blob: 4ba6734f9516b46090cca4efe55b7e823116e483 [file] [log] [blame]
// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gmock/gmock.h"
#include "src/tint/lang/spirv/reader/ast_parser/function.h"
#include "src/tint/lang/spirv/reader/ast_parser/spirv_tools_helpers_test.h"
#include "src/tint/lang/spirv/reader/ast_parser/test_helper.h"
#include "src/tint/utils/text/string_stream.h"
namespace tint::spirv::reader {
namespace {
using ::testing::HasSubstr;
std::string Preamble() {
return R"(
OpCapability Shader
OpMemoryModel Logical Simple
OpEntryPoint Fragment %100 "main"
OpExecutionMode %100 OriginUpperLeft
OpName %v2float_50_60 "v2float_50_60"
OpName %v2float_60_50 "v2float_60_50"
OpName %v3float_50_60_70 "v3float_50_60_70"
OpName %v3float_60_70_50 "v3float_60_70_50"
%void = OpTypeVoid
%voidfn = OpTypeFunction %void
%uint = OpTypeInt 32 0
%int = OpTypeInt 32 1
%float = OpTypeFloat 32
%uint_10 = OpConstant %uint 10
%uint_20 = OpConstant %uint 20
%int_30 = OpConstant %int 30
%int_40 = OpConstant %int 40
%float_50 = OpConstant %float 50
%float_60 = OpConstant %float 60
%float_70 = OpConstant %float 70
%ptr_uint = OpTypePointer Function %uint
%ptr_int = OpTypePointer Function %int
%ptr_float = OpTypePointer Function %float
%v2uint = OpTypeVector %uint 2
%v2int = OpTypeVector %int 2
%v2float = OpTypeVector %float 2
%v3float = OpTypeVector %float 3
%v2uint_10_20 = OpConstantComposite %v2uint %uint_10 %uint_20
%v2uint_20_10 = OpConstantComposite %v2uint %uint_20 %uint_10
%v2int_30_40 = OpConstantComposite %v2int %int_30 %int_40
%v2int_40_30 = OpConstantComposite %v2int %int_40 %int_30
%v2float_50_60 = OpConstantComposite %v2float %float_50 %float_60
%v2float_60_50 = OpConstantComposite %v2float %float_60 %float_50
%v3float_50_60_70 = OpConstantComposite %v3float %float_50 %float_60 %float_70
%v3float_60_70_50 = OpConstantComposite %v3float %float_60 %float_70 %float_50
%m2v2float = OpTypeMatrix %v2float 2
%m2v3float = OpTypeMatrix %v3float 2
%m3v2float = OpTypeMatrix %v2float 3
%m2v2float_a = OpConstantComposite %m2v2float %v2float_50_60 %v2float_60_50
%m2v2float_b = OpConstantComposite %m2v2float %v2float_60_50 %v2float_50_60
%m3v2float_a = OpConstantComposite %m3v2float %v2float_50_60 %v2float_60_50 %v2float_50_60
%m2v3float_a = OpConstantComposite %m2v3float %v3float_50_60_70 %v3float_60_70_50
)";
}
// Returns the AST dump for a given SPIR-V assembly constant.
std::string AstFor(std::string assembly) {
if (assembly == "v2uint_10_20") {
return "vec2u(10u, 20u)";
}
if (assembly == "v2uint_20_10") {
return "vec2u(20u, 10u)";
}
if (assembly == "v2int_30_40") {
return "vec2i(30i, 40i)";
}
if (assembly == "v2int_40_30") {
return "vec2i(40i, 30i)";
}
if (assembly == "cast_int_v2uint_10_20") {
return "bitcast<vec2i>(vec2u(10u, 20u))";
}
if (assembly == "cast_uint_v2int_40_30") {
return "bitcast<vec2u>(vec2i(40i, 30i))";
}
if (assembly == "v2float_50_60") {
return "v2float_50_60";
}
if (assembly == "v2float_60_50") {
return "v2float_60_50";
}
return "bad case";
}
using SpvUnaryArithTest = SpirvASTParserTestBase<::testing::Test>;
TEST_F(SpvUnaryArithTest, SNegate_Int_Int) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %int %int_30
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("let x_1 = -(30i);"));
}
TEST_F(SpvUnaryArithTest, SNegate_Int_Uint) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %int %uint_10
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("let x_1 = -(bitcast<i32>(10u));"));
}
TEST_F(SpvUnaryArithTest, SNegate_Uint_Int) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %uint %int_30
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("let x_1 = bitcast<u32>(-(30i));"));
}
TEST_F(SpvUnaryArithTest, SNegate_Uint_Uint) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %uint %uint_10
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("let x_1 = bitcast<u32>(-(bitcast<i32>(10u)));"));
}
TEST_F(SpvUnaryArithTest, SNegate_SignedVec_SignedVec) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %v2int %v2int_30_40
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("let x_1 = -(vec2i(30i, 40i));"));
}
TEST_F(SpvUnaryArithTest, SNegate_SignedVec_UnsignedVec) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %v2int %v2uint_10_20
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("let x_1 = -(bitcast<vec2i>(vec2u(10u, 20u)));"));
}
TEST_F(SpvUnaryArithTest, SNegate_UnsignedVec_SignedVec) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %v2uint %v2int_30_40
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("let x_1 = bitcast<vec2u>(-(vec2i(30i, 40i)));"));
}
TEST_F(SpvUnaryArithTest, SNegate_UnsignedVec_UnsignedVec) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSNegate %v2uint %v2uint_10_20
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr(R"(let x_1 = bitcast<vec2u>(-(bitcast<vec2i>(vec2u(10u, 20u))));)"));
}
TEST_F(SpvUnaryArithTest, FNegate_Scalar) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpFNegate %float %float_50
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("let x_1 = -(50.0f);"));
}
TEST_F(SpvUnaryArithTest, FNegate_Vector) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpFNegate %v2float %v2float_50_60
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("let x_1 = -(v2float_50_60);"));
}
struct BinaryData {
const std::string res_type;
const std::string lhs;
const std::string op;
const std::string rhs;
const std::string ast_type;
const std::string ast_lhs;
const std::string ast_op;
const std::string ast_rhs;
};
inline std::ostream& operator<<(std::ostream& out, BinaryData data) {
out << "BinaryData{" << data.res_type << "," << data.lhs << "," << data.op << "," << data.rhs
<< "," << data.ast_type << "," << data.ast_lhs << "," << data.ast_op << "," << data.ast_rhs
<< "}";
return out;
}
using SpvBinaryArithTest = SpirvASTParserTestBase<::testing::TestWithParam<BinaryData>>;
using SpvBinaryArithTestBasic = SpirvASTParserTestBase<::testing::Test>;
TEST_P(SpvBinaryArithTest, EmitExpression) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = )" + GetParam().op +
" %" + GetParam().res_type + " %" + GetParam().lhs + " %" +
GetParam().rhs + R"(
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
StringStream ss;
ss << "let x_1 = (" << GetParam().ast_lhs << " " << GetParam().ast_op << " "
<< GetParam().ast_rhs << ");";
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
EXPECT_THAT(got, HasSubstr(ss.str())) << "got:\n" << got << assembly;
}
// Use this when the result might have extra bitcasts on the outside.
struct BinaryDataGeneral {
const std::string res_type;
const std::string lhs;
const std::string op;
const std::string rhs;
const std::string wgsl_type;
const std::string expected;
};
inline std::ostream& operator<<(std::ostream& out, BinaryDataGeneral data) {
out << "BinaryDataGeneral{" << data.res_type << "," << data.lhs << "," << data.op << ","
<< data.rhs << "," << data.wgsl_type << "," << data.expected << "}";
return out;
}
using SpvBinaryArithGeneralTest =
SpirvASTParserTestBase<::testing::TestWithParam<BinaryDataGeneral>>;
TEST_P(SpvBinaryArithGeneralTest, EmitExpression) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = )" + GetParam().op +
" %" + GetParam().res_type + " %" + GetParam().lhs + " %" +
GetParam().rhs + R"(
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
StringStream ss;
ss << "let x_1 = " << GetParam().expected << ";";
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
EXPECT_THAT(got, HasSubstr(ss.str())) << "got:\n" << got << assembly;
}
INSTANTIATE_TEST_SUITE_P(
SpirvASTParserTest_IAdd,
SpvBinaryArithTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpIAdd", "uint_20", "u32", "10u", "+", "20u"}, // Both int
BinaryData{"int", "int_30", "OpIAdd", "int_40", "i32", "30i", "+", "40i"}, // Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpIAdd", "v2uint_20_10", "vec2u",
AstFor("v2uint_10_20"), "+", AstFor("v2uint_20_10")},
// Both v2int
BinaryData{"v2int", "v2int_30_40", "OpIAdd", "v2int_40_30", "vec2i", AstFor("v2int_30_40"),
"+", AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpirvASTParserTest_IAdd_MixedSignedness,
SpvBinaryArithGeneralTest,
::testing::Values(
// Mixed, uint <- int uint
BinaryDataGeneral{"uint", "int_30", "OpIAdd", "uint_10", "u32",
"bitcast<u32>((30i + bitcast<i32>(10u)))"},
// Mixed, int <- int uint
BinaryDataGeneral{"int", "int_30", "OpIAdd", "uint_10", "i32", "(30i + bitcast<i32>(10u))"},
// Mixed, uint <- uint int
BinaryDataGeneral{"uint", "uint_10", "OpIAdd", "int_30", "u32",
"(10u + bitcast<u32>(30i))"},
// Mixed, int <- uint uint
BinaryDataGeneral{"int", "uint_20", "OpIAdd", "uint_10", "i32",
"bitcast<i32>((20u + 10u))"},
// Mixed, returning v2uint
BinaryDataGeneral{"v2uint", "v2int_30_40", "OpIAdd", "v2uint_10_20", "vec2u",
R"(bitcast<vec2u>((vec2i(30i, 40i) + bitcast<vec2i>(vec2u(10u, 20u)))))"},
// Mixed, returning v2int
BinaryDataGeneral{
"v2int", "v2uint_10_20", "OpIAdd", "v2int_40_30", "vec2i",
R"(bitcast<vec2i>((vec2u(10u, 20u) + bitcast<vec2u>(vec2i(40i, 30i)))))"}));
INSTANTIATE_TEST_SUITE_P(SpirvASTParserTest_FAdd,
SpvBinaryArithTest,
::testing::Values(
// Scalar float
BinaryData{"float", "float_50", "OpFAdd", "float_60", "f32", "50.0f",
"+", "60.0f"}, // Vector float
BinaryData{"v2float", "v2float_50_60", "OpFAdd", "v2float_60_50",
"vec2f", AstFor("v2float_50_60"), "+",
AstFor("v2float_60_50")}));
INSTANTIATE_TEST_SUITE_P(
SpirvASTParserTest_ISub,
SpvBinaryArithTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpISub", "uint_20", "u32", "10u", "-", "20u"}, // Both int
BinaryData{"int", "int_30", "OpISub", "int_40", "i32", "30i", "-", "40i"}, // Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpISub", "v2uint_20_10", "vec2u",
AstFor("v2uint_10_20"), "-", AstFor("v2uint_20_10")},
// Both v2int
BinaryData{"v2int", "v2int_30_40", "OpISub", "v2int_40_30", "vec2i", AstFor("v2int_30_40"),
"-", AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpirvASTParserTest_ISub_MixedSignedness,
SpvBinaryArithGeneralTest,
::testing::Values(
// Mixed, uint <- int uint
BinaryDataGeneral{"uint", "int_30", "OpISub", "uint_10", "u32",
R"(bitcast<u32>((30i - bitcast<i32>(10u))))"},
// Mixed, int <- int uint
BinaryDataGeneral{"int", "int_30", "OpISub", "uint_10", "i32", "(30i - bitcast<i32>(10u))"},
// Mixed, uint <- uint int
BinaryDataGeneral{"uint", "uint_10", "OpISub", "int_30", "u32",
"(10u - bitcast<u32>(30i))"},
// Mixed, int <- uint uint
BinaryDataGeneral{"int", "uint_20", "OpISub", "uint_10", "i32",
"bitcast<i32>((20u - 10u))"},
// Mixed, returning v2uint
BinaryDataGeneral{"v2uint", "v2int_30_40", "OpISub", "v2uint_10_20", "vec2u",
R"(bitcast<vec2u>((vec2i(30i, 40i) - bitcast<vec2i>(vec2u(10u, 20u)))))"},
// Mixed, returning v2int
BinaryDataGeneral{
"v2int", "v2uint_10_20", "OpISub", "v2int_40_30", "vec2i",
R"(bitcast<vec2i>((vec2u(10u, 20u) - bitcast<vec2u>(vec2i(40i, 30i)))))"}));
INSTANTIATE_TEST_SUITE_P(SpirvASTParserTest_FSub,
SpvBinaryArithTest,
::testing::Values(
// Scalar float
BinaryData{"float", "float_50", "OpFSub", "float_60", "f32", "50.0f",
"-", "60.0f"}, // Vector float
BinaryData{"v2float", "v2float_50_60", "OpFSub", "v2float_60_50",
"vec2f", AstFor("v2float_50_60"), "-",
AstFor("v2float_60_50")}));
INSTANTIATE_TEST_SUITE_P(
SpirvASTParserTest_IMul,
SpvBinaryArithTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpIMul", "uint_20", "u32", "10u", "*", "20u"}, // Both int
BinaryData{"int", "int_30", "OpIMul", "int_40", "i32", "30i", "*", "40i"}, // Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpIMul", "v2uint_20_10", "vec2u",
AstFor("v2uint_10_20"), "*", AstFor("v2uint_20_10")},
// Both v2int
BinaryData{"v2int", "v2int_30_40", "OpIMul", "v2int_40_30", "vec2i", AstFor("v2int_30_40"),
"*", AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpirvASTParserTest_IMul_MixedSignedness,
SpvBinaryArithGeneralTest,
::testing::Values(
// Mixed, uint <- int uint
BinaryDataGeneral{"uint", "int_30", "OpIMul", "uint_10", "u32",
"bitcast<u32>((30i * bitcast<i32>(10u)))"},
// Mixed, int <- int uint
BinaryDataGeneral{"int", "int_30", "OpIMul", "uint_10", "i32", "(30i * bitcast<i32>(10u))"},
// Mixed, uint <- uint int
BinaryDataGeneral{"uint", "uint_10", "OpIMul", "int_30", "u32",
"(10u * bitcast<u32>(30i))"},
// Mixed, int <- uint uint
BinaryDataGeneral{"int", "uint_20", "OpIMul", "uint_10", "i32",
"bitcast<i32>((20u * 10u))"},
// Mixed, returning v2uint
BinaryDataGeneral{"v2uint", "v2int_30_40", "OpIMul", "v2uint_10_20", "vec2u",
R"(bitcast<vec2u>((vec2i(30i, 40i) * bitcast<vec2i>(vec2u(10u, 20u)))))"},
// Mixed, returning v2int
BinaryDataGeneral{
"v2int", "v2uint_10_20", "OpIMul", "v2int_40_30", "vec2i",
R"(bitcast<vec2i>((vec2u(10u, 20u) * bitcast<vec2u>(vec2i(40i, 30i)))))"}));
INSTANTIATE_TEST_SUITE_P(SpirvASTParserTest_FMul,
SpvBinaryArithTest,
::testing::Values(
// Scalar float
BinaryData{"float", "float_50", "OpFMul", "float_60", "f32", "50.0f",
"*", "60.0f"}, // Vector float
BinaryData{"v2float", "v2float_50_60", "OpFMul", "v2float_60_50",
"vec2f", AstFor("v2float_50_60"), "*",
AstFor("v2float_60_50")}));
INSTANTIATE_TEST_SUITE_P(SpirvASTParserTest_UDiv,
SpvBinaryArithTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpUDiv", "uint_20", "u32", "10u", "/",
"20u"}, // Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpUDiv", "v2uint_20_10", "vec2u",
AstFor("v2uint_10_20"), "/", AstFor("v2uint_20_10")}));
INSTANTIATE_TEST_SUITE_P(SpirvASTParserTest_SDiv,
SpvBinaryArithTest,
::testing::Values(
// Both int
BinaryData{"int", "int_30", "OpSDiv", "int_40", "i32", "30i", "/",
"40i"}, // Both v2int
BinaryData{"v2int", "v2int_30_40", "OpSDiv", "v2int_40_30", "vec2i",
AstFor("v2int_30_40"), "/", AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpirvASTParserTest_SDiv_MixedSignednessOperands,
SpvBinaryArithTest,
::testing::Values(
// Mixed, returning int, second arg uint
BinaryData{"int", "int_30", "OpSDiv", "uint_10", "i32", "30i", "/", "bitcast<i32>(10u)"},
// Mixed, returning int, first arg uint
BinaryData{"int", "uint_10", "OpSDiv", "int_30", "i32", "bitcast<i32>(10u)", "/",
"30i"}, // Mixed, returning v2int, first arg v2uint
BinaryData{"v2int", "v2uint_10_20", "OpSDiv", "v2int_30_40", "vec2i",
AstFor("cast_int_v2uint_10_20"), "/", AstFor("v2int_30_40")},
// Mixed, returning v2int, second arg v2uint
BinaryData{"v2int", "v2int_30_40", "OpSDiv", "v2uint_10_20", "vec2i", AstFor("v2int_30_40"),
"/", AstFor("cast_int_v2uint_10_20")}));
TEST_F(SpvBinaryArithTestBasic, SDiv_Scalar_UnsignedResult) {
// The WGSL signed division operator expects both operands to be signed
// and the result is signed as well.
// In this test SPIR-V demands an unsigned result, so we have to
// wrap the result with an as-cast.
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSDiv %uint %int_30 %int_40
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("let x_1 = bitcast<u32>((30i / 40i));"));
}
TEST_F(SpvBinaryArithTestBasic, SDiv_Vector_UnsignedResult) {
// The WGSL signed division operator expects both operands to be signed
// and the result is signed as well.
// In this test SPIR-V demands an unsigned result, so we have to
// wrap the result with an as-cast.
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSDiv %v2uint %v2int_30_40 %v2int_40_30
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr(R"(let x_1 = bitcast<vec2u>((vec2i(30i, 40i) / vec2i(40i, 30i)));)"));
}
INSTANTIATE_TEST_SUITE_P(SpirvASTParserTest_FDiv,
SpvBinaryArithTest,
::testing::Values(
// Scalar float
BinaryData{"float", "float_50", "OpFDiv", "float_60", "f32", "50.0f",
"/", "60.0f"}, // Vector float
BinaryData{"v2float", "v2float_50_60", "OpFDiv", "v2float_60_50",
"vec2f", AstFor("v2float_50_60"), "/",
AstFor("v2float_60_50")}));
INSTANTIATE_TEST_SUITE_P(SpirvASTParserTest_UMod,
SpvBinaryArithTest,
::testing::Values(
// Both uint
BinaryData{"uint", "uint_10", "OpUMod", "uint_20", "u32", "10u", "%",
"20u"}, // Both v2uint
BinaryData{"v2uint", "v2uint_10_20", "OpUMod", "v2uint_20_10", "vec2u",
AstFor("v2uint_10_20"), "%", AstFor("v2uint_20_10")}));
// Currently WGSL is missing a mapping for OpSRem
// https://github.com/gpuweb/gpuweb/issues/702
INSTANTIATE_TEST_SUITE_P(SpirvASTParserTest_SMod,
SpvBinaryArithTest,
::testing::Values(
// Both int
BinaryData{"int", "int_30", "OpSMod", "int_40", "i32", "30i", "%",
"40i"}, // Both v2int
BinaryData{"v2int", "v2int_30_40", "OpSMod", "v2int_40_30", "vec2i",
AstFor("v2int_30_40"), "%", AstFor("v2int_40_30")}));
INSTANTIATE_TEST_SUITE_P(
SpirvASTParserTest_SMod_MixedSignednessOperands,
SpvBinaryArithTest,
::testing::Values(
// Mixed, returning int, second arg uint
BinaryData{"int", "int_30", "OpSMod", "uint_10", "i32", "30i", "%", "bitcast<i32>(10u)"},
// Mixed, returning int, first arg uint
BinaryData{"int", "uint_10", "OpSMod", "int_30", "i32", "bitcast<i32>(10u)", "%",
"30i"}, // Mixed, returning v2int, first arg v2uint
BinaryData{"v2int", "v2uint_10_20", "OpSMod", "v2int_30_40", "vec2i",
AstFor("cast_int_v2uint_10_20"), "%", AstFor("v2int_30_40")},
// Mixed, returning v2int, second arg v2uint
BinaryData{"v2int", "v2int_30_40", "OpSMod", "v2uint_10_20", "vec2i", AstFor("v2int_30_40"),
"%", AstFor("cast_int_v2uint_10_20")}));
TEST_F(SpvBinaryArithTestBasic, SMod_Scalar_UnsignedResult) {
// The WGSL signed modulus operator expects both operands to be signed
// and the result is signed as well.
// In this test SPIR-V demands an unsigned result, so we have to
// wrap the result with an as-cast.
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSMod %uint %int_30 %int_40
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("let x_1 = bitcast<u32>((30i % 40i));"));
}
TEST_F(SpvBinaryArithTestBasic, SMod_Vector_UnsignedResult) {
// The WGSL signed modulus operator expects both operands to be signed
// and the result is signed as well.
// In this test SPIR-V demands an unsigned result, so we have to
// wrap the result with an as-cast.
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpSMod %v2uint %v2int_30_40 %v2int_40_30
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr(R"(let x_1 = bitcast<vec2u>((vec2i(30i, 40i) % vec2i(40i, 30i)));)"));
}
INSTANTIATE_TEST_SUITE_P(SpirvASTParserTest_FRem,
SpvBinaryArithTest,
::testing::Values(
// Scalar float
BinaryData{"float", "float_50", "OpFRem", "float_60", "f32", "50.0f",
"%", "60.0f"}, // Vector float
BinaryData{"v2float", "v2float_50_60", "OpFRem", "v2float_60_50",
"vec2f", AstFor("v2float_50_60"), "%",
AstFor("v2float_60_50")}));
TEST_F(SpvBinaryArithTestBasic, FMod_Scalar) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpFMod %float %float_50 %float_60
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("let x_1 = (50.0f - (60.0f * floor((50.0f / 60.0f))));"));
}
TEST_F(SpvBinaryArithTestBasic, FMod_Vector) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpFMod %v2float %v2float_50_60 %v2float_60_50
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("let x_1 = (v2float_50_60 - (v2float_60_50 * "
"floor((v2float_50_60 / v2float_60_50))));"));
}
TEST_F(SpvBinaryArithTestBasic, VectorTimesScalar) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %v2float %v2float_50_60
%2 = OpCopyObject %float %float_50
%10 = OpVectorTimesScalar %v2float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("let x_10 = (x_1 * x_2);"));
}
TEST_F(SpvBinaryArithTestBasic, MatrixTimesScalar) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v2float %m2v2float_a
%2 = OpCopyObject %float %float_50
%10 = OpMatrixTimesScalar %m2v2float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("let x_10 = (x_1 * x_2);"));
}
TEST_F(SpvBinaryArithTestBasic, VectorTimesMatrix) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v2float %m2v2float_a
%2 = OpCopyObject %v2float %v2float_50_60
%10 = OpMatrixTimesVector %v2float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("let x_10 = (x_1 * x_2);"));
}
TEST_F(SpvBinaryArithTestBasic, MatrixTimesVector) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v2float %m2v2float_a
%2 = OpCopyObject %v2float %v2float_50_60
%10 = OpMatrixTimesVector %v2float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("let x_10 = (x_1 * x_2);"));
}
TEST_F(SpvBinaryArithTestBasic, MatrixTimesMatrix) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v2float %m2v2float_a
%2 = OpCopyObject %m2v2float %m2v2float_b
%10 = OpMatrixTimesMatrix %m2v2float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("let x_10 = (x_1 * x_2);"));
}
TEST_F(SpvBinaryArithTestBasic, Dot) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %v2float %v2float_50_60
%2 = OpCopyObject %v2float %v2float_60_50
%3 = OpDot %float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body), HasSubstr("let x_3 = dot(x_1, x_2);"));
}
TEST_F(SpvBinaryArithTestBasic, OuterProduct) {
// OpOuterProduct is expanded to basic operations.
// The operands, even if used once, are given their own const definitions.
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpFAdd %v3float %v3float_50_60_70 %v3float_50_60_70 ; column vector
%2 = OpFAdd %v2float %v2float_60_50 %v2float_50_60 ; row vector
%3 = OpOuterProduct %m2v3float %1 %2
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
auto got = test::ToString(p->program(), ast_body);
EXPECT_THAT(got, HasSubstr("let x_3 = mat2x3f("
"vec3f((x_2.x * x_1.x), (x_2.x * x_1.y), (x_2.x * x_1.z)), "
"vec3f((x_2.y * x_1.x), (x_2.y * x_1.y), (x_2.y * x_1.z)));"))
<< got;
}
struct BuiltinData {
const std::string spirv;
const std::string wgsl;
};
inline std::ostream& operator<<(std::ostream& out, BuiltinData data) {
out << "OpData{" << data.spirv << "," << data.wgsl << "}";
return out;
}
struct ArgAndTypeData {
const std::string spirv_type;
const std::string spirv_arg;
const std::string ast_type;
};
inline std::ostream& operator<<(std::ostream& out, ArgAndTypeData data) {
out << "ArgAndTypeData{" << data.spirv_type << "," << data.spirv_arg << "," << data.ast_type
<< "}";
return out;
}
using SpvBinaryDerivativeTest =
SpirvASTParserTestBase<::testing::TestWithParam<std::tuple<BuiltinData, ArgAndTypeData>>>;
TEST_P(SpvBinaryDerivativeTest, Derivatives) {
auto& builtin = std::get<0>(GetParam());
auto& arg = std::get<1>(GetParam());
const auto assembly = R"(
OpCapability DerivativeControl
)" + Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %)" +
arg.spirv_type + " %" + arg.spirv_arg + R"(
%2 = )" + builtin.spirv +
" %" + arg.spirv_type + R"( %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << assembly << p->error();
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
auto ast_body = fe.ast_body();
EXPECT_THAT(test::ToString(p->program(), ast_body),
HasSubstr("let x_2 = " + builtin.wgsl + "(x_1);"));
}
INSTANTIATE_TEST_SUITE_P(
SpvBinaryDerivativeTest,
SpvBinaryDerivativeTest,
testing::Combine(::testing::Values(BuiltinData{"OpDPdx", "dpdx"},
BuiltinData{"OpDPdy", "dpdy"},
BuiltinData{"OpFwidth", "fwidth"},
BuiltinData{"OpDPdxFine", "dpdxFine"},
BuiltinData{"OpDPdyFine", "dpdyFine"},
BuiltinData{"OpFwidthFine", "fwidthFine"},
BuiltinData{"OpDPdxCoarse", "dpdxCoarse"},
BuiltinData{"OpDPdyCoarse", "dpdyCoarse"},
BuiltinData{"OpFwidthCoarse", "fwidthCoarse"}),
::testing::Values(ArgAndTypeData{"float", "float_50", "f32"},
ArgAndTypeData{"v2float", "v2float_50_60", "vec2f"},
ArgAndTypeData{"v3float", "v3float_50_60_70", "vec3f"})));
TEST_F(SpvUnaryArithTest, Transpose_2x2) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v2float %m2v2float_a
%2 = OpTranspose %m2v2float %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
const auto* expected = "let x_2 = transpose(x_1);";
auto ast_body = fe.ast_body();
const auto got = test::ToString(p->program(), ast_body);
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvUnaryArithTest, Transpose_2x3) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m2v3float %m2v3float_a
%2 = OpTranspose %m3v2float %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
// Note, in the AST dump mat_2_3 means 2 rows and 3 columns.
// So the column vectors have 2 elements.
// That is, %m3v2float is __mat_2_3f32.
const auto* expected = "let x_2 = transpose(x_1);";
auto ast_body = fe.ast_body();
const auto got = test::ToString(p->program(), ast_body);
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
TEST_F(SpvUnaryArithTest, Transpose_3x2) {
const auto assembly = Preamble() + R"(
%100 = OpFunction %void None %voidfn
%entry = OpLabel
%1 = OpCopyObject %m3v2float %m3v2float_a
%2 = OpTranspose %m2v3float %1
OpReturn
OpFunctionEnd
)";
auto p = parser(test::Assemble(assembly));
ASSERT_TRUE(p->BuildAndParseInternalModuleExceptFunctions()) << p->error() << "\n" << assembly;
auto fe = p->function_emitter(100);
EXPECT_TRUE(fe.EmitBody()) << p->error();
const auto* expected = "let x_2 = transpose(x_1);";
auto ast_body = fe.ast_body();
const auto got = test::ToString(p->program(), ast_body);
EXPECT_THAT(got, HasSubstr(expected)) << got;
}
// TODO(dneto): OpSRem. Missing from WGSL
// https://github.com/gpuweb/gpuweb/issues/702
// TODO(dneto): OpFRem. Missing from WGSL
// https://github.com/gpuweb/gpuweb/issues/702
// TODO(dneto): OpIAddCarry
// TODO(dneto): OpISubBorrow
// TODO(dneto): OpUMulExtended
// TODO(dneto): OpSMulExtended
} // namespace
} // namespace tint::spirv::reader