blob: 0e9c68eef3b4578b2c315a8ad08b7d891ffdb9ee [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "common/Constants.h"
#include "tests/unittests/validation/ValidationTest.h"
#include "utils/WGPUHelpers.h"
// TODO(cwallez@chromium.org): Add a regression test for Disptach validation trying to acces the
// input state.
class ComputeValidationTest : public ValidationTest {
protected:
void SetUp() override {
ValidationTest::SetUp();
wgpu::ShaderModule computeModule = utils::CreateShaderModule(device, R"(
[[stage(compute), workgroup_size(1)]] fn main() {
})");
// Set up compute pipeline
wgpu::PipelineLayout pl = utils::MakeBasicPipelineLayout(device, nullptr);
wgpu::ComputePipelineDescriptor csDesc;
csDesc.layout = pl;
csDesc.compute.module = computeModule;
csDesc.compute.entryPoint = "main";
pipeline = device.CreateComputePipeline(&csDesc);
}
void TestDispatch(uint32_t x, uint32_t y, uint32_t z) {
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
pass.SetPipeline(pipeline);
pass.Dispatch(x, y, z);
pass.EndPass();
encoder.Finish();
}
wgpu::ComputePipeline pipeline;
};
// Check that 1x1x1 dispatch is OK.
TEST_F(ComputeValidationTest, PerDimensionDispatchSizeLimits_SmallestValid) {
TestDispatch(1, 1, 1);
}
// Check that the largest allowed dispatch is OK.
TEST_F(ComputeValidationTest, PerDimensionDispatchSizeLimits_LargestValid) {
const uint32_t max = GetSupportedLimits().limits.maxComputeWorkgroupsPerDimension;
TestDispatch(max, max, max);
}
// Check that exceeding the maximum on the X dimension results in validation failure.
TEST_F(ComputeValidationTest, PerDimensionDispatchSizeLimits_InvalidX) {
const uint32_t max = GetSupportedLimits().limits.maxComputeWorkgroupsPerDimension;
ASSERT_DEVICE_ERROR(TestDispatch(max + 1, 1, 1));
}
// Check that exceeding the maximum on the Y dimension results in validation failure.
TEST_F(ComputeValidationTest, PerDimensionDispatchSizeLimits_InvalidY) {
const uint32_t max = GetSupportedLimits().limits.maxComputeWorkgroupsPerDimension;
ASSERT_DEVICE_ERROR(TestDispatch(1, max + 1, 1));
}
// Check that exceeding the maximum on the Z dimension results in validation failure.
TEST_F(ComputeValidationTest, PerDimensionDispatchSizeLimits_InvalidZ) {
const uint32_t max = GetSupportedLimits().limits.maxComputeWorkgroupsPerDimension;
ASSERT_DEVICE_ERROR(TestDispatch(1, 1, max + 1));
}
// Check that exceeding the maximum on all dimensions results in validation failure.
TEST_F(ComputeValidationTest, PerDimensionDispatchSizeLimits_InvalidAll) {
const uint32_t max = GetSupportedLimits().limits.maxComputeWorkgroupsPerDimension;
ASSERT_DEVICE_ERROR(TestDispatch(max + 1, max + 1, max + 1));
}