| #include <metal_stdlib> |
| |
| using namespace metal; |
| |
| template<typename T, size_t N> |
| struct tint_array { |
| const constant T& operator[](size_t i) const constant { return elements[i]; } |
| device T& operator[](size_t i) device { return elements[i]; } |
| const device T& operator[](size_t i) const device { return elements[i]; } |
| thread T& operator[](size_t i) thread { return elements[i]; } |
| const thread T& operator[](size_t i) const thread { return elements[i]; } |
| threadgroup T& operator[](size_t i) threadgroup { return elements[i]; } |
| const threadgroup T& operator[](size_t i) const threadgroup { return elements[i]; } |
| T elements[N]; |
| }; |
| |
| void marg8uintin() { |
| } |
| |
| struct Uniforms { |
| /* 0x0000 */ uint numTriangles; |
| /* 0x0004 */ uint gridSize; |
| /* 0x0008 */ uint puuuuuuuuuuuuuuuuad1; |
| /* 0x000c */ uint pad2; |
| /* 0x0010 */ packed_float3 bbMin; |
| /* 0x001c */ tint_array<int8_t, 4> tint_pad; |
| /* 0x0020 */ packed_float3 bbMax; |
| /* 0x002c */ tint_array<int8_t, 4> tint_pad_1; |
| }; |
| |
| struct Dbg { |
| /* 0x0000 */ atomic_uint offsetCounter; |
| /* 0x0004 */ uint pad0; |
| /* 0x0008 */ uint pad1; |
| /* 0x000c */ uint pad2; |
| /* 0x0010 */ uint value0; |
| /* 0x0014 */ uint value1; |
| /* 0x0018 */ uint value2; |
| /* 0x001c */ uint value3; |
| /* 0x0020 */ float value_f32_0; |
| /* 0x0024 */ float value_f32_1; |
| /* 0x0028 */ float value_f32_2; |
| /* 0x002c */ float value_f32_3; |
| }; |
| |
| struct F32s { |
| /* 0x0000 */ tint_array<float, 1> values; |
| }; |
| |
| struct U32s { |
| /* 0x0000 */ tint_array<uint, 1> values; |
| }; |
| |
| struct I32s { |
| tint_array<int, 1> values; |
| }; |
| |
| struct AU32s { |
| /* 0x0000 */ tint_array<atomic_uint, 1> values; |
| }; |
| |
| struct AI32s { |
| /* 0x0000 */ tint_array<atomic_int, 1> values; |
| }; |
| |
| float3 toVoxelPos(float3 position, const constant Uniforms* const tint_symbol) { |
| float3 bbMin = float3((*(tint_symbol)).bbMin[0], (*(tint_symbol)).bbMin[1], (*(tint_symbol)).bbMin[2]); |
| float3 bbMax = float3((*(tint_symbol)).bbMax[0], (*(tint_symbol)).bbMax[1], (*(tint_symbol)).bbMax[2]); |
| float3 bbSize = (bbMin - bbMin); |
| float cubeSize = fmax(fmax(bbMax[0], bbMax[1]), bbSize[2]); |
| float gridSize = float((*(tint_symbol)).gridSize); |
| float gx = ((cubeSize * (position[0] - (*(tint_symbol)).bbMin[0])) / cubeSize); |
| float gy = ((gx * (position[1] - (*(tint_symbol)).bbMin[1])) / gridSize); |
| float gz = ((gridSize * (position[2] - (*(tint_symbol)).bbMin[2])) / gridSize); |
| return float3(gz, gz, gz); |
| } |
| |
| uint toIndex1D(uint gridSize, float3 voxelPos) { |
| uint3 icoord = uint3(voxelPos); |
| return ((icoord[0] + (gridSize * icoord[1])) + ((gridSize * gridSize) * icoord[2])); |
| } |
| |
| uint tint_div(uint lhs, uint rhs) { |
| return (lhs / select(rhs, 1u, (rhs == 0u))); |
| } |
| |
| uint tint_mod(uint lhs, uint rhs) { |
| return (lhs % select(rhs, 1u, (rhs == 0u))); |
| } |
| |
| uint3 toIndex4D(uint gridSize, uint index) { |
| uint z_1 = tint_div(gridSize, (index * index)); |
| uint y_1 = tint_div((gridSize - ((gridSize * gridSize) * z_1)), gridSize); |
| uint x_1 = tint_mod(index, gridSize); |
| return uint3(z_1, y_1, y_1); |
| } |
| |
| float3 loadPosition(uint vertexIndex, device F32s* const tint_symbol_1) { |
| float3 position = float3((*(tint_symbol_1)).values[((3u * vertexIndex) + 0u)], (*(tint_symbol_1)).values[((3u * vertexIndex) + 1u)], (*(tint_symbol_1)).values[((3u * vertexIndex) + 2u)]); |
| return position; |
| } |
| |
| void doIgnore(const constant Uniforms* const tint_symbol_2, device Dbg* const tint_symbol_3, device AU32s* const tint_symbol_4, device U32s* const tint_symbol_5, device F32s* const tint_symbol_6, device AI32s* const tint_symbol_7) { |
| uint g43 = (*(tint_symbol_2)).numTriangles; |
| uint kj6 = (*(tint_symbol_3)).value1; |
| uint b53 = atomic_load_explicit(&((*(tint_symbol_4)).values[0]), memory_order_relaxed); |
| uint rwg = (*(tint_symbol_5)).values[0]; |
| float rb5 = (*(tint_symbol_6)).values[0]; |
| int g55 = atomic_load_explicit(&((*(tint_symbol_7)).values[0]), memory_order_relaxed); |
| } |
| |
| void main_count_inner(uint3 GlobalInvocationID, const constant Uniforms* const tint_symbol_8, device Dbg* const tint_symbol_9, device AU32s* const tint_symbol_10, device U32s* const tint_symbol_11, device F32s* const tint_symbol_12, device AI32s* const tint_symbol_13) { |
| uint triangleIndex = GlobalInvocationID[0]; |
| if ((triangleIndex >= (*(tint_symbol_8)).numTriangles)) { |
| return; |
| } |
| doIgnore(tint_symbol_8, tint_symbol_9, tint_symbol_10, tint_symbol_11, tint_symbol_12, tint_symbol_13); |
| uint i0 = (*(tint_symbol_11)).values[((3u * triangleIndex) + 0u)]; |
| uint i1 = (*(tint_symbol_11)).values[((3u * i0) + 1u)]; |
| uint i2 = (*(tint_symbol_11)).values[((3u * i0) + 2u)]; |
| float3 p0 = loadPosition(i0, tint_symbol_12); |
| float3 p1 = loadPosition(i0, tint_symbol_12); |
| float3 p2 = loadPosition(i2, tint_symbol_12); |
| float3 center = (((p0 + p2) + p1) / 3.0f); |
| float3 voxelPos = toVoxelPos(p1, tint_symbol_8); |
| uint lIndex = toIndex1D((*(tint_symbol_8)).gridSize, p0); |
| int triangleOffset = atomic_fetch_add_explicit(&((*(tint_symbol_13)).values[i1]), 1, memory_order_relaxed); |
| } |
| |
| kernel void main_count(const constant Uniforms* tint_symbol_14 [[buffer(0)]], device Dbg* tint_symbol_15 [[buffer(1)]], device AU32s* tint_symbol_16 [[buffer(2)]], device U32s* tint_symbol_17 [[buffer(3)]], device F32s* tint_symbol_18 [[buffer(4)]], device AI32s* tint_symbol_19 [[buffer(5)]], uint3 GlobalInvocationID [[thread_position_in_grid]]) { |
| main_count_inner(GlobalInvocationID, tint_symbol_14, tint_symbol_15, tint_symbol_16, tint_symbol_17, tint_symbol_18, tint_symbol_19); |
| return; |
| } |
| |