<InternalPipelineStore> mInternalPipelineStore;
std::unique_ptr<PersistentCache> mPersistentCache;
std::unique_ptr<CallbackTaskManager> mCallbackTaskManager;
std::unique_ptr<dawn_platform::WorkerTaskPool> mWorkerTaskPool;
std::string mLabel;
};
} // namespace dawn_native
#endif // DAWNNATIVE_DEVICE_H_