blob: 4d3ba3be8c1e21beb4d649c9142ceda056045978 [file] [log] [blame]
// Copyright 2020 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstddef>
#include <string>
#include <thread>
#include <utility>
#include <vector>
#include "dawn/native/DawnNative.h"
#include "dawn/tests/DawnTest.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/WGPUHelpers.h"
namespace dawn {
namespace {
struct CreatePipelineAsyncTask {
wgpu::ComputePipeline computePipeline = nullptr;
wgpu::RenderPipeline renderPipeline = nullptr;
bool isCompleted = false;
std::string message;
};
class CreatePipelineAsyncTest : public DawnTest {
protected:
void ValidateCreateComputePipelineAsync(CreatePipelineAsyncTask* currentTask) {
wgpu::BufferDescriptor bufferDesc;
bufferDesc.size = sizeof(uint32_t);
bufferDesc.usage = wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc;
wgpu::Buffer ssbo = device.CreateBuffer(&bufferDesc);
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
while (!currentTask->isCompleted) {
WaitABit();
}
ASSERT_TRUE(currentTask->message.empty());
ASSERT_NE(nullptr, currentTask->computePipeline.Get());
wgpu::BindGroup bindGroup =
utils::MakeBindGroup(device, currentTask->computePipeline.GetBindGroupLayout(0),
{
{0, ssbo, 0, sizeof(uint32_t)},
});
pass.SetBindGroup(0, bindGroup);
pass.SetPipeline(currentTask->computePipeline);
pass.DispatchWorkgroups(1);
pass.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
constexpr uint32_t kExpected = 1u;
EXPECT_BUFFER_U32_EQ(kExpected, ssbo, 0);
}
void ValidateCreateComputePipelineAsync() { ValidateCreateComputePipelineAsync(&task); }
void ValidateCreateRenderPipelineAsync(CreatePipelineAsyncTask* currentTask) {
constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::RGBA8Unorm;
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.size = {1, 1, 1};
textureDescriptor.format = kRenderAttachmentFormat;
textureDescriptor.usage =
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
wgpu::Texture outputTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({outputTexture.CreateView()});
renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPassDescriptor.cColorAttachments[0].clearValue = {1.f, 0.f, 0.f, 1.f};
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPassEncoder =
encoder.BeginRenderPass(&renderPassDescriptor);
while (!currentTask->isCompleted) {
WaitABit();
}
ASSERT_TRUE(currentTask->message.empty());
ASSERT_NE(nullptr, currentTask->renderPipeline.Get());
renderPassEncoder.SetPipeline(currentTask->renderPipeline);
renderPassEncoder.Draw(1);
renderPassEncoder.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(0, 255, 0, 255), outputTexture, 0, 0);
}
void ValidateCreateRenderPipelineAsync() { ValidateCreateRenderPipelineAsync(&task); }
void DoCreateRenderPipelineAsync(
const utils::ComboRenderPipelineDescriptor& renderPipelineDescriptor) {
device.CreateRenderPipelineAsync(
&renderPipelineDescriptor, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status, wgpu::RenderPipeline pipeline,
const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success, status);
task.renderPipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
}
CreatePipelineAsyncTask task;
};
// Verify the basic use of CreateComputePipelineAsync works on all backends.
TEST_P(CreatePipelineAsyncTest, BasicUseOfCreateComputePipelineAsync) {
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = utils::CreateShaderModule(device, R"(
struct SSBO {
value : u32
}
@group(0) @binding(0) var<storage, read_write> ssbo : SSBO;
@compute @workgroup_size(1) fn main() {
ssbo.value = 1u;
})");
device.CreateComputePipelineAsync(&csDesc, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status,
wgpu::ComputePipeline pipeline, const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success,
status);
task.computePipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
ValidateCreateComputePipelineAsync();
}
// Stress test that asynchronously creates many compute pipelines.
TEST_P(CreatePipelineAsyncTest, CreateComputePipelineAsyncStress) {
DAWN_TEST_UNSUPPORTED_IF(UsesWire());
for (size_t i = 0; i < 100; i++) {
wgpu::ComputePipelineDescriptor csDesc;
std::string shader = R"(
struct SSBO {
value : u32
}
@group(0) @binding(0) var<storage, read_write> ssbo : SSBO;
@compute @workgroup_size(1) fn main() {
ssbo.value = )";
shader += std::to_string(i);
shader += "u;\n}";
csDesc.compute.module = utils::CreateShaderModule(device, shader);
device.CreateComputePipelineAsync(
&csDesc, wgpu::CallbackMode::AllowProcessEvents,
[](wgpu::CreatePipelineAsyncStatus status, wgpu::ComputePipeline, const char*) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success, status);
});
}
while (dawn::native::InstanceProcessEvents(instance.Get())) {
WaitABit();
}
}
// Stress test that asynchronously creates many compute pipelines in different threads.
TEST_P(CreatePipelineAsyncTest, CreateComputePipelineAsyncStressManyThreads) {
DAWN_TEST_UNSUPPORTED_IF(UsesWire());
// eglMakeCurrent: Context can only be current on one thread
DAWN_TEST_UNSUPPORTED_IF(IsOpenGL() || IsOpenGLES());
auto f = [&](size_t t) {
wgpu::ComputePipelineDescriptor csDesc;
std::string shader = R"(
struct SSBO {
value : u32
}
@group(0) @binding(0) var<storage, read_write> ssbo : SSBO;
@compute @workgroup_size(1) fn main() {
ssbo.value = )";
shader += std::to_string(t);
shader += "u;\n}";
csDesc.compute.module = utils::CreateShaderModule(device, shader);
device.CreateComputePipelineAsync(
&csDesc, wgpu::CallbackMode::AllowProcessEvents,
[](wgpu::CreatePipelineAsyncStatus status, wgpu::ComputePipeline, const char*) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success, status);
});
};
constexpr size_t kNumThreads = 100;
std::vector<std::thread> threads;
for (size_t t = 0; t < kNumThreads; t++) {
threads.emplace_back(f, t);
}
for (size_t t = 0; t < kNumThreads; t++) {
threads[t].join();
}
while (dawn::native::InstanceProcessEvents(instance.Get())) {
WaitABit();
}
}
// This is a regression test for a bug on the member "entryPoint" of FlatComputePipelineDescriptor.
TEST_P(CreatePipelineAsyncTest, ReleaseEntryPointAfterCreatComputePipelineAsync) {
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = utils::CreateShaderModule(device, R"(
struct SSBO {
value : u32
}
@group(0) @binding(0) var<storage, read_write> ssbo : SSBO;
@compute @workgroup_size(1) fn main() {
ssbo.value = 1u;
})");
std::string entryPoint = "main";
csDesc.compute.entryPoint = entryPoint.c_str();
device.CreateComputePipelineAsync(&csDesc, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status,
wgpu::ComputePipeline pipeline, const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success,
status);
task.computePipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
entryPoint = "";
ValidateCreateComputePipelineAsync();
}
// Verify CreateComputePipelineAsync() works as expected when there is any error that happens during
// the creation of the compute pipeline. The SPEC requires that during the call of
// CreateComputePipelineAsync() any error won't be forwarded to the error scope / unhandled error
// callback.
TEST_P(CreatePipelineAsyncTest, CreateComputePipelineFailed) {
DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("skip_validation"));
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = utils::CreateShaderModule(device, R"(
struct SSBO {
value : u32
}
@group(0) @binding(0) var<storage, read_write> ssbo : SSBO;
@compute @workgroup_size(1) fn main() {
ssbo.value = 1u;
})");
csDesc.compute.entryPoint = "main0";
device.CreateComputePipelineAsync(
&csDesc, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status, wgpu::ComputePipeline pipeline,
const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::ValidationError, status);
task.computePipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
while (!task.isCompleted) {
WaitABit();
}
ASSERT_FALSE(task.message.empty());
ASSERT_EQ(nullptr, task.computePipeline.Get());
}
// Verify the basic use of CreateRenderPipelineAsync() works on all backends.
TEST_P(CreatePipelineAsyncTest, BasicUseOfCreateRenderPipelineAsync) {
constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::RGBA8Unorm;
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
@vertex fn main() -> @builtin(position) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(0) vec4f {
return vec4f(0.0, 1.0, 0.0, 1.0);
})");
renderPipelineDescriptor.vertex.module = vsModule;
renderPipelineDescriptor.cFragment.module = fsModule;
renderPipelineDescriptor.cTargets[0].format = kRenderAttachmentFormat;
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
DoCreateRenderPipelineAsync(renderPipelineDescriptor);
ValidateCreateRenderPipelineAsync();
}
// Stress test that asynchronously creates many render pipelines.
TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineAsyncStress) {
DAWN_TEST_UNSUPPORTED_IF(UsesWire());
for (size_t i = 0; i < 100; i++) {
utils::ComboRenderPipelineDescriptor desc;
std::string shader = R"(
@vertex fn main() -> @builtin(position) vec4f {
return vec4f()";
shader += std::to_string(i);
shader += ".0, 0.0, 0.0, 1.0);\n}";
desc.vertex.module = utils::CreateShaderModule(device, shader);
desc.fragment = nullptr;
device.CreateRenderPipelineAsync(
&desc, wgpu::CallbackMode::AllowProcessEvents,
[](wgpu::CreatePipelineAsyncStatus status, wgpu::RenderPipeline, const char*) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success, status);
});
}
while (dawn::native::InstanceProcessEvents(instance.Get())) {
WaitABit();
}
}
// Stress test that asynchronously creates many render pipelines in different threads.
TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineAsyncStressManyThreads) {
DAWN_TEST_UNSUPPORTED_IF(UsesWire());
// eglMakeCurrent: Context can only be current on one thread
DAWN_TEST_UNSUPPORTED_IF(IsOpenGL() || IsOpenGLES());
auto f = [&](size_t t) {
utils::ComboRenderPipelineDescriptor desc;
std::string shader = R"(
@vertex fn main() -> @builtin(position) vec4f {
return vec4f()";
shader += std::to_string(t);
shader += ".0, 0.0, 0.0, 1.0);\n}";
desc.vertex.module = utils::CreateShaderModule(device, shader);
desc.fragment = nullptr;
device.CreateRenderPipelineAsync(
&desc, wgpu::CallbackMode::AllowProcessEvents,
[](wgpu::CreatePipelineAsyncStatus status, wgpu::RenderPipeline, const char*) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success, status);
});
};
constexpr size_t kNumThreads = 100;
std::vector<std::thread> threads;
for (size_t t = 0; t < kNumThreads; t++) {
threads.emplace_back(f, t);
}
for (size_t t = 0; t < kNumThreads; t++) {
threads[t].join();
}
while (dawn::native::InstanceProcessEvents(instance.Get())) {
WaitABit();
}
}
// Verify the render pipeline created with CreateRenderPipelineAsync() still works when the entry
// points are released after the creation of the render pipeline.
TEST_P(CreatePipelineAsyncTest, ReleaseEntryPointsAfterCreateRenderPipelineAsync) {
constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::RGBA8Unorm;
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
@vertex fn main() -> @builtin(position) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(0) vec4f {
return vec4f(0.0, 1.0, 0.0, 1.0);
})");
renderPipelineDescriptor.vertex.module = vsModule;
renderPipelineDescriptor.cFragment.module = fsModule;
renderPipelineDescriptor.cTargets[0].format = kRenderAttachmentFormat;
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
std::string vertexEntryPoint = "main";
std::string fragmentEntryPoint = "main";
renderPipelineDescriptor.vertex.entryPoint = vertexEntryPoint.c_str();
renderPipelineDescriptor.cFragment.entryPoint = fragmentEntryPoint.c_str();
DoCreateRenderPipelineAsync(renderPipelineDescriptor);
vertexEntryPoint = "";
fragmentEntryPoint = "";
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.size = {1, 1, 1};
textureDescriptor.format = kRenderAttachmentFormat;
textureDescriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
wgpu::Texture outputTexture = device.CreateTexture(&textureDescriptor);
utils::ComboRenderPassDescriptor renderPassDescriptor({outputTexture.CreateView()});
renderPassDescriptor.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPassDescriptor.cColorAttachments[0].clearValue = {1.f, 0.f, 0.f, 1.f};
wgpu::CommandBuffer commands;
{
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::RenderPassEncoder renderPassEncoder = encoder.BeginRenderPass(&renderPassDescriptor);
while (!task.isCompleted) {
WaitABit();
}
ASSERT_TRUE(task.message.empty());
ASSERT_NE(nullptr, task.renderPipeline.Get());
renderPassEncoder.SetPipeline(task.renderPipeline);
renderPassEncoder.Draw(1);
renderPassEncoder.End();
commands = encoder.Finish();
}
queue.Submit(1, &commands);
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(0, 255, 0, 255), outputTexture, 0, 0);
}
// Verify CreateRenderPipelineAsync() works as expected when there is any error that happens during
// the creation of the render pipeline. The SPEC requires that during the call of
// CreateRenderPipelineAsync() any error won't be forwarded to the error scope / unhandled error
// callback.
TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineFailed) {
DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("skip_validation"));
constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::Depth32Float;
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
@vertex fn main() -> @builtin(position) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(0) vec4f {
return vec4f(0.0, 1.0, 0.0, 1.0);
})");
renderPipelineDescriptor.vertex.module = vsModule;
renderPipelineDescriptor.cFragment.module = fsModule;
renderPipelineDescriptor.cTargets[0].format = kRenderAttachmentFormat;
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
device.CreateRenderPipelineAsync(
&renderPipelineDescriptor, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status, wgpu::RenderPipeline pipeline,
const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::ValidationError, status);
task.renderPipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
while (!task.isCompleted) {
WaitABit();
}
ASSERT_FALSE(task.message.empty());
ASSERT_EQ(nullptr, task.computePipeline.Get());
}
// Verify there is no error when the device is released before the callback of
// CreateComputePipelineAsync() is called.
TEST_P(CreatePipelineAsyncTest, ReleaseDeviceBeforeCallbackOfCreateComputePipelineAsync) {
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = utils::CreateShaderModule(device, R"(
@compute @workgroup_size(1) fn main() {
})");
device.CreateComputePipelineAsync(&csDesc, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status,
wgpu::ComputePipeline pipeline, const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success,
status);
EXPECT_NE(pipeline, nullptr);
task.computePipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
device = nullptr;
while (!task.isCompleted) {
WaitABit();
}
}
// Verify there is no error when the device is released before the callback of
// CreateRenderPipelineAsync() is called.
TEST_P(CreatePipelineAsyncTest, ReleaseDeviceBeforeCallbackOfCreateRenderPipelineAsync) {
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
@vertex fn main() -> @builtin(position) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(0) vec4f {
return vec4f(0.0, 1.0, 0.0, 1.0);
})");
renderPipelineDescriptor.vertex.module = vsModule;
renderPipelineDescriptor.cFragment.module = fsModule;
renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
device.CreateRenderPipelineAsync(
&renderPipelineDescriptor, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status, wgpu::RenderPipeline pipeline,
const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success, status);
EXPECT_NE(pipeline, nullptr);
task.renderPipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
device = nullptr;
while (!task.isCompleted) {
WaitABit();
}
}
// Verify there is no error when the device is destroyed before the callback of
// CreateComputePipelineAsync() is called.
TEST_P(CreatePipelineAsyncTest, DestroyDeviceBeforeCallbackOfCreateComputePipelineAsync) {
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = utils::CreateShaderModule(device, R"(
@compute @workgroup_size(1) fn main() {
})");
device.CreateComputePipelineAsync(&csDesc, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status,
wgpu::ComputePipeline pipeline, const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success,
status);
EXPECT_NE(pipeline, nullptr);
task.computePipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
DestroyDevice();
while (!task.isCompleted) {
WaitABit();
}
}
// Verify there is no error when the device is destroyed before the callback of
// CreateRenderPipelineAsync() is called.
TEST_P(CreatePipelineAsyncTest, DestroyDeviceBeforeCallbackOfCreateRenderPipelineAsync) {
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
@vertex fn main() -> @builtin(position) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(0) vec4f {
return vec4f(0.0, 1.0, 0.0, 1.0);
})");
renderPipelineDescriptor.vertex.module = vsModule;
renderPipelineDescriptor.cFragment.module = fsModule;
renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
device.CreateRenderPipelineAsync(
&renderPipelineDescriptor, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status, wgpu::RenderPipeline pipeline,
const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success, status);
EXPECT_NE(pipeline, nullptr);
task.renderPipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
DestroyDevice();
while (!task.isCompleted) {
WaitABit();
}
}
// Verify the code path of CreateComputePipelineAsync() to directly return the compute pipeline
// object from cache works correctly.
TEST_P(CreatePipelineAsyncTest, CreateSameComputePipelineTwice) {
wgpu::ComputePipelineDescriptor csDesc;
csDesc.compute.module = utils::CreateShaderModule(device, R"(
struct SSBO {
value : u32
}
@group(0) @binding(0) var<storage, read_write> ssbo : SSBO;
@compute @workgroup_size(1) fn main() {
ssbo.value = 1u;
})");
// Create a pipeline object and save it into anotherTask.computePipeline.
CreatePipelineAsyncTask anotherTask;
device.CreateComputePipelineAsync(
&csDesc, wgpu::CallbackMode::AllowProcessEvents,
[&anotherTask](wgpu::CreatePipelineAsyncStatus status, wgpu::ComputePipeline pipeline,
const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success, status);
anotherTask.computePipeline = std::move(pipeline);
anotherTask.isCompleted = true;
anotherTask.message = message;
});
while (!anotherTask.isCompleted) {
WaitABit();
}
ASSERT_TRUE(anotherTask.message.empty());
ASSERT_NE(nullptr, anotherTask.computePipeline.Get());
// Create another pipeline object task.comnputepipeline with the same compute pipeline
// descriptor used in the creation of anotherTask.computePipeline. This time the pipeline
// object should be directly got from the pipeline object cache.
device.CreateComputePipelineAsync(&csDesc, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status,
wgpu::ComputePipeline pipeline, const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success,
status);
task.computePipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
ValidateCreateComputePipelineAsync();
}
// Verify creating compute pipeline with same descriptor and CreateComputePipelineAsync() at the
// same time works correctly.
TEST_P(CreatePipelineAsyncTest, CreateSameComputePipelineTwiceAtSameTime) {
wgpu::BindGroupLayoutEntry binding = {};
binding.binding = 0;
binding.buffer.type = wgpu::BufferBindingType::Storage;
binding.visibility = wgpu::ShaderStage::Compute;
wgpu::BindGroupLayoutDescriptor desc = {};
desc.entryCount = 1;
desc.entries = &binding;
wgpu::BindGroupLayout bindGroupLayout = device.CreateBindGroupLayout(&desc);
wgpu::PipelineLayoutDescriptor pipelineLayoutDesc = {};
pipelineLayoutDesc.bindGroupLayoutCount = 1;
pipelineLayoutDesc.bindGroupLayouts = &bindGroupLayout;
wgpu::PipelineLayout pipelineLayout = device.CreatePipelineLayout(&pipelineLayoutDesc);
wgpu::ComputePipelineDescriptor csDesc;
csDesc.layout = pipelineLayout;
csDesc.compute.module = utils::CreateShaderModule(device, R"(
struct SSBO {
value : u32
}
@group(0) @binding(0) var<storage, read_write> ssbo : SSBO;
@compute @workgroup_size(1) fn main() {
ssbo.value = 1u;
})");
// Create two pipeline objects with same descriptor.
CreatePipelineAsyncTask anotherTask;
device.CreateComputePipelineAsync(&csDesc, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status,
wgpu::ComputePipeline pipeline, const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success,
status);
task.computePipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
device.CreateComputePipelineAsync(
&csDesc, wgpu::CallbackMode::AllowProcessEvents,
[&anotherTask](wgpu::CreatePipelineAsyncStatus status, wgpu::ComputePipeline pipeline,
const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success, status);
anotherTask.computePipeline = std::move(pipeline);
anotherTask.isCompleted = true;
anotherTask.message = message;
});
// Verify both task.computePipeline and anotherTask.computePipeline are created correctly.
ValidateCreateComputePipelineAsync(&anotherTask);
ValidateCreateComputePipelineAsync(&task);
// Verify task.computePipeline and anotherTask.computePipeline are pointing to the same Dawn
// object.
if (!UsesWire()) {
EXPECT_EQ(task.computePipeline.Get(), anotherTask.computePipeline.Get());
}
}
// Verify the basic use of CreateRenderPipelineAsync() works on all backends.
TEST_P(CreatePipelineAsyncTest, CreateSameRenderPipelineTwiceAtSameTime) {
constexpr wgpu::TextureFormat kRenderAttachmentFormat = wgpu::TextureFormat::RGBA8Unorm;
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
@vertex fn main() -> @builtin(position) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
})");
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, R"(
@fragment fn main() -> @location(0) vec4f {
return vec4f(0.0, 1.0, 0.0, 1.0);
})");
renderPipelineDescriptor.layout = utils::MakeBasicPipelineLayout(device, nullptr);
renderPipelineDescriptor.vertex.module = vsModule;
renderPipelineDescriptor.cFragment.module = fsModule;
renderPipelineDescriptor.cTargets[0].format = kRenderAttachmentFormat;
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
// Create two render pipelines with same descriptor.
CreatePipelineAsyncTask anotherTask;
device.CreateRenderPipelineAsync(
&renderPipelineDescriptor, wgpu::CallbackMode::AllowProcessEvents,
[this](wgpu::CreatePipelineAsyncStatus status, wgpu::RenderPipeline pipeline,
const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success, status);
task.renderPipeline = std::move(pipeline);
task.isCompleted = true;
task.message = message;
});
device.CreateRenderPipelineAsync(
&renderPipelineDescriptor, wgpu::CallbackMode::AllowProcessEvents,
[&anotherTask](wgpu::CreatePipelineAsyncStatus status, wgpu::RenderPipeline pipeline,
const char* message) {
EXPECT_EQ(wgpu::CreatePipelineAsyncStatus::Success, status);
anotherTask.renderPipeline = std::move(pipeline);
anotherTask.isCompleted = true;
anotherTask.message = message;
});
// Verify task.renderPipeline and anotherTask.renderPipeline are both created correctly.
ValidateCreateRenderPipelineAsync(&task);
ValidateCreateRenderPipelineAsync(&anotherTask);
// Verify task.renderPipeline and anotherTask.renderPipeline are pointing to the same Dawn
// object.
if (!UsesWire()) {
EXPECT_EQ(task.renderPipeline.Get(), anotherTask.renderPipeline.Get());
}
}
// Verify calling CreateRenderPipelineAsync() with valid VertexBufferLayouts works on all backends.
TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineAsyncWithVertexBufferLayouts) {
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.size = {1, 1, 1};
textureDescriptor.format = wgpu::TextureFormat::RGBA8Unorm;
textureDescriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
wgpu::Texture renderTarget = device.CreateTexture(&textureDescriptor);
wgpu::TextureView renderTargetView = renderTarget.CreateView();
utils::ComboRenderPassDescriptor renderPass({renderTargetView});
{
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.vertex.module = utils::CreateShaderModule(device, R"(
struct VertexInput {
@location(0) input0: u32,
@location(1) input1: u32,
}
struct VertexOutput {
@location(0) vertexColorOut: vec4f,
@builtin(position) position: vec4f,
}
@vertex
fn main(vertexInput : VertexInput) -> VertexOutput {
var vertexOutput : VertexOutput;
vertexOutput.position = vec4f(0.0, 0.0, 0.0, 1.0);
if (vertexInput.input0 == 1u && vertexInput.input1 == 2u) {
vertexOutput.vertexColorOut = vec4f(0.0, 1.0, 0.0, 1.0);
} else {
vertexOutput.vertexColorOut = vec4f(1.0, 0.0, 0.0, 1.0);
}
return vertexOutput;
})");
renderPipelineDescriptor.cFragment.module = utils::CreateShaderModule(device, R"(
@fragment
fn main(@location(0) fragColorIn : vec4f) -> @location(0) vec4f {
return fragColorIn;
})");
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
renderPipelineDescriptor.cFragment.targetCount = 1;
renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
// Create a render pipeline with two VertexBufferLayouts
renderPipelineDescriptor.vertex.buffers = renderPipelineDescriptor.cBuffers.data();
renderPipelineDescriptor.vertex.bufferCount = 2;
renderPipelineDescriptor.cBuffers[0].attributeCount = 1;
renderPipelineDescriptor.cBuffers[0].attributes = &renderPipelineDescriptor.cAttributes[0];
renderPipelineDescriptor.cAttributes[0].format = wgpu::VertexFormat::Uint32;
renderPipelineDescriptor.cAttributes[0].shaderLocation = 0;
renderPipelineDescriptor.cBuffers[1].attributeCount = 1;
renderPipelineDescriptor.cBuffers[1].attributes = &renderPipelineDescriptor.cAttributes[1];
renderPipelineDescriptor.cAttributes[1].format = wgpu::VertexFormat::Uint32;
renderPipelineDescriptor.cAttributes[1].shaderLocation = 1;
DoCreateRenderPipelineAsync(renderPipelineDescriptor);
}
wgpu::Buffer vertexBuffer1 = utils::CreateBufferFromData(
device, wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Vertex, {1u});
wgpu::Buffer vertexBuffer2 = utils::CreateBufferFromData(
device, wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Vertex, {2u});
// Do the draw call with the render pipeline
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
while (!task.isCompleted) {
WaitABit();
}
ASSERT_TRUE(task.message.empty());
ASSERT_NE(nullptr, task.renderPipeline.Get());
pass.SetPipeline(task.renderPipeline);
pass.SetVertexBuffer(0, vertexBuffer1);
pass.SetVertexBuffer(1, vertexBuffer2);
pass.Draw(1);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// The color attachment will have the expected color when the vertex attribute values are
// fetched correctly.
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(0, 255, 0, 255), renderTarget, 0, 0);
}
// Verify calling CreateRenderPipelineAsync() with valid depthStencilState works on all backends.
TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineAsyncWithDepthStencilState) {
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.size = {1, 1, 1};
textureDescriptor.format = wgpu::TextureFormat::RGBA8Unorm;
textureDescriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
wgpu::Texture renderTarget = device.CreateTexture(&textureDescriptor);
wgpu::TextureView renderTargetView = renderTarget.CreateView();
textureDescriptor.format = wgpu::TextureFormat::Depth24PlusStencil8;
wgpu::Texture depthStencilTarget = device.CreateTexture(&textureDescriptor);
wgpu::TextureView depthStencilView = depthStencilTarget.CreateView();
// Clear the color attachment to green and the stencil aspect of the depth stencil attachment
// to 0.
utils::ComboRenderPassDescriptor renderPass({renderTargetView}, depthStencilView);
renderPass.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPass.cColorAttachments[0].clearValue = {0.0, 1.0, 0.0, 1.0};
renderPass.cDepthStencilAttachmentInfo.stencilLoadOp = wgpu::LoadOp::Clear;
renderPass.cDepthStencilAttachmentInfo.stencilClearValue = 0u;
wgpu::RenderPipeline pipeline;
{
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.vertex.module = utils::CreateShaderModule(device, R"(
@vertex
fn main() -> @builtin(position) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
})");
renderPipelineDescriptor.cFragment.module = utils::CreateShaderModule(device, R"(
@fragment
fn main() -> @location(0) vec4f {
return vec4f(1.0, 0.0, 0.0, 1.0);
})");
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
renderPipelineDescriptor.cFragment.targetCount = 1;
renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
// Create a render pipeline with stencil compare function "Equal".
renderPipelineDescriptor.depthStencil = &renderPipelineDescriptor.cDepthStencil;
renderPipelineDescriptor.cDepthStencil.stencilFront.compare = wgpu::CompareFunction::Equal;
DoCreateRenderPipelineAsync(renderPipelineDescriptor);
}
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
while (!task.isCompleted) {
WaitABit();
}
ASSERT_TRUE(task.message.empty());
ASSERT_NE(nullptr, task.renderPipeline.Get());
pass.SetPipeline(task.renderPipeline);
// The stencil reference is set to 1, so there should be no pixel that can pass the stencil
// test.
pass.SetStencilReference(1);
pass.Draw(1);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// The color in the color attachment should not be changed after the draw call as no pixel can
// pass the stencil test.
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(0, 255, 0, 255), renderTarget, 0, 0);
}
// Verify calling CreateRenderPipelineAsync() with multisample.Count > 1 works on all backends.
TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineWithMultisampleState) {
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.size = {1, 1, 1};
textureDescriptor.format = wgpu::TextureFormat::RGBA8Unorm;
textureDescriptor.usage = wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
wgpu::Texture resolveTarget = device.CreateTexture(&textureDescriptor);
wgpu::TextureView resolveTargetView = resolveTarget.CreateView();
textureDescriptor.sampleCount = 4;
wgpu::Texture renderTarget = device.CreateTexture(&textureDescriptor);
wgpu::TextureView renderTargetView = renderTarget.CreateView();
// Set the multi-sampled render target, its resolve target to render pass and clear color to
// (1, 0, 0, 1).
utils::ComboRenderPassDescriptor renderPass({renderTargetView});
renderPass.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPass.cColorAttachments[0].clearValue = {1.0, 0.0, 0.0, 1.0};
renderPass.cColorAttachments[0].resolveTarget = resolveTargetView;
wgpu::RenderPipeline pipeline;
{
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.vertex.module = utils::CreateShaderModule(device, R"(
@vertex
fn main() -> @builtin(position) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
})");
renderPipelineDescriptor.cFragment.module = utils::CreateShaderModule(device, R"(
@fragment
fn main() -> @location(0) vec4f {
return vec4f(0.0, 1.0, 0.0, 1.0);
})");
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
renderPipelineDescriptor.cFragment.targetCount = 1;
renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
// Create a render pipeline with multisample.count == 4.
renderPipelineDescriptor.multisample.count = 4;
DoCreateRenderPipelineAsync(renderPipelineDescriptor);
}
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
while (!task.isCompleted) {
WaitABit();
}
ASSERT_TRUE(task.message.empty());
ASSERT_NE(nullptr, task.renderPipeline.Get());
pass.SetPipeline(task.renderPipeline);
pass.Draw(6);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// The color in resolveTarget should be the expected color (0, 1, 0, 1).
EXPECT_PIXEL_RGBA8_EQ(utils::RGBA8(0, 255, 0, 255), resolveTarget, 0, 0);
}
// Verify calling CreateRenderPipelineAsync() with valid BlendState works on all backends.
TEST_P(CreatePipelineAsyncTest, CreateRenderPipelineAsyncWithBlendState) {
DAWN_TEST_UNSUPPORTED_IF(HasToggleEnabled("disable_indexed_draw_buffers"));
// TODO(crbug.com/dawn/2295): diagnose this failure on Pixel 4 OpenGLES
DAWN_SUPPRESS_TEST_IF(IsOpenGLES() && IsAndroid() && IsQualcomm());
// TODO(crbug.com/dawn/2295): diagnose this failure on Pixel 6 OpenGLES
DAWN_SUPPRESS_TEST_IF(IsOpenGLES() && IsAndroid() && IsARM());
std::array<wgpu::Texture, 2> renderTargets;
std::array<wgpu::TextureView, 2> renderTargetViews;
{
wgpu::TextureDescriptor textureDescriptor;
textureDescriptor.size = {1, 1, 1};
textureDescriptor.format = wgpu::TextureFormat::RGBA8Unorm;
textureDescriptor.usage =
wgpu::TextureUsage::RenderAttachment | wgpu::TextureUsage::CopySrc;
for (uint32_t i = 0; i < renderTargets.size(); ++i) {
renderTargets[i] = device.CreateTexture(&textureDescriptor);
renderTargetViews[i] = renderTargets[i].CreateView();
}
}
// Prepare two color attachments
utils::ComboRenderPassDescriptor renderPass({renderTargetViews[0], renderTargetViews[1]});
renderPass.cColorAttachments[0].loadOp = wgpu::LoadOp::Clear;
renderPass.cColorAttachments[0].clearValue = {0.2, 0.0, 0.0, 0.2};
renderPass.cColorAttachments[1].loadOp = wgpu::LoadOp::Clear;
renderPass.cColorAttachments[1].clearValue = {0.0, 0.2, 0.0, 0.2};
{
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor;
renderPipelineDescriptor.vertex.module = utils::CreateShaderModule(device, R"(
@vertex
fn main() -> @builtin(position) vec4f {
return vec4f(0.0, 0.0, 0.0, 1.0);
})");
renderPipelineDescriptor.cFragment.module = utils::CreateShaderModule(device, R"(
struct FragmentOut {
@location(0) fragColor0 : vec4f,
@location(1) fragColor1 : vec4f,
}
@fragment fn main() -> FragmentOut {
var output : FragmentOut;
output.fragColor0 = vec4f(0.4, 0.0, 0.0, 0.4);
output.fragColor1 = vec4f(0.0, 1.0, 0.0, 1.0);
return output;
})");
renderPipelineDescriptor.primitive.topology = wgpu::PrimitiveTopology::PointList;
// Create a render pipeline with blending states
renderPipelineDescriptor.cFragment.targetCount = renderTargets.size();
// The blend operation for the first render target is "add".
wgpu::BlendComponent blendComponent0;
blendComponent0.operation = wgpu::BlendOperation::Add;
blendComponent0.srcFactor = wgpu::BlendFactor::One;
blendComponent0.dstFactor = wgpu::BlendFactor::One;
wgpu::BlendState blend0;
blend0.color = blendComponent0;
blend0.alpha = blendComponent0;
// The blend operation for the first render target is "subtract".
wgpu::BlendComponent blendComponent1;
blendComponent1.operation = wgpu::BlendOperation::Subtract;
blendComponent1.srcFactor = wgpu::BlendFactor::One;
blendComponent1.dstFactor = wgpu::BlendFactor::One;
wgpu::BlendState blend1;
blend1.color = blendComponent1;
blend1.alpha = blendComponent1;
renderPipelineDescriptor.cTargets[0].blend = &blend0;
renderPipelineDescriptor.cTargets[0].format = wgpu::TextureFormat::RGBA8Unorm;
renderPipelineDescriptor.cTargets[1].blend = &blend1;
renderPipelineDescriptor.cTargets[1].format = wgpu::TextureFormat::RGBA8Unorm;
DoCreateRenderPipelineAsync(renderPipelineDescriptor);
}
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass);
while (!task.isCompleted) {
WaitABit();
}
ASSERT_TRUE(task.message.empty());
ASSERT_NE(nullptr, task.renderPipeline.Get());
pass.SetPipeline(task.renderPipeline);
pass.Draw(1);
pass.End();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// When the blend states are all set correctly, the color of renderTargets[0] should be
// (0.6, 0, 0, 0.6) = colorAttachment0.clearValue + (0.4, 0.0, 0.0, 0.4), and the color of
// renderTargets[1] should be (0.8, 0, 0, 0.8) = (1, 0, 0, 1) - colorAttachment1.clearValue.
utils::RGBA8 expected0 = {153, 0, 0, 153};
utils::RGBA8 expected1 = {0, 204, 0, 204};
EXPECT_PIXEL_RGBA8_EQ(expected0, renderTargets[0], 0, 0);
EXPECT_PIXEL_RGBA8_EQ(expected1, renderTargets[1], 0, 0);
}
DAWN_INSTANTIATE_TEST(CreatePipelineAsyncTest,
D3D11Backend(),
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
} // anonymous namespace
} // namespace dawn