blob: ece5cd9e27bc39fd43205521e407b507ca216914 [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn/native/ShaderModule.h"
#include <algorithm>
#include <sstream>
#include "absl/strings/str_format.h"
#include "dawn/common/BitSetIterator.h"
#include "dawn/common/Constants.h"
#include "dawn/native/BindGroupLayout.h"
#include "dawn/native/ChainUtils.h"
#include "dawn/native/CompilationMessages.h"
#include "dawn/native/Device.h"
#include "dawn/native/ObjectContentHasher.h"
#include "dawn/native/Pipeline.h"
#include "dawn/native/PipelineLayout.h"
#include "dawn/native/RenderPipeline.h"
#include "dawn/native/TintUtils.h"
#include "tint/tint.h"
namespace dawn::native {
namespace {
ResultOrError<SingleShaderStage> TintPipelineStageToShaderStage(
tint::inspector::PipelineStage stage) {
switch (stage) {
case tint::inspector::PipelineStage::kVertex:
return SingleShaderStage::Vertex;
case tint::inspector::PipelineStage::kFragment:
return SingleShaderStage::Fragment;
case tint::inspector::PipelineStage::kCompute:
return SingleShaderStage::Compute;
}
UNREACHABLE();
}
BindingInfoType TintResourceTypeToBindingInfoType(
tint::inspector::ResourceBinding::ResourceType type) {
switch (type) {
case tint::inspector::ResourceBinding::ResourceType::kUniformBuffer:
case tint::inspector::ResourceBinding::ResourceType::kStorageBuffer:
case tint::inspector::ResourceBinding::ResourceType::kReadOnlyStorageBuffer:
return BindingInfoType::Buffer;
case tint::inspector::ResourceBinding::ResourceType::kSampler:
case tint::inspector::ResourceBinding::ResourceType::kComparisonSampler:
return BindingInfoType::Sampler;
case tint::inspector::ResourceBinding::ResourceType::kSampledTexture:
case tint::inspector::ResourceBinding::ResourceType::kMultisampledTexture:
case tint::inspector::ResourceBinding::ResourceType::kDepthTexture:
case tint::inspector::ResourceBinding::ResourceType::kDepthMultisampledTexture:
return BindingInfoType::Texture;
case tint::inspector::ResourceBinding::ResourceType::kWriteOnlyStorageTexture:
return BindingInfoType::StorageTexture;
case tint::inspector::ResourceBinding::ResourceType::kExternalTexture:
return BindingInfoType::ExternalTexture;
default:
UNREACHABLE();
return BindingInfoType::Buffer;
}
}
wgpu::TextureFormat TintImageFormatToTextureFormat(
tint::inspector::ResourceBinding::TexelFormat format) {
switch (format) {
case tint::inspector::ResourceBinding::TexelFormat::kR32Uint:
return wgpu::TextureFormat::R32Uint;
case tint::inspector::ResourceBinding::TexelFormat::kR32Sint:
return wgpu::TextureFormat::R32Sint;
case tint::inspector::ResourceBinding::TexelFormat::kR32Float:
return wgpu::TextureFormat::R32Float;
case tint::inspector::ResourceBinding::TexelFormat::kBgra8Unorm:
return wgpu::TextureFormat::BGRA8Unorm;
case tint::inspector::ResourceBinding::TexelFormat::kRgba8Unorm:
return wgpu::TextureFormat::RGBA8Unorm;
case tint::inspector::ResourceBinding::TexelFormat::kRgba8Snorm:
return wgpu::TextureFormat::RGBA8Snorm;
case tint::inspector::ResourceBinding::TexelFormat::kRgba8Uint:
return wgpu::TextureFormat::RGBA8Uint;
case tint::inspector::ResourceBinding::TexelFormat::kRgba8Sint:
return wgpu::TextureFormat::RGBA8Sint;
case tint::inspector::ResourceBinding::TexelFormat::kRg32Uint:
return wgpu::TextureFormat::RG32Uint;
case tint::inspector::ResourceBinding::TexelFormat::kRg32Sint:
return wgpu::TextureFormat::RG32Sint;
case tint::inspector::ResourceBinding::TexelFormat::kRg32Float:
return wgpu::TextureFormat::RG32Float;
case tint::inspector::ResourceBinding::TexelFormat::kRgba16Uint:
return wgpu::TextureFormat::RGBA16Uint;
case tint::inspector::ResourceBinding::TexelFormat::kRgba16Sint:
return wgpu::TextureFormat::RGBA16Sint;
case tint::inspector::ResourceBinding::TexelFormat::kRgba16Float:
return wgpu::TextureFormat::RGBA16Float;
case tint::inspector::ResourceBinding::TexelFormat::kRgba32Uint:
return wgpu::TextureFormat::RGBA32Uint;
case tint::inspector::ResourceBinding::TexelFormat::kRgba32Sint:
return wgpu::TextureFormat::RGBA32Sint;
case tint::inspector::ResourceBinding::TexelFormat::kRgba32Float:
return wgpu::TextureFormat::RGBA32Float;
case tint::inspector::ResourceBinding::TexelFormat::kNone:
return wgpu::TextureFormat::Undefined;
default:
UNREACHABLE();
return wgpu::TextureFormat::Undefined;
}
}
wgpu::TextureViewDimension TintTextureDimensionToTextureViewDimension(
tint::inspector::ResourceBinding::TextureDimension dim) {
switch (dim) {
case tint::inspector::ResourceBinding::TextureDimension::k1d:
return wgpu::TextureViewDimension::e1D;
case tint::inspector::ResourceBinding::TextureDimension::k2d:
return wgpu::TextureViewDimension::e2D;
case tint::inspector::ResourceBinding::TextureDimension::k2dArray:
return wgpu::TextureViewDimension::e2DArray;
case tint::inspector::ResourceBinding::TextureDimension::k3d:
return wgpu::TextureViewDimension::e3D;
case tint::inspector::ResourceBinding::TextureDimension::kCube:
return wgpu::TextureViewDimension::Cube;
case tint::inspector::ResourceBinding::TextureDimension::kCubeArray:
return wgpu::TextureViewDimension::CubeArray;
case tint::inspector::ResourceBinding::TextureDimension::kNone:
return wgpu::TextureViewDimension::Undefined;
}
UNREACHABLE();
}
SampleTypeBit TintSampledKindToSampleTypeBit(tint::inspector::ResourceBinding::SampledKind s) {
switch (s) {
case tint::inspector::ResourceBinding::SampledKind::kSInt:
return SampleTypeBit::Sint;
case tint::inspector::ResourceBinding::SampledKind::kUInt:
return SampleTypeBit::Uint;
case tint::inspector::ResourceBinding::SampledKind::kFloat:
return SampleTypeBit::Float | SampleTypeBit::UnfilterableFloat;
case tint::inspector::ResourceBinding::SampledKind::kUnknown:
return SampleTypeBit::None;
}
UNREACHABLE();
}
ResultOrError<TextureComponentType> TintComponentTypeToTextureComponentType(
tint::inspector::ComponentType type) {
switch (type) {
case tint::inspector::ComponentType::kF32:
case tint::inspector::ComponentType::kF16:
return TextureComponentType::Float;
case tint::inspector::ComponentType::kI32:
return TextureComponentType::Sint;
case tint::inspector::ComponentType::kU32:
return TextureComponentType::Uint;
case tint::inspector::ComponentType::kUnknown:
return DAWN_VALIDATION_ERROR("Attempted to convert 'Unknown' component type from Tint");
}
UNREACHABLE();
}
ResultOrError<VertexFormatBaseType> TintComponentTypeToVertexFormatBaseType(
tint::inspector::ComponentType type) {
switch (type) {
case tint::inspector::ComponentType::kF32:
case tint::inspector::ComponentType::kF16:
return VertexFormatBaseType::Float;
case tint::inspector::ComponentType::kI32:
return VertexFormatBaseType::Sint;
case tint::inspector::ComponentType::kU32:
return VertexFormatBaseType::Uint;
case tint::inspector::ComponentType::kUnknown:
return DAWN_VALIDATION_ERROR("Attempted to convert 'Unknown' component type from Tint");
}
UNREACHABLE();
}
ResultOrError<wgpu::BufferBindingType> TintResourceTypeToBufferBindingType(
tint::inspector::ResourceBinding::ResourceType resource_type) {
switch (resource_type) {
case tint::inspector::ResourceBinding::ResourceType::kUniformBuffer:
return wgpu::BufferBindingType::Uniform;
case tint::inspector::ResourceBinding::ResourceType::kStorageBuffer:
return wgpu::BufferBindingType::Storage;
case tint::inspector::ResourceBinding::ResourceType::kReadOnlyStorageBuffer:
return wgpu::BufferBindingType::ReadOnlyStorage;
default:
return DAWN_VALIDATION_ERROR("Attempted to convert non-buffer resource type");
}
UNREACHABLE();
}
ResultOrError<wgpu::StorageTextureAccess> TintResourceTypeToStorageTextureAccess(
tint::inspector::ResourceBinding::ResourceType resource_type) {
switch (resource_type) {
case tint::inspector::ResourceBinding::ResourceType::kWriteOnlyStorageTexture:
return wgpu::StorageTextureAccess::WriteOnly;
default:
return DAWN_VALIDATION_ERROR("Attempted to convert non-storage texture resource type");
}
UNREACHABLE();
}
ResultOrError<InterStageComponentType> TintComponentTypeToInterStageComponentType(
tint::inspector::ComponentType type) {
switch (type) {
case tint::inspector::ComponentType::kF32:
return InterStageComponentType::F32;
case tint::inspector::ComponentType::kI32:
return InterStageComponentType::I32;
case tint::inspector::ComponentType::kU32:
return InterStageComponentType::U32;
case tint::inspector::ComponentType::kF16:
return InterStageComponentType::F16;
case tint::inspector::ComponentType::kUnknown:
return DAWN_VALIDATION_ERROR("Attempted to convert 'Unknown' component type from Tint");
}
UNREACHABLE();
}
ResultOrError<uint32_t> TintCompositionTypeToInterStageComponentCount(
tint::inspector::CompositionType type) {
switch (type) {
case tint::inspector::CompositionType::kScalar:
return 1u;
case tint::inspector::CompositionType::kVec2:
return 2u;
case tint::inspector::CompositionType::kVec3:
return 3u;
case tint::inspector::CompositionType::kVec4:
return 4u;
case tint::inspector::CompositionType::kUnknown:
return DAWN_VALIDATION_ERROR("Attempt to convert 'Unknown' composition type from Tint");
}
UNREACHABLE();
}
ResultOrError<InterpolationType> TintInterpolationTypeToInterpolationType(
tint::inspector::InterpolationType type) {
switch (type) {
case tint::inspector::InterpolationType::kPerspective:
return InterpolationType::Perspective;
case tint::inspector::InterpolationType::kLinear:
return InterpolationType::Linear;
case tint::inspector::InterpolationType::kFlat:
return InterpolationType::Flat;
case tint::inspector::InterpolationType::kUnknown:
return DAWN_VALIDATION_ERROR(
"Attempted to convert 'Unknown' interpolation type from Tint");
}
UNREACHABLE();
}
ResultOrError<InterpolationSampling> TintInterpolationSamplingToInterpolationSamplingType(
tint::inspector::InterpolationSampling type) {
switch (type) {
case tint::inspector::InterpolationSampling::kNone:
return InterpolationSampling::None;
case tint::inspector::InterpolationSampling::kCenter:
return InterpolationSampling::Center;
case tint::inspector::InterpolationSampling::kCentroid:
return InterpolationSampling::Centroid;
case tint::inspector::InterpolationSampling::kSample:
return InterpolationSampling::Sample;
case tint::inspector::InterpolationSampling::kUnknown:
return DAWN_VALIDATION_ERROR(
"Attempted to convert 'Unknown' interpolation sampling type from Tint");
}
UNREACHABLE();
}
EntryPointMetadata::Override::Type FromTintOverrideType(tint::inspector::Override::Type type) {
switch (type) {
case tint::inspector::Override::Type::kBool:
return EntryPointMetadata::Override::Type::Boolean;
case tint::inspector::Override::Type::kFloat32:
return EntryPointMetadata::Override::Type::Float32;
case tint::inspector::Override::Type::kFloat16:
return EntryPointMetadata::Override::Type::Float16;
case tint::inspector::Override::Type::kInt32:
return EntryPointMetadata::Override::Type::Int32;
case tint::inspector::Override::Type::kUint32:
return EntryPointMetadata::Override::Type::Uint32;
}
UNREACHABLE();
}
ResultOrError<tint::Program> ParseWGSL(const tint::Source::File* file,
OwnedCompilationMessages* outMessages) {
#if TINT_BUILD_WGSL_READER
tint::Program program = tint::reader::wgsl::Parse(file);
if (outMessages != nullptr) {
DAWN_TRY(outMessages->AddMessages(program.Diagnostics()));
}
if (!program.IsValid()) {
return DAWN_VALIDATION_ERROR("Tint WGSL reader failure: %s\n", program.Diagnostics().str());
}
return std::move(program);
#else
return DAWN_VALIDATION_ERROR("TINT_BUILD_WGSL_READER is not defined.");
#endif
}
#if TINT_BUILD_SPV_READER
ResultOrError<tint::Program> ParseSPIRV(const std::vector<uint32_t>& spirv,
OwnedCompilationMessages* outMessages,
const DawnShaderModuleSPIRVOptionsDescriptor* optionsDesc) {
tint::reader::spirv::Options options;
if (optionsDesc) {
options.allow_non_uniform_derivatives = optionsDesc->allowNonUniformDerivatives;
}
tint::Program program = tint::reader::spirv::Parse(spirv, options);
if (outMessages != nullptr) {
DAWN_TRY(outMessages->AddMessages(program.Diagnostics()));
}
if (!program.IsValid()) {
return DAWN_VALIDATION_ERROR("Tint SPIR-V reader failure:\nParser: %s\n",
program.Diagnostics().str());
}
return std::move(program);
}
#endif // TINT_BUILD_SPV_READER
std::vector<uint64_t> GetBindGroupMinBufferSizes(const BindingGroupInfoMap& shaderBindings,
const BindGroupLayoutBase* layout) {
std::vector<uint64_t> requiredBufferSizes(layout->GetUnverifiedBufferCount());
uint32_t packedIdx = 0;
for (BindingIndex bindingIndex{0}; bindingIndex < layout->GetBufferCount(); ++bindingIndex) {
const BindingInfo& bindingInfo = layout->GetBindingInfo(bindingIndex);
if (bindingInfo.buffer.minBindingSize != 0) {
// Skip bindings that have minimum buffer size set in the layout
continue;
}
ASSERT(packedIdx < requiredBufferSizes.size());
const auto& shaderInfo = shaderBindings.find(bindingInfo.binding);
if (shaderInfo != shaderBindings.end()) {
requiredBufferSizes[packedIdx] = shaderInfo->second.buffer.minBindingSize;
} else {
// We have to include buffers if they are included in the bind group's
// packed vector. We don't actually need to check these at draw time, so
// if this is a problem in the future we can optimize it further.
requiredBufferSizes[packedIdx] = 0;
}
++packedIdx;
}
return requiredBufferSizes;
}
MaybeError ValidateCompatibilityOfSingleBindingWithLayout(const DeviceBase* device,
const BindGroupLayoutBase* layout,
SingleShaderStage entryPointStage,
BindingNumber bindingNumber,
const ShaderBindingInfo& shaderInfo) {
const BindGroupLayoutBase::BindingMap& layoutBindings = layout->GetBindingMap();
// An external texture binding found in the shader will later be expanded into multiple
// bindings at compile time. This expansion will have already happened in the bgl - so
// the shader and bgl will always mismatch at this point. Expansion info is contained in
// the bgl object, so we can still verify the bgl used to have an external texture in
// the slot corresponding to the shader reflection.
if (shaderInfo.bindingType == BindingInfoType::ExternalTexture) {
// If an external texture binding used to exist in the bgl, it will be found as a
// key in the ExternalTextureBindingExpansions map.
ExternalTextureBindingExpansionMap expansions =
layout->GetExternalTextureBindingExpansionMap();
std::map<BindingNumber, dawn_native::ExternalTextureBindingExpansion>::iterator it =
expansions.find(bindingNumber);
// TODO(dawn:563): Provide info about the binding types.
DAWN_INVALID_IF(it == expansions.end(),
"Binding type in the shader (texture_external) doesn't match the "
"type in the layout.");
return {};
}
const auto& bindingIt = layoutBindings.find(bindingNumber);
DAWN_INVALID_IF(bindingIt == layoutBindings.end(), "Binding doesn't exist in %s.", layout);
BindingIndex bindingIndex(bindingIt->second);
const BindingInfo& layoutInfo = layout->GetBindingInfo(bindingIndex);
DAWN_INVALID_IF(layoutInfo.bindingType != shaderInfo.bindingType,
"Binding type in the shader (%s) doesn't match the type in the layout (%s).",
shaderInfo.bindingType, layoutInfo.bindingType);
ExternalTextureBindingExpansionMap expansions = layout->GetExternalTextureBindingExpansionMap();
DAWN_INVALID_IF(expansions.find(bindingNumber) != expansions.end(),
"Binding type (buffer vs. texture vs. sampler vs. external) doesn't "
"match the type in the layout.");
DAWN_INVALID_IF((layoutInfo.visibility & StageBit(entryPointStage)) == 0,
"Entry point's stage (%s) is not in the binding visibility in the layout (%s).",
StageBit(entryPointStage), layoutInfo.visibility);
switch (layoutInfo.bindingType) {
case BindingInfoType::Texture: {
DAWN_INVALID_IF(
layoutInfo.texture.multisampled != shaderInfo.texture.multisampled,
"Binding multisampled flag (%u) doesn't match the layout's multisampled "
"flag (%u)",
layoutInfo.texture.multisampled, shaderInfo.texture.multisampled);
// TODO(dawn:563): Provide info about the sample types.
SampleTypeBit requiredType;
if (layoutInfo.texture.sampleType == kInternalResolveAttachmentSampleType) {
// If the layout's texture's sample type is kInternalResolveAttachmentSampleType,
// then the shader's compatible sample types must contain float.
requiredType = SampleTypeBit::UnfilterableFloat;
} else {
requiredType = SampleTypeToSampleTypeBit(layoutInfo.texture.sampleType);
}
DAWN_INVALID_IF(!(shaderInfo.texture.compatibleSampleTypes & requiredType),
"The sample type in the shader is not compatible with the "
"sample type of the layout.");
DAWN_INVALID_IF(
layoutInfo.texture.viewDimension != shaderInfo.texture.viewDimension,
"The shader's binding dimension (%s) doesn't match the shader's binding "
"dimension (%s).",
layoutInfo.texture.viewDimension, shaderInfo.texture.viewDimension);
break;
}
case BindingInfoType::StorageTexture: {
ASSERT(layoutInfo.storageTexture.format != wgpu::TextureFormat::Undefined);
ASSERT(shaderInfo.storageTexture.format != wgpu::TextureFormat::Undefined);
DAWN_INVALID_IF(layoutInfo.storageTexture.access != shaderInfo.storageTexture.access,
"The layout's binding access (%s) isn't compatible with the shader's "
"binding access (%s).",
layoutInfo.storageTexture.access, shaderInfo.storageTexture.access);
DAWN_INVALID_IF(layoutInfo.storageTexture.format != shaderInfo.storageTexture.format,
"The layout's binding format (%s) doesn't match the shader's binding "
"format (%s).",
layoutInfo.storageTexture.format, shaderInfo.storageTexture.format);
DAWN_INVALID_IF(
layoutInfo.storageTexture.viewDimension != shaderInfo.storageTexture.viewDimension,
"The layout's binding dimension (%s) doesn't match the "
"shader's binding dimension (%s).",
layoutInfo.storageTexture.viewDimension, shaderInfo.storageTexture.viewDimension);
break;
}
case BindingInfoType::Buffer: {
// Binding mismatch between shader and bind group is invalid. For example, a
// writable binding in the shader with a readonly storage buffer in the bind
// group layout is invalid. For internal usage with internal shaders, a storage
// binding in the shader with an internal storage buffer in the bind group
// layout is also valid.
bool validBindingConversion =
(layoutInfo.buffer.type == kInternalStorageBufferBinding &&
shaderInfo.buffer.type == wgpu::BufferBindingType::Storage);
DAWN_INVALID_IF(
layoutInfo.buffer.type != shaderInfo.buffer.type && !validBindingConversion,
"The buffer type in the shader (%s) is not compatible with the type in the "
"layout (%s).",
shaderInfo.buffer.type, layoutInfo.buffer.type);
DAWN_INVALID_IF(layoutInfo.buffer.minBindingSize != 0 &&
shaderInfo.buffer.minBindingSize > layoutInfo.buffer.minBindingSize,
"The shader uses more bytes of the buffer (%u) than the layout's "
"minBindingSize (%u).",
shaderInfo.buffer.minBindingSize, layoutInfo.buffer.minBindingSize);
break;
}
case BindingInfoType::Sampler:
DAWN_INVALID_IF(
(layoutInfo.sampler.type == wgpu::SamplerBindingType::Comparison) !=
shaderInfo.sampler.isComparison,
"The sampler type in the shader (comparison: %u) doesn't match the type in "
"the layout (comparison: %u).",
shaderInfo.sampler.isComparison,
layoutInfo.sampler.type == wgpu::SamplerBindingType::Comparison);
break;
case BindingInfoType::ExternalTexture: {
UNREACHABLE();
break;
}
}
return {};
}
MaybeError ValidateCompatibilityWithBindGroupLayout(DeviceBase* device,
BindGroupIndex group,
const EntryPointMetadata& entryPoint,
const BindGroupLayoutBase* layout) {
// Iterate over all bindings used by this group in the shader, and find the
// corresponding binding in the BindGroupLayout, if it exists.
for (const auto& [bindingId, bindingInfo] : entryPoint.bindings[group]) {
DAWN_TRY_CONTEXT(ValidateCompatibilityOfSingleBindingWithLayout(
device, layout, entryPoint.stage, bindingId, bindingInfo),
"validating that the entry-point's declaration for @group(%u) "
"@binding(%u) matches %s",
static_cast<uint32_t>(group), static_cast<uint32_t>(bindingId), layout);
}
return {};
}
ResultOrError<std::unique_ptr<EntryPointMetadata>> ReflectEntryPointUsingTint(
const DeviceBase* device,
tint::inspector::Inspector* inspector,
const tint::inspector::EntryPoint& entryPoint) {
std::unique_ptr<EntryPointMetadata> metadata = std::make_unique<EntryPointMetadata>();
// Returns the invalid argument, and if it is true additionally store the formatted
// error in metadata.infringedLimits. This is to delay the emission of these validation
// errors until the entry point is used.
#define DelayedInvalidIf(invalid, ...) \
([&] { \
if (invalid) { \
metadata->infringedLimitErrors.push_back(absl::StrFormat(__VA_ARGS__)); \
} \
return invalid; \
})()
if (!entryPoint.overrides.empty()) {
const auto& name2Id = inspector->GetNamedOverrideIds();
for (auto& c : entryPoint.overrides) {
auto id = name2Id.at(c.name);
EntryPointMetadata::Override override = {id, FromTintOverrideType(c.type),
c.is_initialized};
std::string identifier = c.is_id_specified ? std::to_string(override.id.value) : c.name;
metadata->overrides[identifier] = override;
if (!c.is_initialized) {
auto [_, inserted] =
metadata->uninitializedOverrides.emplace(std::move(identifier));
// The insertion should have taken place
ASSERT(inserted);
} else {
auto [_, inserted] = metadata->initializedOverrides.emplace(std::move(identifier));
// The insertion should have taken place
ASSERT(inserted);
}
}
}
DAWN_TRY_ASSIGN(metadata->stage, TintPipelineStageToShaderStage(entryPoint.stage));
if (metadata->stage == SingleShaderStage::Compute) {
metadata->usesNumWorkgroups = entryPoint.num_workgroups_used;
}
const CombinedLimits& limits = device->GetLimits();
const uint32_t maxVertexAttributes = limits.v1.maxVertexAttributes;
const uint32_t maxInterStageShaderVariables = limits.v1.maxInterStageShaderVariables;
const uint32_t maxInterStageShaderComponents = limits.v1.maxInterStageShaderComponents;
if (metadata->stage == SingleShaderStage::Vertex) {
for (const auto& inputVar : entryPoint.input_variables) {
uint32_t unsanitizedLocation = inputVar.location_attribute;
if (DelayedInvalidIf(unsanitizedLocation >= maxVertexAttributes,
"Vertex input variable \"%s\" has a location (%u) that "
"exceeds the maximum (%u)",
inputVar.name, unsanitizedLocation, maxVertexAttributes)) {
continue;
}
VertexAttributeLocation location(static_cast<uint8_t>(unsanitizedLocation));
DAWN_TRY_ASSIGN(metadata->vertexInputBaseTypes[location],
TintComponentTypeToVertexFormatBaseType(inputVar.component_type));
metadata->usedVertexInputs.set(location);
}
uint32_t totalInterStageShaderComponents = 0;
for (const auto& outputVar : entryPoint.output_variables) {
EntryPointMetadata::InterStageVariableInfo variable;
DAWN_TRY_ASSIGN(variable.baseType,
TintComponentTypeToInterStageComponentType(outputVar.component_type));
DAWN_TRY_ASSIGN(variable.componentCount, TintCompositionTypeToInterStageComponentCount(
outputVar.composition_type));
DAWN_TRY_ASSIGN(variable.interpolationType,
TintInterpolationTypeToInterpolationType(outputVar.interpolation_type));
DAWN_TRY_ASSIGN(variable.interpolationSampling,
TintInterpolationSamplingToInterpolationSamplingType(
outputVar.interpolation_sampling));
totalInterStageShaderComponents += variable.componentCount;
uint32_t location = outputVar.location_attribute;
if (DelayedInvalidIf(location >= maxInterStageShaderVariables,
"Vertex output variable \"%s\" has a location (%u) that "
"is greater than or equal to (%u).",
outputVar.name, location, maxInterStageShaderVariables)) {
continue;
}
metadata->usedInterStageVariables.set(location);
metadata->interStageVariables[location] = variable;
}
metadata->totalInterStageShaderComponents = totalInterStageShaderComponents;
DelayedInvalidIf(totalInterStageShaderComponents > maxInterStageShaderComponents,
"Total vertex output components count (%u) exceeds the maximum (%u).",
totalInterStageShaderComponents, maxInterStageShaderComponents);
}
if (metadata->stage == SingleShaderStage::Fragment) {
uint32_t totalInterStageShaderComponents = 0;
for (const auto& inputVar : entryPoint.input_variables) {
EntryPointMetadata::InterStageVariableInfo variable;
DAWN_TRY_ASSIGN(variable.baseType,
TintComponentTypeToInterStageComponentType(inputVar.component_type));
DAWN_TRY_ASSIGN(variable.componentCount, TintCompositionTypeToInterStageComponentCount(
inputVar.composition_type));
DAWN_TRY_ASSIGN(variable.interpolationType,
TintInterpolationTypeToInterpolationType(inputVar.interpolation_type));
DAWN_TRY_ASSIGN(variable.interpolationSampling,
TintInterpolationSamplingToInterpolationSamplingType(
inputVar.interpolation_sampling));
totalInterStageShaderComponents += variable.componentCount;
uint32_t location = inputVar.location_attribute;
if (DelayedInvalidIf(location >= maxInterStageShaderVariables,
"Fragment input variable \"%s\" has a location (%u) that "
"is greater than or equal to (%u).",
inputVar.name, location, maxInterStageShaderVariables)) {
continue;
}
metadata->usedInterStageVariables.set(location);
metadata->interStageVariables[location] = variable;
}
if (entryPoint.front_facing_used) {
totalInterStageShaderComponents += 1;
}
if (entryPoint.input_sample_mask_used) {
totalInterStageShaderComponents += 1;
}
metadata->usesSampleMaskOutput = entryPoint.output_sample_mask_used;
if (entryPoint.sample_index_used) {
totalInterStageShaderComponents += 1;
}
metadata->usesFragDepth = entryPoint.frag_depth_used;
metadata->totalInterStageShaderComponents = totalInterStageShaderComponents;
DelayedInvalidIf(totalInterStageShaderComponents > maxInterStageShaderComponents,
"Total fragment input components count (%u) exceeds the maximum (%u).",
totalInterStageShaderComponents, maxInterStageShaderComponents);
uint32_t maxColorAttachments = limits.v1.maxColorAttachments;
for (const auto& outputVar : entryPoint.output_variables) {
EntryPointMetadata::FragmentOutputVariableInfo variable;
DAWN_TRY_ASSIGN(variable.baseType,
TintComponentTypeToTextureComponentType(outputVar.component_type));
DAWN_TRY_ASSIGN(variable.componentCount, TintCompositionTypeToInterStageComponentCount(
outputVar.composition_type));
ASSERT(variable.componentCount <= 4);
uint32_t unsanitizedAttachment = outputVar.location_attribute;
if (DelayedInvalidIf(unsanitizedAttachment >= maxColorAttachments,
"Fragment output variable \"%s\" has a location (%u) that "
"exceeds the maximum (%u).",
outputVar.name, unsanitizedAttachment, maxColorAttachments)) {
continue;
}
ColorAttachmentIndex attachment(static_cast<uint8_t>(unsanitizedAttachment));
metadata->fragmentOutputVariables[attachment] = variable;
metadata->fragmentOutputsWritten.set(attachment);
}
}
for (const tint::inspector::ResourceBinding& resource :
inspector->GetResourceBindings(entryPoint.name)) {
ShaderBindingInfo info;
info.bindingType = TintResourceTypeToBindingInfoType(resource.resource_type);
switch (info.bindingType) {
case BindingInfoType::Buffer:
info.buffer.minBindingSize = resource.size;
DAWN_TRY_ASSIGN(info.buffer.type,
TintResourceTypeToBufferBindingType(resource.resource_type));
break;
case BindingInfoType::Sampler:
switch (resource.resource_type) {
case tint::inspector::ResourceBinding::ResourceType::kSampler:
info.sampler.isComparison = false;
break;
case tint::inspector::ResourceBinding::ResourceType::kComparisonSampler:
info.sampler.isComparison = true;
break;
default:
UNREACHABLE();
}
break;
case BindingInfoType::Texture:
info.texture.viewDimension =
TintTextureDimensionToTextureViewDimension(resource.dim);
if (resource.resource_type ==
tint::inspector::ResourceBinding::ResourceType::kDepthTexture ||
resource.resource_type ==
tint::inspector::ResourceBinding::ResourceType::kDepthMultisampledTexture) {
info.texture.compatibleSampleTypes = SampleTypeBit::Depth;
} else {
info.texture.compatibleSampleTypes =
TintSampledKindToSampleTypeBit(resource.sampled_kind);
}
info.texture.multisampled =
resource.resource_type ==
tint::inspector::ResourceBinding::ResourceType::kMultisampledTexture ||
resource.resource_type ==
tint::inspector::ResourceBinding::ResourceType::kDepthMultisampledTexture;
break;
case BindingInfoType::StorageTexture:
DAWN_TRY_ASSIGN(info.storageTexture.access,
TintResourceTypeToStorageTextureAccess(resource.resource_type));
info.storageTexture.format = TintImageFormatToTextureFormat(resource.image_format);
info.storageTexture.viewDimension =
TintTextureDimensionToTextureViewDimension(resource.dim);
DAWN_INVALID_IF(info.storageTexture.format == wgpu::TextureFormat::BGRA8Unorm &&
!device->HasFeature(Feature::BGRA8UnormStorage),
"BGRA8Unorm storage textures are not supported if optional feature "
"bgra8unorm-storage is not supported.");
break;
case BindingInfoType::ExternalTexture:
break;
default:
return DAWN_VALIDATION_ERROR("Unknown binding type in Shader");
}
BindingNumber bindingNumber(resource.binding);
BindGroupIndex bindGroupIndex(resource.bind_group);
if (DelayedInvalidIf(bindGroupIndex >= kMaxBindGroupsTyped,
"The entry-point uses a binding with a group decoration (%u) "
"that exceeds the maximum (%u).",
resource.bind_group, kMaxBindGroups) ||
DelayedInvalidIf(bindingNumber >= kMaxBindingsPerBindGroupTyped,
"Binding number (%u) exceeds the maxBindingsPerBindGroup limit (%u).",
uint32_t(bindingNumber), kMaxBindingsPerBindGroup)) {
continue;
}
const auto& [binding, inserted] =
metadata->bindings[bindGroupIndex].emplace(bindingNumber, info);
DAWN_INVALID_IF(!inserted,
"Entry-point has a duplicate binding for (group:%u, binding:%u).",
resource.binding, resource.bind_group);
}
auto samplerTextureUses = inspector->GetSamplerTextureUses(entryPoint.name);
metadata->samplerTexturePairs.reserve(samplerTextureUses.Length());
std::transform(samplerTextureUses.begin(), samplerTextureUses.end(),
std::back_inserter(metadata->samplerTexturePairs),
[](const tint::inspector::SamplerTexturePair& pair) {
EntryPointMetadata::SamplerTexturePair result;
result.sampler = {BindGroupIndex(pair.sampler_binding_point.group),
BindingNumber(pair.sampler_binding_point.binding)};
result.texture = {BindGroupIndex(pair.texture_binding_point.group),
BindingNumber(pair.texture_binding_point.binding)};
return result;
});
#undef DelayedInvalidIf
return std::move(metadata);
}
MaybeError ValidateWGSLProgramExtension(const DeviceBase* device,
const WGSLExtensionSet* enabledExtensions,
OwnedCompilationMessages* outMessages) {
const WGSLExtensionSet& extensionAllowList = device->GetWGSLExtensionAllowList();
bool hasDisallowedExtension = false;
tint::diag::List messages;
for (const std::string& extension : *enabledExtensions) {
if (extensionAllowList.count(extension)) {
continue;
}
hasDisallowedExtension = true;
messages.add_error(tint::diag::System::Program,
"Extension " + extension + " is not allowed on the Device.");
}
if (hasDisallowedExtension) {
if (outMessages != nullptr) {
DAWN_TRY(outMessages->AddMessages(messages));
}
return DAWN_MAKE_ERROR(InternalErrorType::Validation,
"Shader module uses extension(s) not enabled for its device.");
}
return {};
}
MaybeError ReflectShaderUsingTint(const DeviceBase* device,
const tint::Program* program,
OwnedCompilationMessages* compilationMessages,
EntryPointMetadataTable* entryPointMetadataTable,
WGSLExtensionSet* enabledWGSLExtensions) {
ASSERT(program->IsValid());
tint::inspector::Inspector inspector(program);
ASSERT(enabledWGSLExtensions->empty());
auto usedExtensionNames = inspector.GetUsedExtensionNames();
for (std::string name : usedExtensionNames) {
enabledWGSLExtensions->insert(name);
}
DAWN_TRY(ValidateWGSLProgramExtension(device, enabledWGSLExtensions, compilationMessages));
std::vector<tint::inspector::EntryPoint> entryPoints = inspector.GetEntryPoints();
DAWN_INVALID_IF(inspector.has_error(), "Tint Reflection failure: Inspector: %s\n",
inspector.error());
for (const tint::inspector::EntryPoint& entryPoint : entryPoints) {
std::unique_ptr<EntryPointMetadata> metadata;
DAWN_TRY_ASSIGN_CONTEXT(metadata,
ReflectEntryPointUsingTint(device, &inspector, entryPoint),
"processing entry point \"%s\".", entryPoint.name);
ASSERT(entryPointMetadataTable->count(entryPoint.name) == 0);
(*entryPointMetadataTable)[entryPoint.name] = std::move(metadata);
}
return {};
}
} // anonymous namespace
ResultOrError<Extent3D> ValidateComputeStageWorkgroupSize(
const tint::Program& program,
const char* entryPointName,
const LimitsForCompilationRequest& limits) {
tint::inspector::Inspector inspector(&program);
// At this point the entry point must exist and must have workgroup size values.
tint::inspector::EntryPoint entryPoint = inspector.GetEntryPoint(entryPointName);
ASSERT(entryPoint.workgroup_size.has_value());
const tint::inspector::WorkgroupSize& workgroup_size = entryPoint.workgroup_size.value();
DAWN_INVALID_IF(workgroup_size.x < 1 || workgroup_size.y < 1 || workgroup_size.z < 1,
"Entry-point uses workgroup_size(%u, %u, %u) that are below the "
"minimum allowed (1, 1, 1).",
workgroup_size.x, workgroup_size.y, workgroup_size.z);
DAWN_INVALID_IF(workgroup_size.x > limits.maxComputeWorkgroupSizeX ||
workgroup_size.y > limits.maxComputeWorkgroupSizeY ||
workgroup_size.z > limits.maxComputeWorkgroupSizeZ,
"Entry-point uses workgroup_size(%u, %u, %u) that exceeds the "
"maximum allowed (%u, %u, %u).",
workgroup_size.x, workgroup_size.y, workgroup_size.z,
limits.maxComputeWorkgroupSizeX, limits.maxComputeWorkgroupSizeY,
limits.maxComputeWorkgroupSizeZ);
uint64_t numInvocations =
static_cast<uint64_t>(workgroup_size.x) * workgroup_size.y * workgroup_size.z;
DAWN_INVALID_IF(numInvocations > limits.maxComputeInvocationsPerWorkgroup,
"The total number of workgroup invocations (%u) exceeds the "
"maximum allowed (%u).",
numInvocations, limits.maxComputeInvocationsPerWorkgroup);
const size_t workgroupStorageSize = inspector.GetWorkgroupStorageSize(entryPointName);
DAWN_INVALID_IF(workgroupStorageSize > limits.maxComputeWorkgroupStorageSize,
"The total use of workgroup storage (%u bytes) is larger than "
"the maximum allowed (%u bytes).",
workgroupStorageSize, limits.maxComputeWorkgroupStorageSize);
return Extent3D{workgroup_size.x, workgroup_size.y, workgroup_size.z};
}
ShaderModuleParseResult::ShaderModuleParseResult() = default;
ShaderModuleParseResult::~ShaderModuleParseResult() = default;
ShaderModuleParseResult::ShaderModuleParseResult(ShaderModuleParseResult&& rhs) = default;
ShaderModuleParseResult& ShaderModuleParseResult::operator=(ShaderModuleParseResult&& rhs) =
default;
bool ShaderModuleParseResult::HasParsedShader() const {
return tintProgram != nullptr;
}
// TintSource is a PIMPL container for a tint::Source::File, which needs to be kept alive for as
// long as tint diagnostics are inspected / printed.
class TintSource {
public:
template <typename... ARGS>
explicit TintSource(ARGS&&... args) : file(std::forward<ARGS>(args)...) {}
tint::Source::File file;
};
MaybeError ValidateAndParseShaderModule(DeviceBase* device,
const ShaderModuleDescriptor* descriptor,
ShaderModuleParseResult* parseResult,
OwnedCompilationMessages* outMessages) {
ASSERT(parseResult != nullptr);
const ChainedStruct* chainedDescriptor = descriptor->nextInChain;
DAWN_INVALID_IF(chainedDescriptor == nullptr,
"Shader module descriptor missing chained descriptor");
// A WGSL (or SPIR-V, if enabled) subdescriptor is required, and a Dawn-specific SPIR-V options
// descriptor is allowed when using SPIR-V.
#if TINT_BUILD_SPV_READER
DAWN_TRY(ValidateSTypes(
chainedDescriptor,
{{wgpu::SType::ShaderModuleSPIRVDescriptor, wgpu::SType::ShaderModuleWGSLDescriptor},
{wgpu::SType::DawnShaderModuleSPIRVOptionsDescriptor}}));
#else
DAWN_TRY(ValidateSingleSType(chainedDescriptor, wgpu::SType::ShaderModuleWGSLDescriptor));
#endif
ScopedTintICEHandler scopedICEHandler(device);
const ShaderModuleWGSLDescriptor* wgslDesc = nullptr;
FindInChain(chainedDescriptor, &wgslDesc);
const DawnShaderModuleSPIRVOptionsDescriptor* spirvOptions = nullptr;
FindInChain(chainedDescriptor, &spirvOptions);
DAWN_INVALID_IF(wgslDesc != nullptr && spirvOptions != nullptr,
"SPIR-V options descriptor not valid with WGSL descriptor");
#if TINT_BUILD_SPV_READER
const ShaderModuleSPIRVDescriptor* spirvDesc = nullptr;
FindInChain(chainedDescriptor, &spirvDesc);
DAWN_INVALID_IF(spirvOptions != nullptr && spirvDesc == nullptr,
"SPIR-V options descriptor can only be used with SPIR-V input");
// We have a temporary toggle to force the SPIRV ingestion to go through a WGSL
// intermediate step. It is done by switching the spirvDesc for a wgslDesc below.
ShaderModuleWGSLDescriptor newWgslDesc;
std::string newWgslCode;
if (spirvDesc && device->IsToggleEnabled(Toggle::ForceWGSLStep)) {
#if TINT_BUILD_WGSL_WRITER
std::vector<uint32_t> spirv(spirvDesc->code, spirvDesc->code + spirvDesc->codeSize);
tint::Program program;
DAWN_TRY_ASSIGN(program, ParseSPIRV(spirv, outMessages, spirvOptions));
tint::writer::wgsl::Options options;
auto result = tint::writer::wgsl::Generate(&program, options);
DAWN_INVALID_IF(!result.success, "Tint WGSL failure: Generator: %s", result.error);
newWgslCode = std::move(result.wgsl);
newWgslDesc.code = newWgslCode.c_str();
spirvDesc = nullptr;
wgslDesc = &newWgslDesc;
#else
device->EmitLog(
WGPULoggingType_Info,
"Toggle::ForceWGSLStep skipped because TINT_BUILD_WGSL_WRITER is not defined\n");
#endif // TINT_BUILD_WGSL_WRITER
}
if (spirvDesc) {
DAWN_INVALID_IF(device->IsToggleEnabled(Toggle::DisallowSpirv), "SPIR-V is disallowed.");
std::vector<uint32_t> spirv(spirvDesc->code, spirvDesc->code + spirvDesc->codeSize);
tint::Program program;
DAWN_TRY_ASSIGN(program, ParseSPIRV(spirv, outMessages, spirvOptions));
parseResult->tintProgram = std::make_unique<tint::Program>(std::move(program));
return {};
}
#endif // TINT_BUILD_SPV_READER
ASSERT(wgslDesc != nullptr);
auto tintSource = std::make_unique<TintSource>("", wgslDesc->code);
if (device->IsToggleEnabled(Toggle::DumpShaders)) {
std::ostringstream dumpedMsg;
dumpedMsg << "// Dumped WGSL:" << std::endl << wgslDesc->code;
device->EmitLog(WGPULoggingType_Info, dumpedMsg.str().c_str());
}
tint::Program program;
DAWN_TRY_ASSIGN(program, ParseWGSL(&tintSource->file, outMessages));
parseResult->tintProgram = std::make_unique<tint::Program>(std::move(program));
parseResult->tintSource = std::move(tintSource);
return {};
}
RequiredBufferSizes ComputeRequiredBufferSizesForLayout(const EntryPointMetadata& entryPoint,
const PipelineLayoutBase* layout) {
RequiredBufferSizes bufferSizes;
for (BindGroupIndex group : IterateBitSet(layout->GetBindGroupLayoutsMask())) {
bufferSizes[group] = GetBindGroupMinBufferSizes(entryPoint.bindings[group],
layout->GetBindGroupLayout(group));
}
return bufferSizes;
}
ResultOrError<tint::Program> RunTransforms(tint::transform::Manager* transformManager,
const tint::Program* program,
const tint::transform::DataMap& inputs,
tint::transform::DataMap* outputs,
OwnedCompilationMessages* outMessages) {
tint::transform::DataMap transform_outputs;
tint::Program result = transformManager->Run(program, inputs, transform_outputs);
if (outMessages != nullptr) {
DAWN_TRY(outMessages->AddMessages(result.Diagnostics()));
}
DAWN_INVALID_IF(!result.IsValid(), "Tint program failure: %s\n", result.Diagnostics().str());
if (outputs != nullptr) {
*outputs = std::move(transform_outputs);
}
return std::move(result);
}
MaybeError ValidateCompatibilityWithPipelineLayout(DeviceBase* device,
const EntryPointMetadata& entryPoint,
const PipelineLayoutBase* layout) {
for (BindGroupIndex group : IterateBitSet(layout->GetBindGroupLayoutsMask())) {
DAWN_TRY_CONTEXT(ValidateCompatibilityWithBindGroupLayout(
device, group, entryPoint, layout->GetBindGroupLayout(group)),
"validating the entry-point's compatibility for group %u with %s",
static_cast<uint32_t>(group), layout->GetBindGroupLayout(group));
}
for (BindGroupIndex group : IterateBitSet(~layout->GetBindGroupLayoutsMask())) {
DAWN_INVALID_IF(entryPoint.bindings[group].size() > 0,
"The entry-point uses bindings in group %u but %s doesn't have a "
"BindGroupLayout for this index",
static_cast<uint32_t>(group), layout);
}
// Validate that filtering samplers are not used with unfilterable textures.
for (const auto& pair : entryPoint.samplerTexturePairs) {
const BindGroupLayoutBase* samplerBGL = layout->GetBindGroupLayout(pair.sampler.group);
const BindingInfo& samplerInfo =
samplerBGL->GetBindingInfo(samplerBGL->GetBindingIndex(pair.sampler.binding));
if (samplerInfo.sampler.type != wgpu::SamplerBindingType::Filtering) {
continue;
}
const BindGroupLayoutBase* textureBGL = layout->GetBindGroupLayout(pair.texture.group);
const BindingInfo& textureInfo =
textureBGL->GetBindingInfo(textureBGL->GetBindingIndex(pair.texture.binding));
ASSERT(textureInfo.bindingType != BindingInfoType::Buffer &&
textureInfo.bindingType != BindingInfoType::Sampler &&
textureInfo.bindingType != BindingInfoType::StorageTexture);
if (textureInfo.bindingType != BindingInfoType::Texture) {
continue;
}
// Uint/Sint can't be statically used with a sampler, so they any
// texture bindings reflected must be float or depth textures. If
// the shader uses a float/depth texture but the bind group layout
// specifies a uint/sint texture binding,
// |ValidateCompatibilityWithBindGroupLayout| will fail since the
// sampleType does not match.
ASSERT(textureInfo.texture.sampleType != wgpu::TextureSampleType::Undefined &&
textureInfo.texture.sampleType != wgpu::TextureSampleType::Uint &&
textureInfo.texture.sampleType != wgpu::TextureSampleType::Sint);
DAWN_INVALID_IF(
textureInfo.texture.sampleType == wgpu::TextureSampleType::UnfilterableFloat,
"Texture binding (group:%u, binding:%u) is %s but used statically with a sampler "
"(group:%u, binding:%u) that's %s",
static_cast<uint32_t>(pair.texture.group), static_cast<uint32_t>(pair.texture.binding),
wgpu::TextureSampleType::UnfilterableFloat, static_cast<uint32_t>(pair.sampler.group),
static_cast<uint32_t>(pair.sampler.binding), wgpu::SamplerBindingType::Filtering);
}
return {};
}
// ShaderModuleBase
ShaderModuleBase::ShaderModuleBase(DeviceBase* device,
const ShaderModuleDescriptor* descriptor,
ApiObjectBase::UntrackedByDeviceTag tag)
: ApiObjectBase(device, descriptor->label), mType(Type::Undefined) {
ASSERT(descriptor->nextInChain != nullptr);
const ShaderModuleSPIRVDescriptor* spirvDesc = nullptr;
FindInChain(descriptor->nextInChain, &spirvDesc);
const ShaderModuleWGSLDescriptor* wgslDesc = nullptr;
FindInChain(descriptor->nextInChain, &wgslDesc);
ASSERT(spirvDesc || wgslDesc);
if (spirvDesc) {
mType = Type::Spirv;
mOriginalSpirv.assign(spirvDesc->code, spirvDesc->code + spirvDesc->codeSize);
} else if (wgslDesc) {
mType = Type::Wgsl;
mWgsl = std::string(wgslDesc->code);
}
}
ShaderModuleBase::ShaderModuleBase(DeviceBase* device, const ShaderModuleDescriptor* descriptor)
: ShaderModuleBase(device, descriptor, kUntrackedByDevice) {
GetObjectTrackingList()->Track(this);
}
ShaderModuleBase::ShaderModuleBase(DeviceBase* device, ObjectBase::ErrorTag tag, const char* label)
: ApiObjectBase(device, tag, label), mType(Type::Undefined) {}
ShaderModuleBase::~ShaderModuleBase() = default;
void ShaderModuleBase::DestroyImpl() {
if (IsCachedReference()) {
// Do not uncache the actual cached object if we are a blueprint.
GetDevice()->UncacheShaderModule(this);
}
}
// static
Ref<ShaderModuleBase> ShaderModuleBase::MakeError(DeviceBase* device, const char* label) {
return AcquireRef(new ShaderModuleBase(device, ObjectBase::kError, label));
}
ObjectType ShaderModuleBase::GetType() const {
return ObjectType::ShaderModule;
}
bool ShaderModuleBase::HasEntryPoint(const std::string& entryPoint) const {
return mEntryPoints.count(entryPoint) > 0;
}
const EntryPointMetadata& ShaderModuleBase::GetEntryPoint(const std::string& entryPoint) const {
ASSERT(HasEntryPoint(entryPoint));
return *mEntryPoints.at(entryPoint);
}
size_t ShaderModuleBase::ComputeContentHash() {
ObjectContentHasher recorder;
recorder.Record(mType);
recorder.Record(mOriginalSpirv);
recorder.Record(mWgsl);
return recorder.GetContentHash();
}
bool ShaderModuleBase::EqualityFunc::operator()(const ShaderModuleBase* a,
const ShaderModuleBase* b) const {
return a->mType == b->mType && a->mOriginalSpirv == b->mOriginalSpirv && a->mWgsl == b->mWgsl;
}
const tint::Program* ShaderModuleBase::GetTintProgram() const {
ASSERT(mTintProgram);
return mTintProgram.get();
}
void ShaderModuleBase::APIGetCompilationInfo(wgpu::CompilationInfoCallback callback,
void* userdata) {
if (callback == nullptr) {
return;
}
callback(WGPUCompilationInfoRequestStatus_Success, mCompilationMessages->GetCompilationInfo(),
userdata);
}
void ShaderModuleBase::InjectCompilationMessages(
std::unique_ptr<OwnedCompilationMessages> compilationMessages) {
// TODO(dawn:944): ensure the InjectCompilationMessages is properly handled for shader
// module returned from cache.
// InjectCompilationMessages should be called only once for a shader module, after it is
// created. However currently InjectCompilationMessages may be called on a shader module
// returned from cache rather than newly created, and violate the rule. We just skip the
// injection in this case for now, but a proper solution including ensure the cache goes
// before the validation is required.
if (mCompilationMessages != nullptr) {
return;
}
// Move the compilationMessages into the shader module and emit the tint errors and warnings
mCompilationMessages = std::move(compilationMessages);
// Emit the formatted Tint errors and warnings within the moved compilationMessages
const std::vector<std::string>& formattedTintMessages =
mCompilationMessages->GetFormattedTintMessages();
if (formattedTintMessages.empty()) {
return;
}
std::ostringstream t;
for (auto pMessage = formattedTintMessages.begin(); pMessage != formattedTintMessages.end();
pMessage++) {
if (pMessage != formattedTintMessages.begin()) {
t << std::endl;
}
t << *pMessage;
}
this->GetDevice()->EmitLog(WGPULoggingType_Warning, t.str().c_str());
}
OwnedCompilationMessages* ShaderModuleBase::GetCompilationMessages() const {
return mCompilationMessages.get();
}
MaybeError ShaderModuleBase::InitializeBase(ShaderModuleParseResult* parseResult,
OwnedCompilationMessages* compilationMessages) {
mTintProgram = std::move(parseResult->tintProgram);
mTintSource = std::move(parseResult->tintSource);
DAWN_TRY(ReflectShaderUsingTint(GetDevice(), mTintProgram.get(), compilationMessages,
&mEntryPoints, &mEnabledWGSLExtensions));
return {};
}
} // namespace dawn::native