blob: 6f7938de581b7b5c1e008bbfdaebca7f6739b8b6 [file] [log] [blame]
// Copyright 2021 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tests/DawnTest.h"
#include <d3d11.h>
#include <d3d12.h>
#include <dxgi1_4.h>
#include <wrl/client.h>
#include "dawn_native/D3D12Backend.h"
#include "utils/ComboRenderPipelineDescriptor.h"
#include "utils/WGPUHelpers.h"
using Microsoft::WRL::ComPtr;
namespace {
class D3D12VideoViewsTests : public DawnTest {
protected:
void SetUp() override {
DawnTest::SetUp();
DAWN_SKIP_TEST_IF(UsesWire());
DAWN_SKIP_TEST_IF(!IsMultiPlanarFormatsSupported());
// Create the D3D11 device/contexts that will be used in subsequent tests
ComPtr<ID3D12Device> d3d12Device = dawn_native::d3d12::GetD3D12Device(device.Get());
const LUID adapterLuid = d3d12Device->GetAdapterLuid();
ComPtr<IDXGIFactory4> dxgiFactory;
HRESULT hr = ::CreateDXGIFactory2(0, IID_PPV_ARGS(&dxgiFactory));
ASSERT_EQ(hr, S_OK);
ComPtr<IDXGIAdapter> dxgiAdapter;
hr = dxgiFactory->EnumAdapterByLuid(adapterLuid, IID_PPV_ARGS(&dxgiAdapter));
ASSERT_EQ(hr, S_OK);
ComPtr<ID3D11Device> d3d11Device;
D3D_FEATURE_LEVEL d3dFeatureLevel;
ComPtr<ID3D11DeviceContext> d3d11DeviceContext;
hr = ::D3D11CreateDevice(dxgiAdapter.Get(), D3D_DRIVER_TYPE_UNKNOWN, nullptr, 0,
nullptr, 0, D3D11_SDK_VERSION, &d3d11Device, &d3dFeatureLevel,
&d3d11DeviceContext);
ASSERT_EQ(hr, S_OK);
// Runtime of the created texture (D3D11 device) and OpenSharedHandle runtime (Dawn's
// D3D12 device) must agree on resource sharing capability. For NV12 formats, D3D11
// requires at-least D3D11_SHARED_RESOURCE_TIER_2 support.
// https://docs.microsoft.com/en-us/windows/win32/api/d3d11/ne-d3d11-d3d11_shared_resource_tier
D3D11_FEATURE_DATA_D3D11_OPTIONS5 featureOptions5{};
hr = d3d11Device->CheckFeatureSupport(D3D11_FEATURE_D3D11_OPTIONS5, &featureOptions5,
sizeof(featureOptions5));
ASSERT_EQ(hr, S_OK);
ASSERT_GE(featureOptions5.SharedResourceTier, D3D11_SHARED_RESOURCE_TIER_2);
mD3d11Device = std::move(d3d11Device);
}
std::vector<const char*> GetRequiredExtensions() override {
mIsMultiPlanarFormatsSupported = SupportsExtensions({"multiplanar_formats"});
if (!mIsMultiPlanarFormatsSupported) {
return {};
}
return {"multiplanar_formats"};
}
bool IsMultiPlanarFormatsSupported() const {
return mIsMultiPlanarFormatsSupported;
}
static DXGI_FORMAT GetDXGITextureFormat(wgpu::TextureFormat format) {
switch (format) {
case wgpu::TextureFormat::R8BG8Biplanar420Unorm:
return DXGI_FORMAT_NV12;
default:
UNREACHABLE();
return DXGI_FORMAT_UNKNOWN;
}
}
// Returns a pre-prepared multi-planar formatted texture
// The encoded texture data represents a 4x4 converted image. When |isCheckerboard| is true,
// the upper left and bottom right fill a 2x2 grey block, from RGB(128, 128, 128), while the
// upper right and bottom left fill a 2x2 white block, from RGB(255, 255, 255). When
// |isCheckerboard| is false, the image is converted from a solid grey 4x4 block.
static std::vector<uint8_t> GetTestTextureData(wgpu::TextureFormat format,
bool isCheckerboard) {
constexpr uint8_t Y1 = kGreyYUVColor[kYUVLumaPlaneIndex].r;
constexpr uint8_t U1 = kGreyYUVColor[kYUVChromaPlaneIndex].r;
constexpr uint8_t V1 = kGreyYUVColor[kYUVChromaPlaneIndex].g;
switch (format) {
// The first 16 bytes is the luma plane (Y), followed by the chroma plane (UV) which
// is half the number of bytes (subsampled by 2) but same bytes per line as luma
// plane.
case wgpu::TextureFormat::R8BG8Biplanar420Unorm:
if (isCheckerboard) {
constexpr uint8_t Y2 = kWhiteYUVColor[kYUVLumaPlaneIndex].r;
constexpr uint8_t U2 = kWhiteYUVColor[kYUVChromaPlaneIndex].r;
constexpr uint8_t V2 = kWhiteYUVColor[kYUVChromaPlaneIndex].g;
// clang-format off
return {
Y2, Y2, Y1, Y1, // plane 0, start + 0
Y2, Y2, Y1, Y1,
Y1, Y1, Y2, Y2,
Y1, Y1, Y2, Y2,
U1, V1, U2, V2, // plane 1, start + 16
U2, V2, U1, V1,
};
// clang-format on
} else {
// clang-format off
return {
Y1, Y1, Y1, Y1, // plane 0, start + 0
Y1, Y1, Y1, Y1,
Y1, Y1, Y1, Y1,
Y1, Y1, Y1, Y1,
U1, V1, U1, V1, // plane 1, start + 16
U1, V1, U1, V1,
};
// clang-format on
}
default:
UNREACHABLE();
return {};
}
}
void CreateVideoTextureForTest(wgpu::TextureFormat format,
wgpu::TextureUsage usage,
bool isCheckerboard,
wgpu::Texture* dawnTextureOut) {
wgpu::TextureDescriptor textureDesc;
textureDesc.format = format;
textureDesc.dimension = wgpu::TextureDimension::e2D;
textureDesc.usage = usage;
textureDesc.size = {kYUVImageDataWidthInTexels, kYUVImageDataHeightInTexels, 1};
// Create a DX11 texture with data then wrap it in a shared handle.
D3D11_TEXTURE2D_DESC d3dDescriptor;
d3dDescriptor.Width = kYUVImageDataWidthInTexels;
d3dDescriptor.Height = kYUVImageDataHeightInTexels;
d3dDescriptor.MipLevels = 1;
d3dDescriptor.ArraySize = 1;
d3dDescriptor.Format = GetDXGITextureFormat(format);
d3dDescriptor.SampleDesc.Count = 1;
d3dDescriptor.SampleDesc.Quality = 0;
d3dDescriptor.Usage = D3D11_USAGE_DEFAULT;
d3dDescriptor.BindFlags = D3D11_BIND_SHADER_RESOURCE;
d3dDescriptor.CPUAccessFlags = 0;
d3dDescriptor.MiscFlags =
D3D11_RESOURCE_MISC_SHARED_NTHANDLE | D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX;
std::vector<uint8_t> initialData = GetTestTextureData(format, isCheckerboard);
D3D11_SUBRESOURCE_DATA subres;
subres.pSysMem = initialData.data();
subres.SysMemPitch = kYUVImageDataWidthInTexels;
ComPtr<ID3D11Texture2D> d3d11Texture;
HRESULT hr = mD3d11Device->CreateTexture2D(&d3dDescriptor, &subres, &d3d11Texture);
ASSERT_EQ(hr, S_OK);
ComPtr<IDXGIResource1> dxgiResource;
hr = d3d11Texture.As(&dxgiResource);
ASSERT_EQ(hr, S_OK);
HANDLE sharedHandle;
hr = dxgiResource->CreateSharedHandle(
nullptr, DXGI_SHARED_RESOURCE_READ | DXGI_SHARED_RESOURCE_WRITE, nullptr,
&sharedHandle);
ASSERT_EQ(hr, S_OK);
// DX11 texture should be initialized upon CreateTexture2D. However, if we do not
// acquire/release the keyed mutex before using the wrapped WebGPU texture, the WebGPU
// texture is left uninitialized. This is required for D3D11 and D3D12 interop.
ComPtr<IDXGIKeyedMutex> dxgiKeyedMutex;
hr = d3d11Texture.As(&dxgiKeyedMutex);
EXPECT_EQ(hr, S_OK);
hr = dxgiKeyedMutex->AcquireSync(0, INFINITE);
EXPECT_EQ(hr, S_OK);
hr = dxgiKeyedMutex->ReleaseSync(1);
EXPECT_EQ(hr, S_OK);
// Open the DX11 texture in Dawn from the shared handle and return it as a WebGPU
// texture.
dawn_native::d3d12::ExternalImageDescriptorDXGISharedHandle externalImageDesc;
externalImageDesc.cTextureDescriptor =
reinterpret_cast<const WGPUTextureDescriptor*>(&textureDesc);
externalImageDesc.sharedHandle = sharedHandle;
std::unique_ptr<dawn_native::d3d12::ExternalImageDXGI> externalImage =
dawn_native::d3d12::ExternalImageDXGI::Create(device.Get(), &externalImageDesc);
// Handle is no longer needed once resources are created.
::CloseHandle(sharedHandle);
dawn_native::d3d12::ExternalImageAccessDescriptorDXGIKeyedMutex externalAccessDesc;
externalAccessDesc.acquireMutexKey = 1;
externalAccessDesc.isInitialized = true;
*dawnTextureOut = wgpu::Texture::Acquire(
externalImage->ProduceTexture(device.Get(), &externalAccessDesc));
}
// Vertex shader used to render a sampled texture into a quad.
wgpu::ShaderModule GetTestVertexShaderModule() const {
return utils::CreateShaderModuleFromWGSL(device, R"(
[[builtin(position)]] var<out> Position : vec4<f32>;
[[location(0)]] var<out> texCoord : vec2 <f32>;
[[builtin(vertex_index)]] var<in> VertexIndex : u32;
[[stage(vertex)]] fn main() -> void {
const pos : array<vec2<f32>, 6> = array<vec2<f32>, 6>(
vec2<f32>(-1.0, 1.0),
vec2<f32>(-1.0, -1.0),
vec2<f32>(1.0, -1.0),
vec2<f32>(-1.0, 1.0),
vec2<f32>(1.0, -1.0),
vec2<f32>(1.0, 1.0)
);
Position = vec4<f32>(pos[VertexIndex], 0.0, 1.0);
texCoord = vec2<f32>(Position.xy * 0.5) + vec2<f32>(0.5, 0.5);
})");
}
// The width and height in texels are 4 for all YUV formats.
static constexpr uint32_t kYUVImageDataWidthInTexels = 4;
static constexpr uint32_t kYUVImageDataHeightInTexels = 4;
static constexpr size_t kYUVLumaPlaneIndex = 0;
static constexpr size_t kYUVChromaPlaneIndex = 1;
// RGB colors converted into YUV (per plane), for testing.
static constexpr std::array<RGBA8, 2> kGreyYUVColor = {RGBA8{126, 0, 0, 0xFF}, // Y
RGBA8{128, 128, 0, 0xFF}}; // UV
static constexpr std::array<RGBA8, 2> kWhiteYUVColor = {RGBA8{235, 0, 0, 0xFF}, // Y
RGBA8{128, 128, 0, 0xFF}}; // UV
ComPtr<ID3D11Device> mD3d11Device;
bool mIsMultiPlanarFormatsSupported = false;
};
} // namespace
// Samples the luminance (Y) plane from an imported NV12 texture into a single channel of an RGBA
// output attachment and checks for the expected pixel value in the rendered quad.
TEST_P(D3D12VideoViewsTests, NV12SampleYtoR) {
wgpu::Texture wgpuTexture;
CreateVideoTextureForTest(wgpu::TextureFormat::R8BG8Biplanar420Unorm,
wgpu::TextureUsage::Sampled, /*isCheckerboard*/ false, &wgpuTexture);
wgpu::TextureViewDescriptor viewDesc;
viewDesc.aspect = wgpu::TextureAspect::Plane0Only;
wgpu::TextureView textureView = wgpuTexture.CreateView(&viewDesc);
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor(device);
renderPipelineDescriptor.vertexStage.module = GetTestVertexShaderModule();
renderPipelineDescriptor.cFragmentStage.module = utils::CreateShaderModuleFromWGSL(device, R"(
[[set(0), binding(0)]] var sampler0 : sampler;
[[set(0), binding(1)]] var texture : texture_2d<f32>;
[[location(0)]] var<in> texCoord : vec2<f32>;
[[location(0)]] var<out> fragColor : vec4<f32>;
[[stage(fragment)]] fn main() -> void {
var y : f32 = textureSample(texture, sampler0, texCoord).r;
fragColor = vec4<f32>(y, 0.0, 0.0, 1.0);
})");
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(
device, kYUVImageDataWidthInTexels, kYUVImageDataHeightInTexels);
renderPipelineDescriptor.cColorStates[0].format = renderPass.colorFormat;
renderPipelineDescriptor.primitiveTopology = wgpu::PrimitiveTopology::TriangleList;
wgpu::RenderPipeline renderPipeline = device.CreateRenderPipeline(&renderPipelineDescriptor);
wgpu::Sampler sampler = device.CreateSampler();
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(renderPipeline);
pass.SetBindGroup(0, utils::MakeBindGroup(device, renderPipeline.GetBindGroupLayout(0),
{{0, sampler}, {1, textureView}}));
pass.Draw(6);
pass.EndPass();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// Test the luma plane in the top left corner of grey RGB image.
EXPECT_PIXEL_RGBA8_EQ(kGreyYUVColor[kYUVLumaPlaneIndex], renderPass.color, 0, 0);
}
// Samples the chrominance (UV) plane from an imported texture into two channels of an RGBA output
// attachment and checks for the expected pixel value in the rendered quad.
TEST_P(D3D12VideoViewsTests, NV12SampleUVtoRG) {
wgpu::Texture wgpuTexture;
CreateVideoTextureForTest(wgpu::TextureFormat::R8BG8Biplanar420Unorm,
wgpu::TextureUsage::Sampled, /*isCheckerboard*/ false, &wgpuTexture);
wgpu::TextureViewDescriptor viewDesc;
viewDesc.aspect = wgpu::TextureAspect::Plane1Only;
wgpu::TextureView textureView = wgpuTexture.CreateView(&viewDesc);
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor(device);
renderPipelineDescriptor.vertexStage.module = GetTestVertexShaderModule();
renderPipelineDescriptor.cFragmentStage.module = utils::CreateShaderModuleFromWGSL(device, R"(
[[set(0), binding(0)]] var sampler0 : sampler;
[[set(0), binding(1)]] var texture : texture_2d<f32>;
[[location(0)]] var<in> texCoord : vec2<f32>;
[[location(0)]] var<out> fragColor : vec4<f32>;
[[stage(fragment)]] fn main() -> void {
var u : f32 = textureSample(texture, sampler0, texCoord).r;
var v : f32 = textureSample(texture, sampler0, texCoord).g;
fragColor = vec4<f32>(u, v, 0.0, 1.0);
})");
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(
device, kYUVImageDataWidthInTexels, kYUVImageDataHeightInTexels);
renderPipelineDescriptor.cColorStates[0].format = renderPass.colorFormat;
renderPipelineDescriptor.primitiveTopology = wgpu::PrimitiveTopology::TriangleList;
wgpu::RenderPipeline renderPipeline = device.CreateRenderPipeline(&renderPipelineDescriptor);
wgpu::Sampler sampler = device.CreateSampler();
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(renderPipeline);
pass.SetBindGroup(0, utils::MakeBindGroup(device, renderPipeline.GetBindGroupLayout(0),
{{0, sampler}, {1, textureView}}));
pass.Draw(6);
pass.EndPass();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// Test the chroma plane in the top left corner of grey RGB image.
EXPECT_PIXEL_RGBA8_EQ(kGreyYUVColor[kYUVChromaPlaneIndex], renderPass.color, 0, 0);
}
// Renders a NV12 "checkerboard" texture into a RGB quad then checks the color at specific
// points to ensure the image has not been flipped.
TEST_P(D3D12VideoViewsTests, NV12SampleYUVtoRGB) {
wgpu::Texture wgpuTexture;
CreateVideoTextureForTest(wgpu::TextureFormat::R8BG8Biplanar420Unorm,
wgpu::TextureUsage::Sampled, /*isCheckerboard*/ true, &wgpuTexture);
wgpu::TextureViewDescriptor lumaViewDesc;
lumaViewDesc.aspect = wgpu::TextureAspect::Plane0Only;
wgpu::TextureView lumaTextureView = wgpuTexture.CreateView(&lumaViewDesc);
wgpu::TextureViewDescriptor chromaViewDesc;
chromaViewDesc.aspect = wgpu::TextureAspect::Plane1Only;
wgpu::TextureView chromaTextureView = wgpuTexture.CreateView(&chromaViewDesc);
utils::ComboRenderPipelineDescriptor renderPipelineDescriptor(device);
renderPipelineDescriptor.vertexStage.module = GetTestVertexShaderModule();
renderPipelineDescriptor.cFragmentStage.module = utils::CreateShaderModuleFromWGSL(device, R"(
[[set(0), binding(0)]] var sampler0 : sampler;
[[set(0), binding(1)]] var lumaTexture : texture_2d<f32>;
[[set(0), binding(2)]] var chromaTexture : texture_2d<f32>;
[[location(0)]] var<in> texCoord : vec2<f32>;
[[location(0)]] var<out> fragColor : vec4<f32>;
[[stage(fragment)]] fn main() -> void {
var y : f32 = textureSample(lumaTexture, sampler0, texCoord).r;
var u : f32 = textureSample(chromaTexture, sampler0, texCoord).r;
var v : f32 = textureSample(chromaTexture, sampler0, texCoord).g;
fragColor = vec4<f32>(y, u, v, 1.0);
})");
utils::BasicRenderPass renderPass = utils::CreateBasicRenderPass(
device, kYUVImageDataWidthInTexels, kYUVImageDataHeightInTexels);
renderPipelineDescriptor.cColorStates[0].format = renderPass.colorFormat;
wgpu::RenderPipeline renderPipeline = device.CreateRenderPipeline(&renderPipelineDescriptor);
wgpu::Sampler sampler = device.CreateSampler();
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::RenderPassEncoder pass = encoder.BeginRenderPass(&renderPass.renderPassInfo);
pass.SetPipeline(renderPipeline);
pass.SetBindGroup(
0, utils::MakeBindGroup(device, renderPipeline.GetBindGroupLayout(0),
{{0, sampler}, {1, lumaTextureView}, {2, chromaTextureView}}));
pass.Draw(6);
pass.EndPass();
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// Test four corners of the grey-white checkerboard image (YUV color space).
RGBA8 greyYUV(kGreyYUVColor[kYUVLumaPlaneIndex].r, kGreyYUVColor[kYUVChromaPlaneIndex].r,
kGreyYUVColor[kYUVChromaPlaneIndex].g, 0xFF);
EXPECT_PIXEL_RGBA8_EQ(greyYUV, renderPass.color, 0, 0); // top left
EXPECT_PIXEL_RGBA8_EQ(greyYUV, renderPass.color, kYUVImageDataWidthInTexels - 1,
kYUVImageDataHeightInTexels - 1); // bottom right
RGBA8 whiteYUV(kWhiteYUVColor[kYUVLumaPlaneIndex].r, kWhiteYUVColor[kYUVChromaPlaneIndex].r,
kWhiteYUVColor[kYUVChromaPlaneIndex].g, 0xFF);
EXPECT_PIXEL_RGBA8_EQ(whiteYUV, renderPass.color, kYUVImageDataWidthInTexels - 1,
0); // top right
EXPECT_PIXEL_RGBA8_EQ(whiteYUV, renderPass.color, 0,
kYUVImageDataHeightInTexels - 1); // bottom left
}
DAWN_INSTANTIATE_TEST(D3D12VideoViewsTests, D3D12Backend());