blob: 319975ae44a20837b89b330ac189f73c94d002c1 [file] [log] [blame]
// Copyright 2022 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/transform/spirv_atomic.h"
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "src/tint/program_builder.h"
#include "src/tint/sem/block_statement.h"
#include "src/tint/sem/function.h"
#include "src/tint/sem/index_accessor_expression.h"
#include "src/tint/sem/member_accessor_expression.h"
#include "src/tint/sem/reference.h"
#include "src/tint/sem/statement.h"
#include "src/tint/utils/map.h"
#include "src/tint/utils/unique_vector.h"
TINT_INSTANTIATE_TYPEINFO(tint::transform::SpirvAtomic);
TINT_INSTANTIATE_TYPEINFO(tint::transform::SpirvAtomic::Stub);
namespace tint::transform {
using namespace tint::number_suffixes; // NOLINT
/// PIMPL state for the transform
struct SpirvAtomic::State {
private:
/// A struct that has been forked because a subset of members were made atomic.
struct ForkedStruct {
Symbol name;
std::unordered_set<size_t> atomic_members;
};
/// The source program
const Program* const src;
/// The target program builder
ProgramBuilder b;
/// The clone context
CloneContext ctx = {&b, src, /* auto_clone_symbols */ true};
std::unordered_map<const ast::Struct*, ForkedStruct> forked_structs;
std::unordered_set<const sem::Variable*> atomic_variables;
utils::UniqueVector<const sem::Expression*, 8> atomic_expressions;
public:
/// Constructor
/// @param program the source program
explicit State(const Program* program) : src(program) {}
/// Runs the transform
/// @returns the new program or SkipTransform if the transform is not required
ApplyResult Run() {
// Look for stub functions generated by the SPIR-V reader, which are used as placeholders
// for atomic builtin calls.
for (auto* fn : ctx.src->AST().Functions()) {
if (auto* stub = ast::GetAttribute<Stub>(fn->attributes)) {
auto* sem = ctx.src->Sem().Get(fn);
for (auto* call : sem->CallSites()) {
// The first argument is always the atomic.
// The stub passes this by value, whereas the builtin wants a pointer.
// Take the address of the atomic argument.
auto& args = call->Declaration()->args;
auto out_args = ctx.Clone(args);
out_args[0] = b.AddressOf(out_args[0]);
// Replace all callsites of this stub to a call to the real builtin
if (stub->builtin == sem::BuiltinType::kAtomicCompareExchangeWeak) {
// atomicCompareExchangeWeak returns a struct, so insert a call to it above
// the current statement, and replace the current call with the struct's
// `old_value` member.
auto* block = call->Stmt()->Block()->Declaration();
auto old_value = b.Symbols().New("old_value");
auto old_value_decl = b.Decl(b.Let(
old_value,
b.MemberAccessor(b.Call(sem::str(stub->builtin), std::move(out_args)),
b.Expr("old_value"))));
ctx.InsertBefore(block->statements, call->Stmt()->Declaration(),
old_value_decl);
ctx.Replace(call->Declaration(), b.Expr(old_value));
} else {
ctx.Replace(call->Declaration(),
b.Call(sem::str(stub->builtin), std::move(out_args)));
}
// Keep track of this expression. We'll need to modify the root identifier /
// structure to be atomic.
atomic_expressions.Add(ctx.src->Sem().Get(args[0]));
}
// Remove the stub from the output program
ctx.Remove(ctx.src->AST().GlobalDeclarations(), fn);
}
}
if (atomic_expressions.IsEmpty()) {
return SkipTransform;
}
// Transform all variables and structure members that were used in atomic operations as
// atomic types. This propagates up originating expression chains.
ProcessAtomicExpressions();
// If we need to change structure members, then fork them.
if (!forked_structs.empty()) {
ctx.ReplaceAll([&](const ast::Struct* str) {
// Always emit the original structure. This allows unrelated usage of the structure
// to continue working.
// auto* original = ctx.CloneWithoutTransform(str);
// Is `str` a structure we need to fork?
if (auto it = forked_structs.find(str); it != forked_structs.end()) {
const auto& forked = it->second;
// Re-create the structure swapping in the atomic-flavoured members
utils::Vector<const ast::StructMember*, 8> members;
members.Reserve(str->members.Length());
for (size_t i = 0; i < str->members.Length(); i++) {
auto* member = str->members[i];
if (forked.atomic_members.count(i)) {
auto* type = AtomicTypeFor(ctx.src->Sem().Get(member)->Type());
auto name = ctx.src->Symbols().NameFor(member->symbol);
members.Push(b.Member(name, type, ctx.Clone(member->attributes)));
} else {
members.Push(ctx.Clone(member));
}
}
b.Structure(forked.name, std::move(members));
}
// return original;
return nullptr;
});
}
// Replace assignments and decls from atomic variables with atomicLoads, and assignments to
// atomic variables with atomicStores.
ReplaceLoadsAndStores();
ctx.Clone();
return Program(std::move(b));
}
private:
ForkedStruct& Fork(const ast::Struct* str) {
auto& forked = forked_structs[str];
if (!forked.name.IsValid()) {
forked.name = b.Symbols().New(ctx.src->Symbols().NameFor(str->name) + "_atomic");
}
return forked;
}
void ProcessAtomicExpressions() {
for (size_t i = 0; i < atomic_expressions.Length(); i++) {
Switch(
atomic_expressions[i], //
[&](const sem::VariableUser* user) {
auto* v = user->Variable()->Declaration();
if (v->type && atomic_variables.emplace(user->Variable()).second) {
ctx.Replace(v->type, AtomicTypeFor(user->Variable()->Type()));
}
if (auto* ctor = user->Variable()->Initializer()) {
atomic_expressions.Add(ctor);
}
},
[&](const sem::StructMemberAccess* access) {
// Fork the struct (the first time) and mark member(s) that need to be made
// atomic.
auto* member = access->Member();
Fork(member->Struct()->Declaration()).atomic_members.emplace(member->Index());
atomic_expressions.Add(access->Object());
},
[&](const sem::IndexAccessorExpression* index) {
atomic_expressions.Add(index->Object());
},
[&](const sem::Expression* e) {
if (auto* unary = e->Declaration()->As<ast::UnaryOpExpression>()) {
atomic_expressions.Add(ctx.src->Sem().Get(unary->expr));
}
});
}
}
const ast::Type* AtomicTypeFor(const sem::Type* ty) {
return Switch(
ty, //
[&](const sem::I32*) { return b.ty.atomic(CreateASTTypeFor(ctx, ty)); },
[&](const sem::U32*) { return b.ty.atomic(CreateASTTypeFor(ctx, ty)); },
[&](const sem::Struct* str) { return b.ty.type_name(Fork(str->Declaration()).name); },
[&](const sem::Array* arr) -> const ast::Type* {
if (arr->IsRuntimeSized()) {
return b.ty.array(AtomicTypeFor(arr->ElemType()));
}
auto count = arr->ConstantCount();
if (!count) {
ctx.dst->Diagnostics().add_error(
diag::System::Transform,
"the SpirvAtomic transform does not currently support array counts that "
"use override values");
count = 1;
}
return b.ty.array(AtomicTypeFor(arr->ElemType()), u32(count.value()));
},
[&](const sem::Pointer* ptr) {
return b.ty.pointer(AtomicTypeFor(ptr->StoreType()), ptr->AddressSpace(),
ptr->Access());
},
[&](const sem::Reference* ref) { return AtomicTypeFor(ref->StoreType()); },
[&](Default) {
TINT_ICE(Transform, b.Diagnostics())
<< "unhandled type: " << ty->FriendlyName(ctx.src->Symbols());
return nullptr;
});
}
void ReplaceLoadsAndStores() {
// Returns true if 'e' is a reference to an atomic variable or struct member
auto is_ref_to_atomic_var = [&](const sem::Expression* e) {
if (tint::Is<sem::Reference>(e->Type()) && e->RootIdentifier() &&
(atomic_variables.count(e->RootIdentifier()) != 0)) {
// If it's a struct member, make sure it's one we marked as atomic
if (auto* ma = e->As<sem::StructMemberAccess>()) {
auto it = forked_structs.find(ma->Member()->Struct()->Declaration());
if (it != forked_structs.end()) {
auto& forked = it->second;
return forked.atomic_members.count(ma->Member()->Index()) != 0;
}
}
return true;
}
return false;
};
// Look for loads and stores via assignments and decls of atomic variables we've collected
// so far, and replace them with atomicLoad and atomicStore.
for (auto* atomic_var : atomic_variables) {
for (auto* vu : atomic_var->Users()) {
Switch(
vu->Stmt()->Declaration(),
[&](const ast::AssignmentStatement* assign) {
auto* sem_lhs = ctx.src->Sem().Get(assign->lhs);
if (is_ref_to_atomic_var(sem_lhs)) {
ctx.Replace(assign, [=] {
auto* lhs = ctx.CloneWithoutTransform(assign->lhs);
auto* rhs = ctx.CloneWithoutTransform(assign->rhs);
auto* call = b.Call(sem::str(sem::BuiltinType::kAtomicStore),
b.AddressOf(lhs), rhs);
return b.CallStmt(call);
});
return;
}
auto sem_rhs = ctx.src->Sem().Get(assign->rhs);
if (is_ref_to_atomic_var(sem_rhs)) {
ctx.Replace(assign->rhs, [=] {
auto* rhs = ctx.CloneWithoutTransform(assign->rhs);
return b.Call(sem::str(sem::BuiltinType::kAtomicLoad),
b.AddressOf(rhs));
});
return;
}
},
[&](const ast::VariableDeclStatement* decl) {
auto* var = decl->variable;
if (auto* sem_init = ctx.src->Sem().Get(var->initializer)) {
if (is_ref_to_atomic_var(sem_init)) {
ctx.Replace(var->initializer, [=] {
auto* rhs = ctx.CloneWithoutTransform(var->initializer);
return b.Call(sem::str(sem::BuiltinType::kAtomicLoad),
b.AddressOf(rhs));
});
return;
}
}
});
}
}
}
};
SpirvAtomic::SpirvAtomic() = default;
SpirvAtomic::~SpirvAtomic() = default;
SpirvAtomic::Stub::Stub(ProgramID pid, ast::NodeID nid, sem::BuiltinType b)
: Base(pid, nid), builtin(b) {}
SpirvAtomic::Stub::~Stub() = default;
std::string SpirvAtomic::Stub::InternalName() const {
return "@internal(spirv-atomic " + std::string(sem::str(builtin)) + ")";
}
const SpirvAtomic::Stub* SpirvAtomic::Stub::Clone(CloneContext* ctx) const {
return ctx->dst->ASTNodes().Create<SpirvAtomic::Stub>(ctx->dst->ID(),
ctx->dst->AllocateNodeID(), builtin);
}
Transform::ApplyResult SpirvAtomic::Apply(const Program* src, const DataMap&, DataMap&) const {
return State{src}.Run();
}
} // namespace tint::transform