blob: b79fb8c6d204fc1fcc9855f6976da943e12af755 [file] [log] [blame]
// Copyright 2020 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/spirv/reader/ast_parser/ast_parser.h"
#include <algorithm>
#include <limits>
#include <string_view>
#include <utility>
#include "source/opt/build_module.h"
#include "src/tint/lang/core/fluent_types.h"
#include "src/tint/lang/core/type/depth_texture.h"
#include "src/tint/lang/core/type/multisampled_texture.h"
#include "src/tint/lang/core/type/sampled_texture.h"
#include "src/tint/lang/core/type/texture_dimension.h"
#include "src/tint/lang/spirv/reader/ast_parser/function.h"
#include "src/tint/lang/wgsl/ast/disable_validation_attribute.h"
#include "src/tint/lang/wgsl/ast/id_attribute.h"
#include "src/tint/lang/wgsl/ast/interpolate_attribute.h"
#include "src/tint/lang/wgsl/ast/unary_op_expression.h"
#include "src/tint/lang/wgsl/resolver/resolve.h"
#include "src/tint/utils/containers/unique_vector.h"
#include "src/tint/utils/rtti/switch.h"
using namespace tint::core::fluent_types; // NOLINT
namespace tint::spirv::reader::ast_parser {
namespace {
// Input SPIR-V needs only to conform to Vulkan 1.1 requirements.
// The combination of the SPIR-V reader and the semantics of WGSL
// tighten up the code so that the output of the SPIR-V *writer*
// will satisfy SPV_ENV_WEBGPU_0 validation.
const spv_target_env kInputEnv = SPV_ENV_VULKAN_1_1;
/// @param inst a SPIR-V instruction
/// @returns Returns the opcode for an instruciton
inline spv::Op opcode(const spvtools::opt::Instruction& inst) {
return inst.opcode();
}
/// @param inst a SPIR-V instruction pointer
/// @returns Returns the opcode for an instruciton
inline spv::Op opcode(const spvtools::opt::Instruction* inst) {
return inst->opcode();
}
// A FunctionTraverser is used to compute an ordering of functions in the
// module such that callees precede callers.
class FunctionTraverser {
public:
explicit FunctionTraverser(const spvtools::opt::Module& module) : module_(module) {}
// @returns the functions in the modules such that callees precede callers.
std::vector<const spvtools::opt::Function*> TopologicallyOrderedFunctions() {
visited_.clear();
ordered_.clear();
id_to_func_.clear();
for (const auto& f : module_) {
id_to_func_[f.result_id()] = &f;
}
for (const auto& f : module_) {
Visit(f);
}
return ordered_;
}
private:
void Visit(const spvtools::opt::Function& f) {
if (visited_.count(&f)) {
return;
}
visited_.insert(&f);
for (const auto& bb : f) {
for (const auto& inst : bb) {
if (opcode(inst) != spv::Op::OpFunctionCall) {
continue;
}
const auto* callee = id_to_func_[inst.GetSingleWordInOperand(0)];
if (callee) {
Visit(*callee);
}
}
}
ordered_.push_back(&f);
}
const spvtools::opt::Module& module_;
std::unordered_set<const spvtools::opt::Function*> visited_;
std::unordered_map<uint32_t, const spvtools::opt::Function*> id_to_func_;
std::vector<const spvtools::opt::Function*> ordered_;
};
// Returns true if the opcode operates as if its operands are signed integral.
bool AssumesSignedOperands(spv::Op opcode) {
switch (opcode) {
case spv::Op::OpSNegate:
case spv::Op::OpSDiv:
case spv::Op::OpSRem:
case spv::Op::OpSMod:
case spv::Op::OpSLessThan:
case spv::Op::OpSLessThanEqual:
case spv::Op::OpSGreaterThan:
case spv::Op::OpSGreaterThanEqual:
case spv::Op::OpConvertSToF:
return true;
default:
break;
}
return false;
}
// Returns true if the GLSL extended instruction expects operands to be signed.
// @param extended_opcode GLSL.std.450 opcode
// @returns true if all operands must be signed integral type
bool AssumesSignedOperands(GLSLstd450 extended_opcode) {
switch (extended_opcode) {
case GLSLstd450SAbs:
case GLSLstd450SSign:
case GLSLstd450SMin:
case GLSLstd450SMax:
case GLSLstd450SClamp:
case GLSLstd450FindSMsb:
return true;
default:
break;
}
return false;
}
// Returns true if the opcode operates as if its operands are unsigned integral.
bool AssumesUnsignedOperands(spv::Op opcode) {
switch (opcode) {
case spv::Op::OpUDiv:
case spv::Op::OpUMod:
case spv::Op::OpULessThan:
case spv::Op::OpULessThanEqual:
case spv::Op::OpUGreaterThan:
case spv::Op::OpUGreaterThanEqual:
case spv::Op::OpConvertUToF:
return true;
default:
break;
}
return false;
}
// Returns true if the GLSL extended instruction expects operands to be
// unsigned.
// @param extended_opcode GLSL.std.450 opcode
// @returns true if all operands must be unsigned integral type
bool AssumesUnsignedOperands(GLSLstd450 extended_opcode) {
switch (extended_opcode) {
case GLSLstd450UMin:
case GLSLstd450UMax:
case GLSLstd450UClamp:
case GLSLstd450FindUMsb:
return true;
default:
break;
}
return false;
}
// Returns true if the corresponding WGSL operation requires
// the signedness of the second operand to match the signedness of the
// first operand, and it's not one of the OpU* or OpS* instructions.
// (Those are handled via MakeOperand.)
bool AssumesSecondOperandSignednessMatchesFirstOperand(spv::Op opcode) {
switch (opcode) {
// All the OpI* integer binary operations.
case spv::Op::OpIAdd:
case spv::Op::OpISub:
case spv::Op::OpIMul:
case spv::Op::OpIEqual:
case spv::Op::OpINotEqual:
// All the bitwise integer binary operations.
case spv::Op::OpBitwiseAnd:
case spv::Op::OpBitwiseOr:
case spv::Op::OpBitwiseXor:
return true;
default:
break;
}
return false;
}
// Returns true if the corresponding WGSL operation requires
// the signedness of the result to match the signedness of the first operand.
bool AssumesResultSignednessMatchesFirstOperand(spv::Op opcode) {
switch (opcode) {
case spv::Op::OpNot:
case spv::Op::OpSNegate:
case spv::Op::OpBitCount:
case spv::Op::OpBitReverse:
case spv::Op::OpSDiv:
case spv::Op::OpSMod:
case spv::Op::OpSRem:
case spv::Op::OpIAdd:
case spv::Op::OpISub:
case spv::Op::OpIMul:
case spv::Op::OpBitwiseAnd:
case spv::Op::OpBitwiseOr:
case spv::Op::OpBitwiseXor:
case spv::Op::OpShiftLeftLogical:
case spv::Op::OpShiftRightLogical:
case spv::Op::OpShiftRightArithmetic:
return true;
default:
break;
}
return false;
}
// Returns true if the extended instruction requires the signedness of the
// result to match the signedness of the first operand to the operation.
// @param extended_opcode GLSL.std.450 opcode
// @returns true if the result type must match the first operand type.
bool AssumesResultSignednessMatchesFirstOperand(GLSLstd450 extended_opcode) {
switch (extended_opcode) {
case GLSLstd450SAbs:
case GLSLstd450SSign:
case GLSLstd450SMin:
case GLSLstd450SMax:
case GLSLstd450SClamp:
case GLSLstd450UMin:
case GLSLstd450UMax:
case GLSLstd450UClamp:
case GLSLstd450FindILsb:
case GLSLstd450FindSMsb:
case GLSLstd450FindUMsb:
return true;
default:
break;
}
return false;
}
// @param a SPIR-V decoration
// @return true when the given decoration is a pipeline decoration other than a
// bulitin variable.
bool IsPipelineDecoration(const Decoration& deco) {
if (deco.size() < 1) {
return false;
}
switch (static_cast<spv::Decoration>(deco[0])) {
case spv::Decoration::Location:
case spv::Decoration::Flat:
case spv::Decoration::NoPerspective:
case spv::Decoration::Centroid:
case spv::Decoration::Sample:
return true;
default:
break;
}
return false;
}
} // namespace
TypedExpression::TypedExpression() = default;
TypedExpression::TypedExpression(const TypedExpression&) = default;
TypedExpression& TypedExpression::operator=(const TypedExpression&) = default;
TypedExpression::TypedExpression(const Type* type_in, const ast::Expression* expr_in)
: type(type_in), expr(expr_in) {}
ASTParser::ASTParser(const std::vector<uint32_t>& spv_binary)
: spv_binary_(spv_binary),
fail_stream_(&success_, &errors_),
namer_(fail_stream_),
enum_converter_(fail_stream_),
tools_context_(kInputEnv) {
// Create a message consumer to propagate error messages from SPIRV-Tools
// out as our own failures.
message_consumer_ = [this](spv_message_level_t level, const char* /*source*/,
const spv_position_t& position, const char* message) {
switch (level) {
// Ignore info and warning message.
case SPV_MSG_WARNING:
case SPV_MSG_INFO:
break;
// Otherwise, propagate the error.
default:
// For binary validation errors, we only have the instruction
// number. It's not text, so there is no column number.
this->Fail() << "line:" << position.index << ": " << message;
}
};
}
ASTParser::~ASTParser() = default;
bool ASTParser::Parse() {
// Set up use of SPIRV-Tools utilities.
spvtools::SpirvTools spv_tools(kInputEnv);
// Error messages from SPIRV-Tools are forwarded as failures, including
// setting |success_| to false.
spv_tools.SetMessageConsumer(message_consumer_);
if (!success_) {
return false;
}
// Only consider modules valid for Vulkan 1.0. On failure, the message
// consumer will set the error status.
if (!spv_tools.Validate(spv_binary_)) {
success_ = false;
return false;
}
if (!BuildInternalModule()) {
return false;
}
if (!ParseInternalModule()) {
return false;
}
return success_;
}
Program ASTParser::Program(bool resolve) {
// TODO(dneto): Should we clear out spv_binary_ here, to reduce
// memory usage?
if (resolve) {
return tint::resolver::Resolve(builder_);
} else {
return tint::Program(std::move(builder_));
}
}
const Type* ASTParser::ConvertType(uint32_t type_id, PtrAs ptr_as) {
if (!success_) {
return nullptr;
}
if (type_mgr_ == nullptr) {
Fail() << "ConvertType called when the internal module has not been built";
return nullptr;
}
auto* spirv_type = type_mgr_->GetType(type_id);
if (spirv_type == nullptr) {
Fail() << "ID is not a SPIR-V type: " << type_id;
return nullptr;
}
switch (spirv_type->kind()) {
case spvtools::opt::analysis::Type::kVoid:
return ty_.Void();
case spvtools::opt::analysis::Type::kBool:
return ty_.Bool();
case spvtools::opt::analysis::Type::kInteger:
return ConvertType(spirv_type->AsInteger());
case spvtools::opt::analysis::Type::kFloat:
return ConvertType(spirv_type->AsFloat());
case spvtools::opt::analysis::Type::kVector:
return ConvertType(spirv_type->AsVector());
case spvtools::opt::analysis::Type::kMatrix:
return ConvertType(spirv_type->AsMatrix());
case spvtools::opt::analysis::Type::kRuntimeArray:
return ConvertType(type_id, spirv_type->AsRuntimeArray());
case spvtools::opt::analysis::Type::kArray:
return ConvertType(type_id, spirv_type->AsArray());
case spvtools::opt::analysis::Type::kStruct:
return ConvertStructType(type_id);
case spvtools::opt::analysis::Type::kPointer:
return ConvertType(type_id, ptr_as, spirv_type->AsPointer());
case spvtools::opt::analysis::Type::kFunction:
// Tint doesn't have a Function type.
// We need to convert the result type and parameter types.
// But the SPIR-V defines those before defining the function
// type. No further work is required here.
return nullptr;
case spvtools::opt::analysis::Type::kSampler:
case spvtools::opt::analysis::Type::kSampledImage:
case spvtools::opt::analysis::Type::kImage:
// Fake it for sampler and texture types. These are handled in an
// entirely different way.
return ty_.Void();
default:
break;
}
Fail() << "unknown SPIR-V type with ID " << type_id << ": "
<< def_use_mgr_->GetDef(type_id)->PrettyPrint();
return nullptr;
}
DecorationList ASTParser::GetDecorationsFor(uint32_t id) const {
DecorationList result;
const auto& decorations = deco_mgr_->GetDecorationsFor(id, true);
std::unordered_set<uint32_t> visited;
for (const auto* inst : decorations) {
if (opcode(inst) != spv::Op::OpDecorate) {
continue;
}
// Example: OpDecorate %struct_id Block
// Example: OpDecorate %array_ty ArrayStride 16
auto decoration_kind = inst->GetSingleWordInOperand(1);
switch (static_cast<spv::Decoration>(decoration_kind)) {
// Restrict and RestrictPointer have no effect in graphics APIs.
case spv::Decoration::Restrict:
case spv::Decoration::RestrictPointer:
break;
default:
if (visited.emplace(decoration_kind).second) {
std::vector<uint32_t> inst_as_words;
inst->ToBinaryWithoutAttachedDebugInsts(&inst_as_words);
Decoration d(inst_as_words.begin() + 2, inst_as_words.end());
result.push_back(d);
}
break;
}
}
return result;
}
DecorationList ASTParser::GetDecorationsForMember(uint32_t id, uint32_t member_index) const {
DecorationList result;
const auto& decorations = deco_mgr_->GetDecorationsFor(id, true);
std::unordered_set<uint32_t> visited;
for (const auto* inst : decorations) {
// Example: OpMemberDecorate %struct_id 1 Offset 16
if ((opcode(inst) != spv::Op::OpMemberDecorate) ||
(inst->GetSingleWordInOperand(1) != member_index)) {
continue;
}
auto decoration_kind = inst->GetSingleWordInOperand(2);
switch (static_cast<spv::Decoration>(decoration_kind)) {
// Restrict and RestrictPointer have no effect in graphics APIs.
case spv::Decoration::Restrict:
case spv::Decoration::RestrictPointer:
break;
default:
if (visited.emplace(decoration_kind).second) {
std::vector<uint32_t> inst_as_words;
inst->ToBinaryWithoutAttachedDebugInsts(&inst_as_words);
Decoration d(inst_as_words.begin() + 3, inst_as_words.end());
result.push_back(d);
}
}
}
return result;
}
std::string ASTParser::ShowType(uint32_t type_id) {
if (def_use_mgr_) {
const auto* type_inst = def_use_mgr_->GetDef(type_id);
if (type_inst) {
return type_inst->PrettyPrint();
}
}
return "SPIR-V type " + std::to_string(type_id);
}
Attributes ASTParser::ConvertMemberDecoration(uint32_t struct_type_id,
uint32_t member_index,
const Type* member_ty,
const Decoration& decoration) {
if (decoration.empty()) {
Fail() << "malformed SPIR-V decoration: it's empty";
return {};
}
Attributes out;
switch (static_cast<spv::Decoration>(decoration[0])) {
case spv::Decoration::Offset: {
if (decoration.size() != 2) {
Fail() << "malformed Offset decoration: expected 1 literal operand, has "
<< decoration.size() - 1 << ": member " << member_index << " of "
<< ShowType(struct_type_id);
return {};
}
out.Add(builder_.MemberOffset(Source{}, AInt(decoration[1])));
break;
}
case spv::Decoration::NonReadable: // WGSL doesn't have a member decoration for this.
case spv::Decoration::NonWritable: // WGSL doesn't have a member decoration for this.
case spv::Decoration::ColMajor: // WGSL only supports column major matrices.
case spv::Decoration::RelaxedPrecision: // WGSL doesn't support relaxed precision.
break;
case spv::Decoration::RowMajor:
Fail() << "WGSL does not support row-major matrices: can't "
"translate member "
<< member_index << " of " << ShowType(struct_type_id);
break;
case spv::Decoration::MatrixStride: {
if (decoration.size() != 2) {
Fail() << "malformed MatrixStride decoration: expected 1 literal operand, has "
<< decoration.size() - 1 << ": member " << member_index << " of "
<< ShowType(struct_type_id);
break;
}
auto* ty = member_ty->UnwrapAlias();
while (auto* arr = ty->As<Array>()) {
ty = arr->type->UnwrapAlias();
}
auto* mat = ty->As<Matrix>();
if (!mat) {
Fail() << "MatrixStride cannot be applied to type " << ty->String();
break;
}
// Note: We do not know at this point whether the matrix is laid out as row-major or
// column-major, and therefore do not know the "natural" stride. So we add the stride
// attribute unconditionally, and let the DecomposeStridedMatrix transform determine if
// anything needs to be done.
out.Add(create<ast::StrideAttribute>(Source{}, decoration[1]));
out.Add(builder_.ASTNodes().Create<ast::DisableValidationAttribute>(
builder_.ID(), builder_.AllocateNodeID(),
ast::DisabledValidation::kIgnoreStrideAttribute));
break;
}
default: {
// TODO(dneto): Support the remaining member decorations.
Fail() << "unhandled member decoration: " << decoration[0] << " on member "
<< member_index << " of " << ShowType(struct_type_id);
break;
}
}
return out;
}
bool ASTParser::BuildInternalModule() {
if (!success_) {
return false;
}
const spv_context& context = tools_context_.CContext();
ir_context_ = spvtools::BuildModule(context->target_env, context->consumer, spv_binary_.data(),
spv_binary_.size());
if (!ir_context_) {
return Fail() << "internal error: couldn't build the internal "
"representation of the module";
}
module_ = ir_context_->module();
def_use_mgr_ = ir_context_->get_def_use_mgr();
constant_mgr_ = ir_context_->get_constant_mgr();
type_mgr_ = ir_context_->get_type_mgr();
deco_mgr_ = ir_context_->get_decoration_mgr();
topologically_ordered_functions_ = FunctionTraverser(*module_).TopologicallyOrderedFunctions();
return success_;
}
void ASTParser::ResetInternalModule() {
ir_context_.reset(nullptr);
module_ = nullptr;
def_use_mgr_ = nullptr;
constant_mgr_ = nullptr;
type_mgr_ = nullptr;
deco_mgr_ = nullptr;
glsl_std_450_imports_.clear();
}
bool ASTParser::ParseInternalModule() {
if (!success_) {
return false;
}
RegisterLineNumbers();
if (!ParseInternalModuleExceptFunctions()) {
return false;
}
if (!EmitFunctions()) {
return false;
}
return success_;
}
void ASTParser::RegisterLineNumbers() {
Source::Location instruction_number{};
// Has there been an OpLine since the last OpNoLine or start of the module?
bool in_op_line_scope = false;
// The source location provided by the most recent OpLine instruction.
Source::Location op_line_source{};
const bool run_on_debug_insts = true;
module_->ForEachInst(
[this, &in_op_line_scope, &op_line_source,
&instruction_number](const spvtools::opt::Instruction* inst) {
++instruction_number.line;
switch (opcode(inst)) {
case spv::Op::OpLine:
in_op_line_scope = true;
// TODO(dneto): This ignores the File ID (operand 0), since the Tint
// Source concept doesn't represent that.
op_line_source.line = inst->GetSingleWordInOperand(1);
op_line_source.column = inst->GetSingleWordInOperand(2);
break;
case spv::Op::OpNoLine:
in_op_line_scope = false;
break;
default:
break;
}
this->inst_source_[inst] = in_op_line_scope ? op_line_source : instruction_number;
},
run_on_debug_insts);
}
Source ASTParser::GetSourceForResultIdForTest(uint32_t id) const {
return GetSourceForInst(def_use_mgr_->GetDef(id));
}
Source ASTParser::GetSourceForInst(const spvtools::opt::Instruction* inst) const {
auto where = inst_source_.find(inst);
if (where == inst_source_.end()) {
return {};
}
return Source{where->second};
}
bool ASTParser::ParseInternalModuleExceptFunctions() {
if (!success_) {
return false;
}
if (!RegisterExtendedInstructionImports()) {
return false;
}
if (!RegisterUserAndStructMemberNames()) {
return false;
}
if (!RegisterWorkgroupSizeBuiltin()) {
return false;
}
if (!RegisterEntryPoints()) {
return false;
}
if (!RegisterHandleUsage()) {
return false;
}
if (!RegisterTypes()) {
return false;
}
if (!RejectInvalidPointerRoots()) {
return false;
}
if (!EmitScalarSpecConstants()) {
return false;
}
if (!EmitModuleScopeVariables()) {
return false;
}
return success_;
}
bool ASTParser::RegisterExtendedInstructionImports() {
for (const spvtools::opt::Instruction& import : module_->ext_inst_imports()) {
std::string name(reinterpret_cast<const char*>(import.GetInOperand(0).words.data()));
// TODO(dneto): Handle other extended instruction sets when needed.
if (name == "GLSL.std.450") {
glsl_std_450_imports_.insert(import.result_id());
} else if (name.find("NonSemantic.") == 0) {
ignored_imports_.insert(import.result_id());
} else {
return Fail() << "Unrecognized extended instruction set: " << name;
}
}
return true;
}
bool ASTParser::IsGlslExtendedInstruction(const spvtools::opt::Instruction& inst) const {
return (opcode(inst) == spv::Op::OpExtInst) &&
(glsl_std_450_imports_.count(inst.GetSingleWordInOperand(0)) > 0);
}
bool ASTParser::IsIgnoredExtendedInstruction(const spvtools::opt::Instruction& inst) const {
return (opcode(inst) == spv::Op::OpExtInst) &&
(ignored_imports_.count(inst.GetSingleWordInOperand(0)) > 0);
}
bool ASTParser::RegisterUserAndStructMemberNames() {
if (!success_) {
return false;
}
// Register entry point names. An entry point name is the point of contact
// between the API and the shader. It has the highest priority for
// preservation, so register it first.
for (const spvtools::opt::Instruction& entry_point : module_->entry_points()) {
const uint32_t function_id = entry_point.GetSingleWordInOperand(1);
const std::string name = entry_point.GetInOperand(2).AsString();
// This translator requires the entry point to be a valid WGSL identifier.
// Allowing otherwise leads to difficulties in that the programmer needs
// to get a mapping from their original entry point name to the WGSL name,
// and we don't have a good mechanism for that.
if (!IsValidIdentifier(name)) {
return Fail() << "entry point name is not a valid WGSL identifier: " << name;
}
// SPIR-V allows a single function to be the implementation for more
// than one entry point. In the common case, it's one-to-one, and we should
// try to name the function after the entry point. Otherwise, give the
// function a name automatically derived from the entry point name.
namer_.SuggestSanitizedName(function_id, name);
// There is another many-to-one relationship to take care of: In SPIR-V
// the same name can be used for multiple entry points, provided they are
// for different shader stages. Take action now to ensure we can use the
// entry point name later on, and not have it taken for another identifier
// by an accidental collision with a derived name made for a different ID.
if (!namer_.IsRegistered(name)) {
// The entry point name is "unoccupied" becase an earlier entry point
// grabbed the slot for the function that implements both entry points.
// Register this new entry point's name, to avoid accidental collisions
// with a future generated ID.
if (!namer_.RegisterWithoutId(name)) {
return false;
}
}
}
// Register names from OpName and OpMemberName
for (const auto& inst : module_->debugs2()) {
switch (opcode(inst)) {
case spv::Op::OpName: {
const auto name = inst.GetInOperand(1).AsString();
if (!name.empty()) {
namer_.SuggestSanitizedName(inst.GetSingleWordInOperand(0), name);
}
break;
}
case spv::Op::OpMemberName: {
const auto name = inst.GetInOperand(2).AsString();
if (!name.empty()) {
namer_.SuggestSanitizedMemberName(inst.GetSingleWordInOperand(0),
inst.GetSingleWordInOperand(1), name);
}
break;
}
default:
break;
}
}
// Fill in struct member names, and disambiguate them.
for (const auto* type_inst : module_->GetTypes()) {
if (opcode(type_inst) == spv::Op::OpTypeStruct) {
namer_.ResolveMemberNamesForStruct(type_inst->result_id(), type_inst->NumInOperands());
}
}
return true;
}
bool ASTParser::IsValidIdentifier(std::string_view str) {
if (str.empty()) {
return false;
}
if (str[0] == '_') {
if (str.length() == 1u || str[1] == '_') {
// https://www.w3.org/TR/WGSL/#identifiers
// must not be '_' (a single underscore)
// must not start with two underscores
return false;
}
}
// Must begin with an XID_Source unicode character, or underscore
{
auto* utf8 = reinterpret_cast<const uint8_t*>(str.data());
auto [code_point, n] = tint::utf8::Decode(utf8, str.size());
if (code_point != tint::CodePoint('_') && !code_point.IsXIDStart()) {
return false;
}
str = str.substr(n);
}
// Must continue with an XID_Continue unicode character
while (!str.empty()) {
auto* utf8 = reinterpret_cast<const uint8_t*>(str.data());
auto [code_point, n] = tint::utf8::Decode(utf8, str.size());
if (!code_point.IsXIDContinue()) {
return false;
}
str = str.substr(n);
}
return true;
}
bool ASTParser::RegisterWorkgroupSizeBuiltin() {
WorkgroupSizeInfo& info = workgroup_size_builtin_;
for (const spvtools::opt::Instruction& inst : module_->annotations()) {
if (opcode(inst) != spv::Op::OpDecorate) {
continue;
}
if (inst.GetSingleWordInOperand(1) != uint32_t(spv::Decoration::BuiltIn)) {
continue;
}
if (inst.GetSingleWordInOperand(2) != uint32_t(spv::BuiltIn::WorkgroupSize)) {
continue;
}
info.id = inst.GetSingleWordInOperand(0);
}
if (info.id == 0) {
return true;
}
// Gather the values.
const spvtools::opt::Instruction* composite_def = def_use_mgr_->GetDef(info.id);
if (!composite_def) {
return Fail() << "Invalid WorkgroupSize builtin value";
}
// SPIR-V validation checks that the result is a 3-element vector of 32-bit
// integer scalars (signed or unsigned). Rely on validation to check the
// type. In theory the instruction could be OpConstantNull and still
// pass validation, but that would be non-sensical. Be a little more
// stringent here and check for specific opcodes. WGSL does not support
// const-expr yet, so avoid supporting OpSpecConstantOp here.
// TODO(dneto): See https://github.com/gpuweb/gpuweb/issues/1272 for WGSL
// const_expr proposals.
if ((opcode(composite_def) != spv::Op::OpSpecConstantComposite &&
opcode(composite_def) != spv::Op::OpConstantComposite)) {
return Fail() << "Invalid WorkgroupSize builtin. Expected 3-element "
"OpSpecConstantComposite or OpConstantComposite: "
<< composite_def->PrettyPrint();
}
info.type_id = composite_def->type_id();
// Extract the component type from the vector type.
info.component_type_id = def_use_mgr_->GetDef(info.type_id)->GetSingleWordInOperand(0);
/// Sets the ID and value of the index'th member of the composite constant.
/// Returns false and emits a diagnostic on error.
auto set_param = [this, composite_def](uint32_t* id_ptr, uint32_t* value_ptr,
int index) -> bool {
const auto id = composite_def->GetSingleWordInOperand(static_cast<uint32_t>(index));
const auto* def = def_use_mgr_->GetDef(id);
if (!def ||
(opcode(def) != spv::Op::OpSpecConstant && opcode(def) != spv::Op::OpConstant) ||
(def->NumInOperands() != 1)) {
return Fail() << "invalid component " << index << " of workgroupsize "
<< (def ? def->PrettyPrint() : std::string("no definition"));
}
*id_ptr = id;
// Use the default value of a spec constant.
*value_ptr = def->GetSingleWordInOperand(0);
return true;
};
return set_param(&info.x_id, &info.x_value, 0) && set_param(&info.y_id, &info.y_value, 1) &&
set_param(&info.z_id, &info.z_value, 2);
}
bool ASTParser::RegisterEntryPoints() {
// Mapping from entry point ID to GridSize computed from LocalSize
// decorations.
std::unordered_map<uint32_t, GridSize> local_size;
for (const spvtools::opt::Instruction& inst : module_->execution_modes()) {
auto mode = static_cast<spv::ExecutionMode>(inst.GetSingleWordInOperand(1));
if (mode == spv::ExecutionMode::LocalSize) {
if (inst.NumInOperands() != 5) {
// This won't even get past SPIR-V binary parsing.
return Fail() << "invalid LocalSize execution mode: " << inst.PrettyPrint();
}
uint32_t function_id = inst.GetSingleWordInOperand(0);
local_size[function_id] =
GridSize{inst.GetSingleWordInOperand(2), inst.GetSingleWordInOperand(3),
inst.GetSingleWordInOperand(4)};
}
}
for (const spvtools::opt::Instruction& entry_point : module_->entry_points()) {
const auto stage = spv::ExecutionModel(entry_point.GetSingleWordInOperand(0));
const uint32_t function_id = entry_point.GetSingleWordInOperand(1);
const std::string ep_name = entry_point.GetOperand(2).AsString();
if (!IsValidIdentifier(ep_name)) {
return Fail() << "entry point name is not a valid WGSL identifier: " << ep_name;
}
bool owns_inner_implementation = false;
std::string inner_implementation_name;
auto where = function_to_ep_info_.find(function_id);
if (where == function_to_ep_info_.end()) {
// If this is the first entry point to have function_id as its
// implementation, then this entry point is responsible for generating
// the inner implementation.
owns_inner_implementation = true;
inner_implementation_name = namer_.MakeDerivedName(ep_name);
} else {
// Reuse the inner implementation owned by the first entry point.
inner_implementation_name = where->second[0].inner_name;
}
TINT_ASSERT(!inner_implementation_name.empty());
TINT_ASSERT(ep_name != inner_implementation_name);
UniqueVector<uint32_t, 8> inputs;
UniqueVector<uint32_t, 8> outputs;
for (unsigned iarg = 3; iarg < entry_point.NumInOperands(); iarg++) {
const uint32_t var_id = entry_point.GetSingleWordInOperand(iarg);
if (const auto* var_inst = def_use_mgr_->GetDef(var_id)) {
switch (spv::StorageClass(var_inst->GetSingleWordInOperand(0))) {
case spv::StorageClass::Input:
inputs.Add(var_id);
break;
case spv::StorageClass::Output:
outputs.Add(var_id);
break;
default:
break;
}
}
}
// Save the lists, in ID-sorted order.
tint::Vector<uint32_t, 8> sorted_inputs(inputs);
std::sort(sorted_inputs.begin(), sorted_inputs.end());
tint::Vector<uint32_t, 8> sorted_outputs(outputs);
std::sort(sorted_outputs.begin(), sorted_outputs.end());
const auto ast_stage = enum_converter_.ToPipelineStage(stage);
GridSize wgsize;
if (ast_stage == ast::PipelineStage::kCompute) {
if (workgroup_size_builtin_.id) {
// Store the default values.
// WGSL allows specializing these, but this code doesn't support that
// yet. https://github.com/gpuweb/gpuweb/issues/1442
wgsize = GridSize{workgroup_size_builtin_.x_value, workgroup_size_builtin_.y_value,
workgroup_size_builtin_.z_value};
} else {
// Use the LocalSize execution mode. This is the second choice.
auto where_local_size = local_size.find(function_id);
if (where_local_size != local_size.end()) {
wgsize = where_local_size->second;
}
}
}
function_to_ep_info_[function_id].emplace_back(
ep_name, ast_stage, owns_inner_implementation, inner_implementation_name,
std::move(sorted_inputs), std::move(sorted_outputs), wgsize);
}
// The enum conversion could have failed, so return the existing status value.
return success_;
}
const Type* ASTParser::ConvertType(const spvtools::opt::analysis::Integer* int_ty) {
if (int_ty->width() == 32) {
return int_ty->IsSigned() ? static_cast<const Type*>(ty_.I32())
: static_cast<const Type*>(ty_.U32());
}
Fail() << "unhandled integer width: " << int_ty->width();
return nullptr;
}
const Type* ASTParser::ConvertType(const spvtools::opt::analysis::Float* float_ty) {
if (float_ty->width() == 32) {
return ty_.F32();
}
Fail() << "unhandled float width: " << float_ty->width();
return nullptr;
}
const Type* ASTParser::ConvertType(const spvtools::opt::analysis::Vector* vec_ty) {
const auto num_elem = vec_ty->element_count();
auto* ast_elem_ty = ConvertType(type_mgr_->GetId(vec_ty->element_type()));
if (ast_elem_ty == nullptr) {
return ast_elem_ty;
}
return ty_.Vector(ast_elem_ty, num_elem);
}
const Type* ASTParser::ConvertType(const spvtools::opt::analysis::Matrix* mat_ty) {
const auto* vec_ty = mat_ty->element_type()->AsVector();
const auto* scalar_ty = vec_ty->element_type();
const auto num_rows = vec_ty->element_count();
const auto num_columns = mat_ty->element_count();
auto* ast_scalar_ty = ConvertType(type_mgr_->GetId(scalar_ty));
if (ast_scalar_ty == nullptr) {
return nullptr;
}
return ty_.Matrix(ast_scalar_ty, num_columns, num_rows);
}
const Type* ASTParser::ConvertType(uint32_t type_id,
const spvtools::opt::analysis::RuntimeArray* rtarr_ty) {
auto* ast_elem_ty = ConvertType(type_mgr_->GetId(rtarr_ty->element_type()));
if (ast_elem_ty == nullptr) {
return nullptr;
}
uint32_t array_stride = 0;
if (!ParseArrayDecorations(rtarr_ty, &array_stride)) {
return nullptr;
}
const Type* result = ty_.Array(ast_elem_ty, 0, array_stride);
return MaybeGenerateAlias(type_id, rtarr_ty, result);
}
const Type* ASTParser::ConvertType(uint32_t type_id, const spvtools::opt::analysis::Array* arr_ty) {
// Get the element type. The SPIR-V optimizer's types representation
// deduplicates array types that have the same parameterization.
// We don't want that deduplication, so get the element type from
// the SPIR-V type directly.
const auto* inst = def_use_mgr_->GetDef(type_id);
const auto elem_type_id = inst->GetSingleWordInOperand(0);
auto* ast_elem_ty = ConvertType(elem_type_id);
if (ast_elem_ty == nullptr) {
return nullptr;
}
// Get the length.
const auto& length_info = arr_ty->length_info();
if (length_info.words.empty()) {
// The internal representation is invalid. The discriminant vector
// is mal-formed.
Fail() << "internal error: Array length info is invalid";
return nullptr;
}
if (length_info.words[0] != spvtools::opt::analysis::Array::LengthInfo::kConstant) {
Fail() << "Array type " << type_mgr_->GetId(arr_ty)
<< " length is a specialization constant";
return nullptr;
}
const auto* constant = constant_mgr_->FindDeclaredConstant(length_info.id);
if (constant == nullptr) {
Fail() << "Array type " << type_mgr_->GetId(arr_ty) << " length ID " << length_info.id
<< " does not name an OpConstant";
return nullptr;
}
const uint64_t num_elem = constant->GetZeroExtendedValue();
// For now, limit to only 32bits.
if (num_elem > std::numeric_limits<uint32_t>::max()) {
Fail() << "Array type " << type_mgr_->GetId(arr_ty)
<< " has too many elements (more than can fit in 32 bits): " << num_elem;
return nullptr;
}
uint32_t array_stride = 0;
if (!ParseArrayDecorations(arr_ty, &array_stride)) {
return nullptr;
}
if (remap_buffer_block_type_.count(elem_type_id)) {
remap_buffer_block_type_.insert(type_mgr_->GetId(arr_ty));
}
const Type* result = ty_.Array(ast_elem_ty, static_cast<uint32_t>(num_elem), array_stride);
return MaybeGenerateAlias(type_id, arr_ty, result);
}
bool ASTParser::ParseArrayDecorations(const spvtools::opt::analysis::Type* spv_type,
uint32_t* array_stride) {
*array_stride = 0; // Implicit stride case.
const auto type_id = type_mgr_->GetId(spv_type);
for (auto& decoration : this->GetDecorationsFor(type_id)) {
if (decoration.size() == 2 && decoration[0] == uint32_t(spv::Decoration::ArrayStride)) {
const auto stride = decoration[1];
if (stride == 0) {
return Fail() << "invalid array type ID " << type_id << ": ArrayStride can't be 0";
}
*array_stride = stride;
} else {
return Fail() << "invalid array type ID " << type_id << ": unknown decoration "
<< (decoration.empty() ? "(empty)" : std::to_string(decoration[0]))
<< " with " << decoration.size() << " total words";
}
}
return true;
}
const Type* ASTParser::ConvertStructType(uint32_t type_id) {
// Compute the struct decoration.
auto struct_decorations = this->GetDecorationsFor(type_id);
if (struct_decorations.size() == 1) {
const auto decoration = struct_decorations[0][0];
if (decoration == uint32_t(spv::Decoration::BufferBlock)) {
remap_buffer_block_type_.insert(type_id);
} else if (decoration != uint32_t(spv::Decoration::Block)) {
Fail() << "struct with ID " << type_id
<< " has unrecognized decoration: " << int(decoration);
}
} else if (struct_decorations.size() > 1) {
Fail() << "can't handle a struct with more than one decoration: struct " << type_id
<< " has " << struct_decorations.size();
return nullptr;
}
// The SPIR-V optimizer's types representation deduplicates types. We don't want that
// deduplication, so get the member types from the SPIR-V instruction directly.
const auto* inst = def_use_mgr_->GetDef(type_id);
auto num_members = inst->NumOperands() - 1;
if (num_members == 0) {
Fail() << "WGSL does not support empty structures. can't convert type: "
<< def_use_mgr_->GetDef(type_id)->PrettyPrint();
return nullptr;
}
// Compute members
tint::Vector<const ast::StructMember*, 8> ast_members;
TypeList ast_member_types;
unsigned num_non_writable_members = 0;
for (uint32_t member_index = 0; member_index < num_members; ++member_index) {
const auto member_type_id = inst->GetOperand(member_index + 1).AsId();
auto* ast_member_ty = ConvertType(member_type_id);
if (ast_member_ty == nullptr) {
// Already emitted diagnostics.
return nullptr;
}
ast_member_types.emplace_back(ast_member_ty);
// Scan member for built-in decorations. Some vertex built-ins are handled
// specially, and should not generate a structure member.
bool create_ast_member = true;
for (auto& decoration : GetDecorationsForMember(type_id, member_index)) {
if (decoration.empty()) {
Fail() << "malformed SPIR-V decoration: it's empty";
return nullptr;
}
if ((decoration[0] == uint32_t(spv::Decoration::BuiltIn)) && (decoration.size() > 1)) {
switch (static_cast<spv::BuiltIn>(decoration[1])) {
case spv::BuiltIn::Position:
// Record this built-in variable specially.
builtin_position_.struct_type_id = type_id;
builtin_position_.position_member_index = member_index;
builtin_position_.position_member_type_id = member_type_id;
create_ast_member = false; // Not part of the WGSL structure.
break;
case spv::BuiltIn::PointSize: // not supported in WGSL, but ignore
builtin_position_.pointsize_member_index = member_index;
create_ast_member = false; // Not part of the WGSL structure.
break;
case spv::BuiltIn::ClipDistance: // not supported in WGSL
case spv::BuiltIn::CullDistance: // not supported in WGSL
create_ast_member = false; // Not part of the WGSL structure.
break;
default:
Fail() << "unrecognized builtin " << decoration[1];
return nullptr;
}
}
}
if (!create_ast_member) {
// This member is decorated as a built-in, and is handled specially.
continue;
}
bool is_non_writable = false;
Attributes ast_member_decorations;
for (auto& decoration : GetDecorationsForMember(type_id, member_index)) {
if (IsPipelineDecoration(decoration)) {
// IO decorations are handled when emitting the entry point.
continue;
} else if (decoration[0] == uint32_t(spv::Decoration::NonWritable)) {
// WGSL doesn't represent individual members as non-writable. Instead,
// apply the ReadOnly access control to the containing struct if all
// the members are non-writable.
is_non_writable = true;
} else {
auto attrs =
ConvertMemberDecoration(type_id, member_index, ast_member_ty, decoration);
ast_member_decorations.Add(attrs);
if (!success_) {
return nullptr;
}
}
}
if (is_non_writable) {
// Count a member as non-writable only once, no matter how many
// NonWritable decorations are applied to it.
++num_non_writable_members;
}
const auto member_name = namer_.GetMemberName(type_id, member_index);
auto* ast_struct_member =
builder_.Member(Source{}, member_name, ast_member_ty->Build(builder_),
std::move(ast_member_decorations.list));
ast_members.Push(ast_struct_member);
}
if (ast_members.IsEmpty()) {
// All members were likely built-ins. Don't generate an empty AST structure.
return nullptr;
}
namer_.SuggestSanitizedName(type_id, "S");
auto name = namer_.GetName(type_id);
// Now make the struct.
auto sym = builder_.Symbols().Register(name);
auto* ast_struct =
create<ast::Struct>(Source{}, builder_.Ident(sym), std::move(ast_members), tint::Empty);
if (num_non_writable_members == num_members) {
read_only_struct_types_.insert(ast_struct->name->symbol);
}
AddTypeDecl(sym, ast_struct);
const auto* result = ty_.Struct(sym, std::move(ast_member_types));
struct_id_for_symbol_[sym] = type_id;
return result;
}
void ASTParser::AddTypeDecl(Symbol name, const ast::TypeDecl* decl) {
auto iter = declared_types_.insert(name);
if (iter.second) {
builder_.AST().AddTypeDecl(decl);
}
}
const Type* ASTParser::ConvertType(uint32_t type_id,
PtrAs ptr_as,
const spvtools::opt::analysis::Pointer*) {
const auto* inst = def_use_mgr_->GetDef(type_id);
const auto pointee_type_id = inst->GetSingleWordInOperand(1);
const auto storage_class = spv::StorageClass(inst->GetSingleWordInOperand(0));
if (pointee_type_id == builtin_position_.struct_type_id) {
builtin_position_.pointer_type_id = type_id;
// Pipeline IO builtins map to private variables.
builtin_position_.storage_class = spv::StorageClass::Private;
return nullptr;
}
auto* ast_elem_ty = ConvertType(pointee_type_id, PtrAs::Ptr);
if (ast_elem_ty == nullptr) {
Fail() << "SPIR-V pointer type with ID " << type_id << " has invalid pointee type "
<< pointee_type_id;
return nullptr;
}
auto ast_address_space = enum_converter_.ToAddressSpace(storage_class);
if (ast_address_space == core::AddressSpace::kUniform &&
remap_buffer_block_type_.count(pointee_type_id)) {
ast_address_space = core::AddressSpace::kStorage;
remap_buffer_block_type_.insert(type_id);
}
// Pipeline input and output variables map to private variables.
if (ast_address_space == core::AddressSpace::kIn ||
ast_address_space == core::AddressSpace::kOut) {
ast_address_space = core::AddressSpace::kPrivate;
}
switch (ptr_as) {
case PtrAs::Ref:
return ty_.Reference(ast_address_space, ast_elem_ty);
case PtrAs::Ptr:
return ty_.Pointer(ast_address_space, ast_elem_ty);
}
Fail() << "invalid value for ptr_as: " << static_cast<int>(ptr_as);
return nullptr;
}
bool ASTParser::RegisterTypes() {
if (!success_) {
return false;
}
// First record the structure types that should have a `block` decoration
// in WGSL. In particular, exclude user-defined pipeline IO in a
// block-decorated struct.
for (const auto& type_or_value : module_->types_values()) {
if (opcode(type_or_value) != spv::Op::OpVariable) {
continue;
}
const auto& var = type_or_value;
const auto spirv_storage_class = spv::StorageClass(var.GetSingleWordInOperand(0));
if ((spirv_storage_class != spv::StorageClass::StorageBuffer) &&
(spirv_storage_class != spv::StorageClass::Uniform)) {
continue;
}
const auto* ptr_type = def_use_mgr_->GetDef(var.type_id());
if (opcode(ptr_type) != spv::Op::OpTypePointer) {
return Fail() << "OpVariable type expected to be a pointer: " << var.PrettyPrint();
}
const auto* store_type = def_use_mgr_->GetDef(ptr_type->GetSingleWordInOperand(1));
if (opcode(store_type) == spv::Op::OpTypeStruct) {
struct_types_for_buffers_.insert(store_type->result_id());
} else {
Fail() << "WGSL does not support arrays of buffers: " << var.PrettyPrint();
}
}
// Now convert each type.
for (auto& type_or_const : module_->types_values()) {
const auto* type = type_mgr_->GetType(type_or_const.result_id());
if (type == nullptr) {
continue;
}
ConvertType(type_or_const.result_id());
}
// Manufacture a type for the gl_Position variable if we have to.
if ((builtin_position_.struct_type_id != 0) &&
(builtin_position_.position_member_pointer_type_id == 0)) {
builtin_position_.position_member_pointer_type_id = type_mgr_->FindPointerToType(
builtin_position_.position_member_type_id, builtin_position_.storage_class);
ConvertType(builtin_position_.position_member_pointer_type_id);
}
return success_;
}
bool ASTParser::RejectInvalidPointerRoots() {
if (!success_) {
return false;
}
for (auto& inst : module_->types_values()) {
if (const auto* result_type = type_mgr_->GetType(inst.type_id())) {
if (result_type->AsPointer()) {
switch (opcode(inst)) {
case spv::Op::OpVariable:
// This is the only valid case.
break;
case spv::Op::OpUndef:
return Fail() << "undef pointer is not valid: " << inst.PrettyPrint();
case spv::Op::OpConstantNull:
return Fail() << "null pointer is not valid: " << inst.PrettyPrint();
default:
return Fail()
<< "module-scope pointer is not valid: " << inst.PrettyPrint();
}
}
}
}
return success();
}
bool ASTParser::EmitScalarSpecConstants() {
if (!success_) {
return false;
}
// Generate a module-scope const declaration for each instruction
// that is OpSpecConstantTrue, OpSpecConstantFalse, or OpSpecConstant.
for (auto& inst : module_->types_values()) {
// These will be populated for a valid scalar spec constant.
const Type* ast_type = nullptr;
ast::LiteralExpression* ast_expr = nullptr;
switch (opcode(inst)) {
case spv::Op::OpSpecConstantTrue:
case spv::Op::OpSpecConstantFalse: {
ast_type = ConvertType(inst.type_id());
ast_expr = create<ast::BoolLiteralExpression>(
Source{}, opcode(inst) == spv::Op::OpSpecConstantTrue);
break;
}
case spv::Op::OpSpecConstant: {
ast_type = ConvertType(inst.type_id());
const uint32_t literal_value = inst.GetSingleWordInOperand(0);
ast_expr = Switch(
ast_type, //
[&](const I32*) {
return create<ast::IntLiteralExpression>(
Source{}, static_cast<int64_t>(literal_value),
ast::IntLiteralExpression::Suffix::kI);
},
[&](const U32*) {
return create<ast::IntLiteralExpression>(
Source{}, static_cast<int64_t>(literal_value),
ast::IntLiteralExpression::Suffix::kU);
},
[&](const F32*) {
float float_value;
// Copy the bits so we can read them as a float.
std::memcpy(&float_value, &literal_value, sizeof(float_value));
return create<ast::FloatLiteralExpression>(
Source{}, static_cast<double>(float_value),
ast::FloatLiteralExpression::Suffix::kF);
});
if (ast_expr == nullptr) {
return Fail() << " invalid result type for OpSpecConstant "
<< inst.PrettyPrint();
}
break;
}
default:
break;
}
if (ast_type && ast_expr) {
Attributes spec_id_attrs;
for (const auto& deco : GetDecorationsFor(inst.result_id())) {
if ((deco.size() == 2) && (deco[0] == uint32_t(spv::Decoration::SpecId))) {
const uint32_t id = deco[1];
if (id > 65535) {
return Fail() << "SpecId too large. WGSL override IDs must be "
"between 0 and 65535: ID %"
<< inst.result_id() << " has SpecId " << id;
}
auto* cid = builder_.Id(Source{}, AInt(id));
spec_id_attrs.Add(cid);
break;
}
}
auto* ast_var =
MakeOverride(inst.result_id(), ast_type, ast_expr, std::move(spec_id_attrs));
if (ast_var) {
scalar_spec_constants_.insert(inst.result_id());
}
}
}
return success_;
}
const Type* ASTParser::MaybeGenerateAlias(uint32_t type_id,
const spvtools::opt::analysis::Type* type,
const Type* ast_type) {
if (!success_) {
return nullptr;
}
// We only care about arrays, and runtime arrays.
switch (type->kind()) {
case spvtools::opt::analysis::Type::kRuntimeArray:
// Runtime arrays are always decorated with ArrayStride so always get a
// type alias.
namer_.SuggestSanitizedName(type_id, "RTArr");
break;
case spvtools::opt::analysis::Type::kArray:
// Only make a type aliase for arrays with decorations.
if (GetDecorationsFor(type_id).empty()) {
return ast_type;
}
namer_.SuggestSanitizedName(type_id, "Arr");
break;
default:
// Ignore constants, and any other types.
return ast_type;
}
auto* ast_underlying_type = ast_type;
if (ast_underlying_type == nullptr) {
Fail() << "internal error: no type registered for SPIR-V ID: " << type_id;
return nullptr;
}
const auto name = namer_.GetName(type_id);
const auto sym = builder_.Symbols().Register(name);
auto* ast_alias_type = builder_.ty.alias(sym, ast_underlying_type->Build(builder_));
// Record this new alias as the AST type for this SPIR-V ID.
AddTypeDecl(sym, ast_alias_type);
return ty_.Alias(sym, ast_underlying_type);
}
bool ASTParser::EmitModuleScopeVariables() {
if (!success_) {
return false;
}
for (const auto& type_or_value : module_->types_values()) {
if (opcode(type_or_value) != spv::Op::OpVariable) {
continue;
}
const auto& var = type_or_value;
const auto spirv_storage_class = spv::StorageClass(var.GetSingleWordInOperand(0));
uint32_t type_id = var.type_id();
if ((type_id == builtin_position_.pointer_type_id) &&
((spirv_storage_class == spv::StorageClass::Input) ||
(spirv_storage_class == spv::StorageClass::Output))) {
// TODO(crbug.com/tint/103): Support modules that contain multiple Position built-ins.
if (builtin_position_.per_vertex_var_id != 0) {
return Fail()
<< "unsupported: multiple Position built-in variables in the same module";
}
// Skip emitting gl_PerVertex.
builtin_position_.per_vertex_var_id = var.result_id();
builtin_position_.per_vertex_var_init_id =
var.NumInOperands() > 1 ? var.GetSingleWordInOperand(1) : 0u;
continue;
}
switch (enum_converter_.ToAddressSpace(spirv_storage_class)) {
case core::AddressSpace::kUndefined:
case core::AddressSpace::kIn:
case core::AddressSpace::kOut:
case core::AddressSpace::kUniform:
case core::AddressSpace::kHandle:
case core::AddressSpace::kStorage:
case core::AddressSpace::kWorkgroup:
case core::AddressSpace::kPrivate:
break;
default:
return Fail() << "invalid SPIR-V storage class " << int(spirv_storage_class)
<< " for module scope variable: " << var.PrettyPrint();
}
if (!success_) {
return false;
}
const Type* ast_store_type = nullptr;
core::AddressSpace ast_address_space = core::AddressSpace::kUndefined;
if (spirv_storage_class == spv::StorageClass::UniformConstant) {
// These are opaque handles: samplers or textures
ast_store_type = GetHandleTypeForSpirvHandle(var);
if (!ast_store_type) {
return false;
}
// ast_storage_class should remain kNone because handle variables
// are never declared with an explicit address space.
} else {
const Type* ast_type = ConvertType(type_id);
if (ast_type == nullptr) {
return Fail() << "internal error: failed to register Tint AST type for "
"SPIR-V type with ID: "
<< var.type_id();
}
if (auto* ast_ptr_type = ast_type->As<Pointer>()) {
ast_store_type = ast_ptr_type->type;
ast_address_space = ast_ptr_type->address_space;
} else {
return Fail() << "variable with ID " << var.result_id() << " has non-pointer type "
<< var.type_id();
}
}
TINT_ASSERT(ast_store_type != nullptr);
const ast::Expression* ast_initializer = nullptr;
if (var.NumInOperands() > 1) {
// SPIR-V initializers are always constants.
// (OpenCL also allows the ID of an OpVariable, but we don't handle that
// here.)
ast_initializer = MakeConstantExpression(var.GetSingleWordInOperand(1)).expr;
}
auto* ast_var = MakeVar(var.result_id(), ast_address_space, ast_store_type, ast_initializer,
Attributes{});
// TODO(dneto): initializers (a.k.a. initializer expression)
if (ast_var) {
builder_.AST().AddGlobalVariable(ast_var);
module_variable_.GetOrAdd(var.result_id(), [&] {
auto access = VarAccess(var.result_id(), ast_store_type, ast_address_space);
return ModuleVariable{ast_var, ast_address_space, access};
});
}
}
// Emit gl_Position instead of gl_PerVertex
if (builtin_position_.per_vertex_var_id) {
// Make sure the variable has a name.
namer_.SuggestSanitizedName(builtin_position_.per_vertex_var_id, "gl_Position");
const ast::Expression* ast_initializer = nullptr;
if (builtin_position_.per_vertex_var_init_id) {
// The initializer is complex.
const auto* init = def_use_mgr_->GetDef(builtin_position_.per_vertex_var_init_id);
switch (opcode(init)) {
case spv::Op::OpConstantComposite:
case spv::Op::OpSpecConstantComposite:
ast_initializer =
MakeConstantExpression(
init->GetSingleWordInOperand(builtin_position_.position_member_index))
.expr;
break;
default:
return Fail() << "gl_PerVertex initializer too complex. only "
"OpCompositeConstruct and OpSpecConstantComposite "
"are supported: "
<< init->PrettyPrint();
}
}
auto storage_type = ConvertType(builtin_position_.position_member_type_id);
auto ast_address_space = enum_converter_.ToAddressSpace(builtin_position_.storage_class);
auto* ast_var = MakeVar(builtin_position_.per_vertex_var_id, ast_address_space,
storage_type, ast_initializer, {});
builder_.AST().AddGlobalVariable(ast_var);
module_variable_.GetOrAdd(builtin_position_.per_vertex_var_id, [&] {
return ModuleVariable{ast_var, ast_address_space};
});
}
return success_;
}
// @param var_id SPIR-V id of an OpVariable, assumed to be pointer
// to an array
// @returns the IntConstant for the size of the array, or nullptr
const spvtools::opt::analysis::IntConstant* ASTParser::GetArraySize(uint32_t var_id) {
auto* var = def_use_mgr_->GetDef(var_id);
if (!var || opcode(var) != spv::Op::OpVariable) {
return nullptr;
}
auto* ptr_type = def_use_mgr_->GetDef(var->type_id());
if (!ptr_type || opcode(ptr_type) != spv::Op::OpTypePointer) {
return nullptr;
}
auto* array_type = def_use_mgr_->GetDef(ptr_type->GetSingleWordInOperand(1));
if (!array_type || opcode(array_type) != spv::Op::OpTypeArray) {
return nullptr;
}
auto* size = constant_mgr_->FindDeclaredConstant(array_type->GetSingleWordInOperand(1));
if (!size) {
return nullptr;
}
return size->AsIntConstant();
}
core::Access ASTParser::VarAccess(uint32_t var_id,
const Type* storage_type,
core::AddressSpace address_space) {
if (address_space != core::AddressSpace::kStorage) {
return core::Access::kUndefined;
}
bool read_only = read_only_vars_.count(var_id) > 0;
if (auto* tn = storage_type->As<Named>()) {
read_only = read_only || read_only_struct_types_.count(tn->name) > 0;
}
// Apply the access(read) or access(read_write) modifier.
return read_only ? core::Access::kRead : core::Access::kReadWrite;
}
const ast::Var* ASTParser::MakeVar(uint32_t id,
core::AddressSpace address_space,
const Type* storage_type,
const ast::Expression* initializer,
Attributes attrs) {
if (storage_type == nullptr) {
Fail() << "internal error: can't make ast::Variable for null type";
return nullptr;
}
// Handle variables (textures and samplers) are always in the handle
// address space, so we don't mention the address space.
if (address_space == core::AddressSpace::kHandle) {
address_space = core::AddressSpace::kUndefined;
}
if (!ConvertDecorationsForVariable(id, &storage_type, attrs,
address_space != core::AddressSpace::kPrivate)) {
return nullptr;
}
const auto access = VarAccess(id, storage_type, address_space);
// Use type inference if there is an initializer.
auto sym = builder_.Symbols().Register(namer_.Name(id));
return builder_.Var(Source{}, sym, initializer ? ast::Type{} : storage_type->Build(builder_),
address_space, access, initializer, std::move(attrs.list));
}
const ast::Let* ASTParser::MakeLet(uint32_t id, const ast::Expression* initializer) {
auto sym = builder_.Symbols().Register(namer_.Name(id));
return builder_.Let(Source{}, sym, initializer, tint::Empty);
}
const ast::Override* ASTParser::MakeOverride(uint32_t id,
const Type* type,
const ast::Expression* initializer,
Attributes attrs) {
if (!ConvertDecorationsForVariable(id, &type, attrs, false)) {
return nullptr;
}
auto sym = builder_.Symbols().Register(namer_.Name(id));
return builder_.Override(Source{}, sym, type->Build(builder_), initializer,
std::move(attrs.list));
}
const ast::Parameter* ASTParser::MakeParameter(uint32_t id, const Type* type, Attributes attrs) {
if (!ConvertDecorationsForVariable(id, &type, attrs, false)) {
return nullptr;
}
auto sym = builder_.Symbols().Register(namer_.Name(id));
return builder_.Param(Source{}, sym, type->Build(builder_), attrs.list);
}
bool ASTParser::ConvertDecorationsForVariable(uint32_t id,
const Type** store_type,
Attributes& attrs,
bool transfer_pipeline_io) {
DecorationList non_builtin_pipeline_decorations;
for (auto& deco : GetDecorationsFor(id)) {
if (deco.empty()) {
return Fail() << "malformed decoration on ID " << id << ": it is empty";
}
if (deco[0] == uint32_t(spv::Decoration::BuiltIn)) {
if (deco.size() == 1) {
return Fail() << "malformed BuiltIn decoration on ID " << id << ": has no operand";
}
const auto spv_builtin = static_cast<spv::BuiltIn>(deco[1]);
switch (spv_builtin) {
case spv::BuiltIn::PointSize:
special_builtins_[id] = spv_builtin;
return false; // This is not an error
case spv::BuiltIn::SampleId:
case spv::BuiltIn::VertexIndex:
case spv::BuiltIn::InstanceIndex:
case spv::BuiltIn::LocalInvocationId:
case spv::BuiltIn::LocalInvocationIndex:
case spv::BuiltIn::GlobalInvocationId:
case spv::BuiltIn::WorkgroupId:
case spv::BuiltIn::NumWorkgroups:
// The SPIR-V variable may signed (because GLSL requires signed for
// some of these), but WGSL requires unsigned. Handle specially
// so we always perform the conversion at load and store.
special_builtins_[id] = spv_builtin;
if (auto* forced_type = UnsignedTypeFor(*store_type)) {
// Requires conversion and special handling in code generation.
if (transfer_pipeline_io) {
*store_type = forced_type;
}
}
break;
case spv::BuiltIn::SampleMask: {
// In SPIR-V this is used for both input and output variable.
// The SPIR-V variable has store type of array of integer scalar,
// either signed or unsigned.
// WGSL requires the store type to be u32.
auto* size = GetArraySize(id);
if (!size || size->GetZeroExtendedValue() != 1) {
Fail() << "WGSL supports a sample mask of at most 32 bits. "
"SampleMask must be an array of 1 element.";
}
special_builtins_[id] = spv_builtin;
if (transfer_pipeline_io) {
*store_type = ty_.U32();
}
break;
}
default:
break;
}
auto ast_builtin = enum_converter_.ToBuiltin(spv_builtin);
if (ast_builtin == core::BuiltinValue::kUndefined) {
// A diagnostic has already been emitted.
return false;
}
if (transfer_pipeline_io) {
attrs.Add(builder_, Source{}, ast_builtin);
}
}
if (transfer_pipeline_io && IsPipelineDecoration(deco)) {
non_builtin_pipeline_decorations.push_back(deco);
}
if (deco[0] == uint32_t(spv::Decoration::DescriptorSet)) {
if (deco.size() == 1) {
return Fail() << "malformed DescriptorSet decoration on ID " << id
<< ": has no operand";
}
attrs.Add(builder_.Group(Source{}, AInt(deco[1])));
}
if (deco[0] == uint32_t(spv::Decoration::Binding)) {
if (deco.size() == 1) {
return Fail() << "malformed Binding decoration on ID " << id << ": has no operand";
}
attrs.Add(builder_.Binding(Source{}, AInt(deco[1])));
}
if (deco[0] == uint32_t(spv::Decoration::NonWritable)) {
read_only_vars_.insert(id);
}
}
if (transfer_pipeline_io) {
if (!ConvertPipelineDecorations(*store_type, non_builtin_pipeline_decorations, attrs)) {
return false;
}
}
return success();
}
DecorationList ASTParser::GetMemberPipelineDecorations(const Struct& struct_type,
int member_index) {
// Yes, I could have used std::copy_if or std::copy_if.
DecorationList result;
for (const auto& deco : GetDecorationsForMember(struct_id_for_symbol_[struct_type.name],
static_cast<uint32_t>(member_index))) {
if (IsPipelineDecoration(deco)) {
result.emplace_back(deco);
}
}
return result;
}
void ASTParser::SetLocation(Attributes& attributes, const ast::Attribute* replacement) {
if (!replacement) {
return;
}
for (auto*& attribute : attributes.list) {
if (attribute->Is<ast::LocationAttribute>()) {
// Replace this location attribute with the replacement.
// The old one doesn't leak because it's kept in the builder's AST node
// list.
attribute = replacement;
return; // Assume there is only one such decoration.
}
}
// The list didn't have a location. Add it.
attributes.Add(replacement);
return;
}
bool ASTParser::ConvertPipelineDecorations(const Type* store_type,
const DecorationList& decorations,
Attributes& attributes) {
// Vulkan defaults to perspective-correct interpolation.
core::InterpolationType type = core::InterpolationType::kPerspective;
core::InterpolationSampling sampling = core::InterpolationSampling::kUndefined;
for (const auto& deco : decorations) {
TINT_ASSERT(deco.size() > 0);
switch (static_cast<spv::Decoration>(deco[0])) {
case spv::Decoration::Location:
if (deco.size() != 2) {
return Fail()
<< "malformed Location decoration on ID requires one literal operand";
}
SetLocation(attributes, builder_.Location(AInt(deco[1])));
if (store_type->IsIntegerScalarOrVector()) {
// Default to flat interpolation for integral user-defined IO types.
type = core::InterpolationType::kFlat;
}
break;
case spv::Decoration::Flat:
type = core::InterpolationType::kFlat;
break;
case spv::Decoration::NoPerspective:
if (store_type->IsIntegerScalarOrVector()) {
// This doesn't capture the array or struct case.
return Fail() << "NoPerspective is invalid on integral IO";
}
type = core::InterpolationType::kLinear;
break;
case spv::Decoration::Centroid:
if (store_type->IsIntegerScalarOrVector()) {
// This doesn't capture the array or struct case.
return Fail() << "Centroid interpolation sampling is invalid on integral IO";
}
sampling = core::InterpolationSampling::kCentroid;
break;
case spv::Decoration::Sample:
if (store_type->IsIntegerScalarOrVector()) {
// This doesn't capture the array or struct case.
return Fail() << "Sample interpolation sampling is invalid on integral IO";
}
sampling = core::InterpolationSampling::kSample;
break;
default:
break;
}
}
if (type == core::InterpolationType::kFlat && !attributes.Has<ast::LocationAttribute>()) {
// WGSL requires that '@interpolate(flat)' needs to be paired with '@location', however
// SPIR-V requires all fragment shader integer Inputs are 'flat'. If the decorations do not
// contain a spv::Decoration::Location, then make this perspective.
type = core::InterpolationType::kPerspective;
}
// Apply interpolation.
if (type == core::InterpolationType::kPerspective &&
sampling == core::InterpolationSampling::kUndefined) {
// This is the default. Don't add a decoration.
} else {
attributes.Add(builder_.Interpolate(type, sampling));
}
return success();
}
bool ASTParser::CanMakeConstantExpression(uint32_t id) {
if ((id == workgroup_size_builtin_.id) || (id == workgroup_size_builtin_.x_id) ||
(id == workgroup_size_builtin_.y_id) || (id == workgroup_size_builtin_.z_id)) {
return true;
}
const auto* inst = def_use_mgr_->GetDef(id);
if (!inst) {
return false;
}
if (opcode(inst) == spv::Op::OpUndef) {
return true;
}
return nullptr != constant_mgr_->FindDeclaredConstant(id);
}
TypedExpression ASTParser::MakeConstantExpression(uint32_t id) {
if (!success_) {
return {};
}
// Handle the special cases for workgroup sizing.
if (id == workgroup_size_builtin_.id) {
auto x = MakeConstantExpression(workgroup_size_builtin_.x_id);
auto y = MakeConstantExpression(workgroup_size_builtin_.y_id);
auto z = MakeConstantExpression(workgroup_size_builtin_.z_id);
auto* ast_type = ty_.Vector(x.type, 3);
return {ast_type, builder_.Call(Source{}, ast_type->Build(builder_),
tint::Vector{x.expr, y.expr, z.expr})};
} else if (id == workgroup_size_builtin_.x_id) {
return MakeConstantExpressionForScalarSpirvConstant(
Source{}, ConvertType(workgroup_size_builtin_.component_type_id),
constant_mgr_->GetConstant(
type_mgr_->GetType(workgroup_size_builtin_.component_type_id),
{workgroup_size_builtin_.x_value}));
} else if (id == workgroup_size_builtin_.y_id) {
return MakeConstantExpressionForScalarSpirvConstant(
Source{}, ConvertType(workgroup_size_builtin_.component_type_id),
constant_mgr_->GetConstant(
type_mgr_->GetType(workgroup_size_builtin_.component_type_id),
{workgroup_size_builtin_.y_value}));
} else if (id == workgroup_size_builtin_.z_id) {
return MakeConstantExpressionForScalarSpirvConstant(
Source{}, ConvertType(workgroup_size_builtin_.component_type_id),
constant_mgr_->GetConstant(
type_mgr_->GetType(workgroup_size_builtin_.component_type_id),
{workgroup_size_builtin_.z_value}));
}
// Handle the general case where a constant is already registered
// with the SPIR-V optimizer's analysis framework.
const auto* inst = def_use_mgr_->GetDef(id);
if (inst == nullptr) {
Fail() << "ID " << id << " is not a registered instruction";
return {};
}
auto source = GetSourceForInst(inst);
auto* original_ast_type = ConvertType(inst->type_id());
if (original_ast_type == nullptr) {
return {};
}
switch (opcode(inst)) {
case spv::Op::OpUndef: // Remap undef to null.
case spv::Op::OpConstantNull:
return {original_ast_type, MakeNullValue(original_ast_type)};
case spv::Op::OpConstantTrue:
case spv::Op::OpConstantFalse:
case spv::Op::OpConstant: {
const auto* spirv_const = constant_mgr_->FindDeclaredConstant(id);
if (spirv_const == nullptr) {
Fail() << "ID " << id << " is not a constant";
return {};
}
return MakeConstantExpressionForScalarSpirvConstant(source, original_ast_type,
spirv_const);
}
case spv::Op::OpConstantComposite: {
// Handle vector, matrix, array, and struct
auto itr = declared_constant_composites_.find(id);
if (itr != declared_constant_composites_.end()) {
// We've already declared this constant value as a module-scope const, so just
// reference that identifier.
return {original_ast_type, builder_.Expr(itr->second)};
}
const auto* spirv_const = constant_mgr_->FindDeclaredConstant(id);
if (spirv_const->IsZero()) {
// All zeros, so just use a zero value constructor and always inline it.
return {original_ast_type,
builder_.Call(source, original_ast_type->Build(builder_))};
}
// Generate a composite from explicit components.
bool all_same = true;
uint32_t first_id = 0u;
ExpressionList ast_components;
if (!inst->WhileEachInId([&](const uint32_t* id_ref) -> bool {
auto component = MakeConstantExpression(*id_ref);
if (!component) {
this->Fail() << "invalid constant with ID " << *id_ref;
return false;
}
ast_components.Push(component.expr);
// Check if this argument is different from the others.
if (first_id != 0u) {
if (*id_ref != first_id) {
all_same = false;
}
} else {
first_id = *id_ref;
}
return true;
})) {
// We've already emitted a diagnostic.
return {};
}
const ast::Expression* expr = nullptr;
if (all_same && original_ast_type->Is<Vector>()) {
// We're constructing a vector and all the operands were the same, so use a splat.
expr = builder_.Call(source, original_ast_type->Build(builder_), ast_components[0]);
} else {
expr = builder_.Call(source, original_ast_type->Build(builder_),
std::move(ast_components));
}
if (def_use_mgr_->NumUses(id) == 1) {
// The constant is only used once, so just inline its use.
return {original_ast_type, expr};
}
// Create a module-scope const declaration for the constant.
auto name = namer_.Name(id);
auto* decl = builder_.GlobalConst(name, expr);
declared_constant_composites_.insert({id, decl->name->symbol});
return {original_ast_type, builder_.Expr(name)};
}
case spv::Op::OpSpecConstantComposite:
case spv::Op::OpSpecConstantOp: {
// TODO(crbug.com/tint/111): Handle OpSpecConstantOp and OpSpecConstantComposite here.
Fail() << "unimplemented: OpSpecConstantOp and OpSpecConstantComposite";
return {};
}
default:
break;
}
Fail() << "unhandled constant instruction " << inst->PrettyPrint();
return {};
}
TypedExpression ASTParser::MakeConstantExpressionForScalarSpirvConstant(
Source source,
const Type* original_ast_type,
const spvtools::opt::analysis::Constant* spirv_const) {
auto* ast_type = original_ast_type->UnwrapAlias();
// TODO(dneto): Note: NullConstant for int, uint, float map to a regular 0.
// So canonicalization should map that way too.
// Currently "null<type>" is missing from the WGSL parser.
// See https://bugs.chromium.org/p/tint/issues/detail?id=34
return Switch(
ast_type,
[&](const I32*) -> TypedExpression {
const auto value = spirv_const->GetS32();
if (value == std::numeric_limits<int32_t>::min()) {
// Avoid overflowing i-suffixed literal.
return {ty_.I32(), builder_.Call(source, builder_.ty.i32(),
create<ast::IntLiteralExpression>(
source, value,
ast::IntLiteralExpression::Suffix::kNone))};
} else {
return {ty_.I32(),
create<ast::IntLiteralExpression>(source, static_cast<int64_t>(value),
ast::IntLiteralExpression::Suffix::kI)};
}
},
[&](const U32*) {
return TypedExpression{ty_.U32(),
create<ast::IntLiteralExpression>(
source, static_cast<int64_t>(spirv_const->GetU32()),
ast::IntLiteralExpression::Suffix::kU)};
},
[&](const F32*) {
if (auto f = core::CheckedConvert<f32>(AFloat(spirv_const->GetFloat())); f == Success) {
return TypedExpression{ty_.F32(),
create<ast::FloatLiteralExpression>(
source, static_cast<double>(spirv_const->GetFloat()),
ast::FloatLiteralExpression::Suffix::kF)};
} else {
Fail() << "value cannot be represented as 'f32': " << spirv_const->GetFloat();
return TypedExpression{};
}
},
[&](const Bool*) {
const bool value =
spirv_const->AsNullConstant() ? false : spirv_const->AsBoolConstant()->value();
return TypedExpression{ty_.Bool(), create<ast::BoolLiteralExpression>(source, value)};
}, //
TINT_ICE_ON_NO_MATCH);
}
const ast::Expression* ASTParser::MakeNullValue(const Type* type) {
// TODO(dneto): Use the no-operands initializer syntax when it becomes
// available in Tint.
// https://github.com/gpuweb/gpuweb/issues/685
// https://bugs.chromium.org/p/tint/issues/detail?id=34
if (!type) {
Fail() << "trying to create null value for a null type";
return nullptr;
}
auto* original_type = type;
type = type->UnwrapAlias();
return Switch(
type, //
[&](const I32*) {
return create<ast::IntLiteralExpression>(Source{}, 0,
ast::IntLiteralExpression::Suffix::kI);
},
[&](const U32*) {
return create<ast::IntLiteralExpression>(Source{}, 0,
ast::IntLiteralExpression::Suffix::kU);
},
[&](const F32*) {
return create<ast::FloatLiteralExpression>(Source{}, 0,
ast::FloatLiteralExpression::Suffix::kF);
},
[&](const Vector*) { return builder_.Call(Source{}, type->Build(builder_)); },
[&](const Matrix*) { return builder_.Call(Source{}, type->Build(builder_)); },
[&](const Array*) { return builder_.Call(Source{}, type->Build(builder_)); },
[&](const Bool*) { return create<ast::BoolLiteralExpression>(Source{}, false); },
[&](const Struct* struct_ty) {
ExpressionList ast_components;
for (auto* member : struct_ty->members) {
ast_components.Push(MakeNullValue(member));
}
return builder_.Call(Source{}, original_type->Build(builder_),
std::move(ast_components));
}, //
TINT_ICE_ON_NO_MATCH);
}
TypedExpression ASTParser::MakeNullExpression(const Type* type) {
return {type, MakeNullValue(type)};
}
const Type* ASTParser::UnsignedTypeFor(const Type* type) {
if (type->Is<I32>()) {
return ty_.U32();
}
if (auto* v = type->As<Vector>()) {
if (v->type->Is<I32>()) {
return ty_.Vector(ty_.U32(), v->size);
}
}
return {};
}
const Type* ASTParser::SignedTypeFor(const Type* type) {
if (type->Is<U32>()) {
return ty_.I32();
}
if (auto* v = type->As<Vector>()) {
if (v->type->Is<U32>()) {
return ty_.Vector(ty_.I32(), v->size);
}
}
return {};
}
TypedExpression ASTParser::RectifyOperandSignedness(const spvtools::opt::Instruction& inst,
TypedExpression&& expr) {
bool requires_signed = false;
bool requires_unsigned = false;
if (IsGlslExtendedInstruction(inst)) {
const auto extended_opcode = static_cast<GLSLstd450>(inst.GetSingleWordInOperand(1));
requires_signed = AssumesSignedOperands(extended_opcode);
requires_unsigned = AssumesUnsignedOperands(extended_opcode);
} else {
const auto op = opcode(inst);
requires_signed = AssumesSignedOperands(op);
requires_unsigned = AssumesUnsignedOperands(op);
}
if (!requires_signed && !requires_unsigned) {
// No conversion is required, assuming our tables are complete.
return std::move(expr);
}
if (!expr) {
Fail() << "internal error: RectifyOperandSignedness given a null expr\n";
return {};
}
// TODO(crbug.com/tint/1669) should this unpack aliases too?
auto* type = expr.type->UnwrapRef();
if (!type) {
Fail() << "internal error: unmapped type for: " << expr.expr->TypeInfo().name << "\n";
return {};
}
if (requires_unsigned) {
if (auto* unsigned_ty = UnsignedTypeFor(type)) {
// Conversion is required.
return {unsigned_ty,
builder_.Bitcast(Source{}, unsigned_ty->Build(builder_), expr.expr)};
}
} else if (requires_signed) {
if (auto* signed_ty = SignedTypeFor(type)) {
// Conversion is required.
return {signed_ty, builder_.Bitcast(Source{}, signed_ty->Build(builder_), expr.expr)};
}
}
// We should not reach here.
return std::move(expr);
}
TypedExpression ASTParser::RectifySecondOperandSignedness(const spvtools::opt::Instruction& inst,
const Type* first_operand_type,
TypedExpression&& second_operand_expr) {
const Type* target_type = first_operand_type->UnwrapRef();
if ((target_type != second_operand_expr.type->UnwrapRef()) &&
AssumesSecondOperandSignednessMatchesFirstOperand(opcode(inst))) {
// Conversion is required.
return {target_type,
builder_.Bitcast(Source{}, target_type->Build(builder_), second_operand_expr.expr)};
}
// No conversion necessary.
return std::move(second_operand_expr);
}
const Type* ASTParser::ForcedResultType(const spvtools::opt::Instruction& inst,
const Type* first_operand_type) {
first_operand_type = first_operand_type->UnwrapRef();
const auto op = opcode(inst);
if (AssumesResultSignednessMatchesFirstOperand(op)) {
return first_operand_type;
}
if (IsGlslExtendedInstruction(inst)) {
const auto extended_opcode = static_cast<GLSLstd450>(inst.GetSingleWordInOperand(1));
if (AssumesResultSignednessMatchesFirstOperand(extended_opcode)) {
return first_operand_type;
}
}
return nullptr;
}
const Type* ASTParser::GetSignedIntMatchingShape(const Type* other) {
if (other == nullptr) {
Fail() << "no type provided";
}
if (other->Is<F32>() || other->Is<U32>() || other->Is<I32>()) {
return ty_.I32();
}
if (auto* vec_ty = other->As<Vector>()) {
return ty_.Vector(ty_.I32(), vec_ty->size);
}
Fail() << "required numeric scalar or vector, but got " << other->TypeInfo().name;
return nullptr;
}
const Type* ASTParser::GetUnsignedIntMatchingShape(const Type* other) {
if (other == nullptr) {
Fail() << "no type provided";
return nullptr;
}
if (other->Is<F32>() || other->Is<U32>() || other->Is<I32>()) {
return ty_.U32();
}
if (auto* vec_ty = other->As<Vector>()) {
return ty_.Vector(ty_.U32(), vec_ty->size);
}
Fail() << "required numeric scalar or vector, but got " << other->TypeInfo().name;
return nullptr;
}
TypedExpression ASTParser::RectifyForcedResultType(TypedExpression expr,
const spvtools::opt::Instruction& inst,
const Type* first_operand_type) {
auto* forced_result_ty = ForcedResultType(inst, first_operand_type);
if ((!forced_result_ty) || (forced_result_ty == expr.type)) {
return expr;
}
return {expr.type, builder_.Bitcast(Source{}, expr.type->Build(builder_), expr.expr)};
}
TypedExpression ASTParser::AsUnsigned(TypedExpression expr) {
if (expr.type && expr.type->IsSignedScalarOrVector()) {
auto* new_type = GetUnsignedIntMatchingShape(expr.type);
return {new_type, builder_.Bitcast(Source{}, new_type->Build(builder_), expr.expr)};
}
return expr;
}
TypedExpression ASTParser::AsSigned(TypedExpression expr) {
if (expr.type && expr.type->IsUnsignedScalarOrVector()) {
auto* new_type = GetSignedIntMatchingShape(expr.type);
return {new_type, builder_.Bitcast(Source{}, new_type->Build(builder_), expr.expr)};
}
return expr;
}
bool ASTParser::EmitFunctions() {
if (!success_) {
return false;
}
for (const auto* f : topologically_ordered_functions_) {
if (!success_) {
return false;
}
auto id = f->result_id();
auto it = function_to_ep_info_.find(id);
if (it == function_to_ep_info_.end()) {
FunctionEmitter emitter(this, *f, nullptr);
success_ = emitter.Emit();
} else {
for (const auto& ep : it->second) {
FunctionEmitter emitter(this, *f, &ep);
success_ = emitter.Emit();
if (!success_) {
return false;
}
}
}
}
return success_;
}
const spvtools::opt::Instruction* ASTParser::GetMemoryObjectDeclarationForHandle(
uint32_t id,
bool follow_image) {
auto saved_id = id;
auto local_fail = [this, saved_id, id, follow_image]() -> const spvtools::opt::Instruction* {
const auto* inst = def_use_mgr_->GetDef(id);
Fail() << "Could not find memory object declaration for the "
<< (follow_image ? "image" : "sampler") << " underlying id " << id
<< " (from original id " << saved_id << ") "
<< (inst ? inst->PrettyPrint() : std::string());
return nullptr;
};
auto& memo_table = (follow_image ? mem_obj_decl_image_ : mem_obj_decl_sampler_);
// Use a visited set to defend against bad input which might have long
// chains or even loops.
std::unordered_set<uint32_t> visited;
// Trace backward in the SSA data flow until we hit a memory object
// declaration.
while (true) {
auto where = memo_table.find(id);
if (where != memo_table.end()) {
return where->second;
}
// Protect against loops.
auto visited_iter = visited.find(id);
if (visited_iter != visited.end()) {
// We've hit a loop. Mark all the visited nodes
// as dead ends.
for (auto iter : visited) {
memo_table[iter] = nullptr;
}
return nullptr;
}
visited.insert(id);
const auto* inst = def_use_mgr_->GetDef(id);
if (inst == nullptr) {
return local_fail();
}
switch (opcode(inst)) {
case spv::Op::OpFunctionParameter:
case spv::Op::OpVariable:
// We found the memory object declaration.
// Remember it as the answer for the whole path.
for (auto iter : visited) {
memo_table[iter] = inst;
}
return inst;
case spv::Op::OpLoad:
// Follow the pointer being loaded
id = inst->GetSingleWordInOperand(0);
break;
case spv::Op::OpCopyObject:
// Follow the object being copied.
id = inst->GetSingleWordInOperand(0);
break;
case spv::Op::OpAccessChain:
case spv::Op::OpInBoundsAccessChain:
case spv::Op::OpPtrAccessChain:
case spv::Op::OpInBoundsPtrAccessChain:
// Follow the base pointer.
id = inst->GetSingleWordInOperand(0);
break;
case spv::Op::OpSampledImage:
// Follow the image or the sampler, depending on the follow_image
// parameter.
id = inst->GetSingleWordInOperand(follow_image ? 0 : 1);
break;
case spv::Op::OpImage:
// Follow the sampled image
id = inst->GetSingleWordInOperand(0);
break;
default:
// Can't trace further.
// Remember it as the answer for the whole path.
for (auto iter : visited) {
memo_table[iter] = nullptr;
}
return nullptr;
}
}
}
const spvtools::opt::Instruction* ASTParser::GetSpirvTypeForHandleOrHandleMemoryObjectDeclaration(
const spvtools::opt::Instruction& obj) {
if (!success()) {
return nullptr;
}
// The WGSL handle type is determined by looking at information from
// several sources:
// - the usage of the handle by image access instructions
// - the SPIR-V type declaration
// Each source does not have enough information to completely determine
// the result.
// Messages are phrased in terms of images and samplers because those
// are the only SPIR-V handles supported by WGSL.
// Get the SPIR-V handle type.
const auto* type = def_use_mgr_->GetDef(obj.type_id());
if (!type) {
Fail() << "Invalid type for image, sampler, variable or function parameter to image or "
"sampler "
<< obj.PrettyPrint();
return nullptr;
}
switch (opcode(type)) {
case spv::Op::OpTypeSampler:
case spv::Op::OpTypeImage:
return type;
case spv::Op::OpTypePointer:
// The remaining cases.
break;
default:
Fail() << "Invalid type for image, sampler, variable or function parameter to image or "
"sampler "
<< obj.PrettyPrint();
return nullptr;
}
// Look at the pointee type instead.
const auto* raw_handle_type = def_use_mgr_->GetDef(type->GetSingleWordInOperand(1));
if (!raw_handle_type) {
Fail() << "Invalid pointer type for variable or function parameter " << obj.PrettyPrint();
return nullptr;
}
switch (opcode(raw_handle_type)) {
case spv::Op::OpTypeSampler:
case spv::Op::OpTypeImage:
// The expected cases.
break;
case spv::Op::OpTypeArray:
case spv::Op::OpTypeRuntimeArray:
Fail() << "arrays of textures or samplers are not supported in WGSL; can't "
"translate variable or function parameter: "
<< obj.PrettyPrint();
return nullptr;
case spv::Op::OpTypeSampledImage:
Fail() << "WGSL does not support combined image-samplers: " << obj.PrettyPrint();
return nullptr;
default:
Fail() << "invalid type for image or sampler variable or function "
"parameter: "
<< obj.PrettyPrint();
return nullptr;
}
return raw_handle_type;
}
const Type* ASTParser::GetHandleTypeForSpirvHandle(const spvtools::opt::Instruction& obj) {
auto where = handle_type_.find(&obj);
if (where != handle_type_.end()) {
return where->second;
}
const spvtools::opt::Instruction* raw_handle_type =
GetSpirvTypeForHandleOrHandleMemoryObjectDeclaration(obj);
if (!raw_handle_type) {
return nullptr;
}
// The memory object declaration could be a sampler or image.
// Where possible, determine which one it is from the usage inferred
// for the variable.
Usage usage = handle_usage_[&obj];
if (!usage.IsValid()) {
Fail() << "Invalid sampler or texture usage for variable or function parameter "
<< obj.PrettyPrint() << "\n"
<< usage;
return nullptr;
}
// Infer a handle type, if usage didn't already tell us.
if (!usage.IsComplete()) {
// In SPIR-V you could statically reference a texture or sampler without
// using it in a way that gives us a clue on how to declare it. Look inside
// the store type to infer a usage.
if (opcode(raw_handle_type) == spv::Op::OpTypeSampler) {
usage.AddSampler();
} else {
// It's a texture.
if (raw_handle_type->NumInOperands() != 7) {
Fail() << "invalid SPIR-V image type: expected 7 operands: "
<< raw_handle_type->PrettyPrint();
return nullptr;
}
const auto sampled_param = raw_handle_type->GetSingleWordInOperand(5);
const auto format_param = raw_handle_type->GetSingleWordInOperand(6);
// Only storage images have a format.
if ((format_param != uint32_t(spv::ImageFormat::Unknown)) ||
sampled_param == 2 /* without sampler */) {
// Get NonWritable and NonReadable attributes of the variable.
bool is_nonwritable = false;
bool is_nonreadable = false;
for (const auto& deco : GetDecorationsFor(obj.result_id())) {
if (deco.size() != 1) {
continue;
}
if (deco[0] == uint32_t(spv::Decoration::NonWritable)) {
is_nonwritable = true;
}
if (deco[0] == uint32_t(spv::Decoration::NonReadable)) {
is_nonreadable = true;
}
}
if (is_nonwritable && is_nonreadable) {
Fail() << "storage image variable is both NonWritable and NonReadable"
<< obj.PrettyPrint();
}
if (!is_nonwritable && !is_nonreadable) {
Fail() << "storage image variable is neither NonWritable nor NonReadable"
<< obj.PrettyPrint();
}
// Let's make it one of the storage textures.
if (is_nonwritable) {
usage.AddStorageReadTexture();
} else {
usage.AddStorageWriteTexture();
}
} else {
usage.AddSampledTexture();
}
}
if (!usage.IsComplete()) {
Fail() << "internal error: should have inferred a complete handle type. got "
<< usage.to_str();
return nullptr;
}
}
// Construct the Tint handle type.
const Type* ast_handle_type = nullptr;
if (usage.IsSampler()) {
ast_handle_type =
ty_.Sampler(usage.IsComparisonSampler() ? core::type::SamplerKind::kComparisonSampler
: core::type::SamplerKind::kSampler);
} else if (usage.IsTexture()) {
const spvtools::opt::analysis::Image* image_type =
type_mgr_->GetType(raw_handle_type->result_id())->AsImage();
if (!image_type) {
Fail() << "internal error: Couldn't look up image type"
<< raw_handle_type->PrettyPrint();
return nullptr;
}
if (image_type->is_arrayed()) {
// Give a nicer error message here, where we have the offending variable
// in hand, rather than inside the enum converter.
switch (static_cast<spv::Dim>(image_type->dim())) {
case spv::Dim::Dim2D:
case spv::Dim::Cube:
break;
default:
Fail() << "WGSL arrayed textures must be 2d_array or cube_array: "
"invalid multisampled texture variable or function parameter "
<< namer_.Name(obj.result_id()) << ": " << obj.PrettyPrint();
return nullptr;
}
}
const core::type::TextureDimension dim =
enum_converter_.ToDim(image_type->dim(), image_type->is_arrayed());
if (dim == core::type::TextureDimension::kNone) {
return nullptr;
}
// WGSL storage textures are always formatted. Unformatted textures are always sampled.
if (usage.IsSampledTexture() || usage.IsStorageReadOnlyTexture() ||
(uint32_t(image_type->format()) == uint32_t(spv::ImageFormat::Unknown))) {
// Make a sampled texture type.
auto* ast_sampled_component_type =
ConvertType(raw_handle_type->GetSingleWordInOperand(0));
// Vulkan ignores the depth parameter on OpImage, so pay attention to the
// usage as well. That is, it's valid for a Vulkan shader to use an
// OpImage variable with an OpImage*Dref* instruction. In WGSL we must
// treat that as a depth texture.
if (image_type->depth() == 1 || usage.IsDepthTexture()) {
if (image_type->is_multisampled()) {
ast_handle_type = ty_.DepthMultisampledTexture(dim);
} else {
ast_handle_type = ty_.DepthTexture(dim);
}
} else if (image_type->is_multisampled()) {
if (dim != core::type::TextureDimension::k2d) {
Fail() << "WGSL multisampled textures must be 2d and non-arrayed: "
"invalid multisampled texture variable or function parameter "
<< namer_.Name(obj.result_id()) << ": " << obj.PrettyPrint();
}
// Multisampled textures are never depth textures.
ast_handle_type = ty_.MultisampledTexture(dim, ast_sampled_component_type);
} else {
ast_handle_type = ty_.SampledTexture(dim, ast_sampled_component_type);
}
} else {
const auto access =
usage.IsStorageReadWriteTexture() ? core::Access::kReadWrite : core::Access::kWrite;
if (access == core::Access::kReadWrite) {
Require(wgsl::LanguageFeature::kReadonlyAndReadwriteStorageTextures);
}
const auto format = enum_converter_.ToTexelFormat(image_type->format());
if (format == core::TexelFormat::kUndefined) {
return nullptr;
}
ast_handle_type = ty_.StorageTexture(dim, format, access);
}
} else {
Fail() << "unsupported: UniformConstant variable or function parameter is not a recognized "
"sampler or texture "
<< obj.PrettyPrint();
return nullptr;
}
// Remember it for later.
handle_type_[&obj] = ast_handle_type;
return ast_handle_type;
}
const Type* ASTParser::GetComponentTypeForFormat(core::TexelFormat format) {
switch (format) {
case core::TexelFormat::kR32Uint:
case core::TexelFormat::kRgba8Uint:
case core::TexelFormat::kRg32Uint:
case core::TexelFormat::kRgba16Uint:
case core::TexelFormat::kRgba32Uint:
return ty_.U32();
case core::TexelFormat::kR32Sint:
case core::TexelFormat::kRgba8Sint:
case core::TexelFormat::kRg32Sint:
case core::TexelFormat::kRgba16Sint:
case core::TexelFormat::kRgba32Sint:
return ty_.I32();
case core::TexelFormat::kRgba8Unorm:
case core::TexelFormat::kRgba8Snorm:
case core::TexelFormat::kR32Float:
case core::TexelFormat::kRg32Float:
case core::TexelFormat::kRgba16Float:
case core::TexelFormat::kRgba32Float:
return ty_.F32();
default:
break;
}
Fail() << "unknown format " << int(format);
return nullptr;
}
unsigned ASTParser::GetChannelCountForFormat(core::TexelFormat format) {
switch (format) {
case core::TexelFormat::kR32Float:
case core::TexelFormat::kR32Sint:
case core::TexelFormat::kR32Uint:
// One channel
return 1;
case core::TexelFormat::kRg32Float:
case core::TexelFormat::kRg32Sint:
case core::TexelFormat::kRg32Uint:
// Two channels
return 2;
case core::TexelFormat::kRgba16Float:
case core::TexelFormat::kRgba16Sint:
case core::TexelFormat::kRgba16Uint:
case core::TexelFormat::kRgba32Float:
case core::TexelFormat::kRgba32Sint:
case core::TexelFormat::kRgba32Uint:
case core::TexelFormat::kRgba8Sint:
case core::TexelFormat::kRgba8Snorm:
case core::TexelFormat::kRgba8Uint:
case core::TexelFormat::kRgba8Unorm:
// Four channels
return 4;
default:
break;
}
Fail() << "unknown format " << int(format);
return 0;
}
const Type* ASTParser::GetTexelTypeForFormat(core::TexelFormat format) {
const auto* component_type = GetComponentTypeForFormat(format);
if (!component_type) {
return nullptr;
}
return ty_.Vector(component_type, 4);
}
bool ASTParser::RegisterHandleUsage() {
if (!success_) {
return false;
}
// Map a function ID to the list of its function parameter instructions, in
// order.
std::unordered_map<uint32_t, std::vector<const spvtools::opt::Instruction*>> function_params;
for (const auto* f : topologically_ordered_functions_) {
// Record the instructions defining this function's parameters.
auto& params = function_params[f->result_id()];
f->ForEachParam(
[&params](const spvtools::opt::Instruction* param) { params.push_back(param); });
}
// Returns the memory object declaration for an image underlying the first
// operand of the given image instruction.
auto get_image = [this](const spvtools::opt::Instruction& image_inst) {
return this->GetMemoryObjectDeclarationForHandle(image_inst.GetSingleWordInOperand(0),
true);
};
// Returns the memory object declaration for a sampler underlying the first
// operand of the given image instruction.
auto get_sampler = [this](const spvtools::opt::Instruction& image_inst) {
return this->GetMemoryObjectDeclarationForHandle(image_inst.GetSingleWordInOperand(0),
false);
};
// Scan the bodies of functions for image operations, recording their implied
// usage properties on the memory object declarations (i.e. variables or
// function parameters). We scan the functions in an order so that callees
// precede callers. That way the usage on a function parameter is already
// computed before we see the call to that function. So when we reach
// a function call, we can add the usage from the callee formal parameters.
for (const auto* f : topologically_ordered_functions_) {
for (const auto& bb : *f) {
for (const auto& inst : bb) {
switch (opcode(inst)) {
// Single texel reads and writes
case spv::Op::OpImageRead:
handle_usage_[get_image(inst)].AddStorageReadTexture();
break;
case spv::Op::OpImageWrite:
handle_usage_[get_image(inst)].AddStorageWriteTexture();
break;
case spv::Op::OpImageFetch:
handle_usage_[get_image(inst)].AddSampledTexture();
break;
// Sampling and gathering from a sampled image.
case spv::Op::OpImageSampleImplicitLod:
case spv::Op::OpImageSampleExplicitLod:
case spv::Op::OpImageSampleProjImplicitLod:
case spv::Op::OpImageSampleProjExplicitLod:
case spv::Op::OpImageGather:
handle_usage_[get_image(inst)].AddSampledTexture();
handle_usage_[get_sampler(inst)].AddSampler();
break;
case spv::Op::OpImageSampleDrefImplicitLod:
case spv::Op::OpImageSampleDrefExplicitLod:
case spv::Op::OpImageSampleProjDrefImplicitLod:
case spv::Op::OpImageSampleProjDrefExplicitLod:
case spv::Op::OpImageDrefGather:
// Depth reference access implies usage as a depth texture, which
// in turn is a sampled texture.
handle_usage_[get_image(inst)].AddDepthTexture();
handle_usage_[get_sampler(inst)].AddComparisonSampler();
break;
// Image queries
case spv::Op::OpImageQuerySizeLod:
// Vulkan requires Sampled=1 for this. SPIR-V already requires MS=0.
handle_usage_[get_image(inst)].AddSampledTexture();
break;
case spv::Op::OpImageQuerySize:
// Applies to either MS=1 or Sampled=0 or 2.
// So we can't force it to be multisampled, or storage image.
break;
case spv::Op::OpImageQueryLod:
handle_usage_[get_image(inst)].AddSampledTexture();
handle_usage_[get_sampler(inst)].AddSampler();
break;
case spv::Op::OpImageQueryLevels:
// We can't tell anything more than that it's an image.
handle_usage_[get_image(inst)].AddTexture();
break;
case spv::Op::OpImageQuerySamples:
handle_usage_[get_image(inst)].AddMultisampledTexture();
break;
// Function calls
case spv::Op::OpFunctionCall: {
// Propagate handle usages from callee function formal parameters to
// the matching caller parameters. This is where we rely on the
// fact that callees have been processed earlier in the flow.
const auto num_in_operands = inst.NumInOperands();
// The first operand of the call is the function ID.
// The remaining operands are the operands to the function.
if (num_in_operands < 1) {
return Fail() << "Call instruction must have at least one operand"
<< inst.PrettyPrint();
}
const auto function_id = inst.GetSingleWordInOperand(0);
const auto& formal_params = function_params[function_id];
if (formal_params.size() != (num_in_operands - 1)) {
return Fail()
<< "Called function has " << formal_params.size()
<< " parameters, but function call has " << (num_in_operands - 1)
<< " parameters" << inst.PrettyPrint();
}
for (uint32_t i = 1; i < num_in_operands; ++i) {
auto where = handle_usage_.find(formal_params[i - 1]);
if (where == handle_usage_.end()) {
// We haven't recorded any handle usage on the formal parameter.
continue;
}
const Usage& formal_param_usage = where->second;
const auto operand_id = inst.GetSingleWordInOperand(i);
const auto* operand_as_sampler =
GetMemoryObjectDeclarationForHandle(operand_id, false);
const auto* operand_as_image =
GetMemoryObjectDeclarationForHandle(operand_id, true);
if (operand_as_sampler) {
handle_usage_[operand_as_sampler].Add(formal_param_usage);
}
if (operand_as_image && (operand_as_image != operand_as_sampler)) {
handle_usage_[operand_as_image].Add(formal_param_usage);
}
}
break;
}
default:
break;
}
}
}
}
return success_;
}
Usage ASTParser::GetHandleUsage(uint32_t id) const {
const auto where = handle_usage_.find(def_use_mgr_->GetDef(id));
if (where != handle_usage_.end()) {
return where->second;
}
return Usage();
}
const spvtools::opt::Instruction* ASTParser::GetInstructionForTest(uint32_t id) const {
return def_use_mgr_ ? def_use_mgr_->GetDef(id) : nullptr;
}
std::string ASTParser::GetMemberName(const Struct& struct_type, int member_index) {
auto where = struct_id_for_symbol_.find(struct_type.name);
if (where == struct_id_for_symbol_.end()) {
Fail() << "no structure type registered for symbol";
return "";
}
return namer_.GetMemberName(where->second, static_cast<uint32_t>(member_index));
}
WorkgroupSizeInfo::WorkgroupSizeInfo() = default;
WorkgroupSizeInfo::~WorkgroupSizeInfo() = default;
} // namespace tint::spirv::reader::ast_parser