blob: ed0481aa784e528e6494689de5cad875475b5173 [file] [log] [blame]
// Copyright 2021 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/core/intrinsic/table.h"
#include <algorithm>
#include <limits>
#include <ostream>
#include <utility>
#include "src/tint/lang/core/evaluation_stage.h"
#include "src/tint/lang/core/intrinsic/table_data.h"
#include "src/tint/lang/core/type/manager.h"
#include "src/tint/lang/core/type/void.h"
#include "src/tint/utils/ice/ice.h"
#include "src/tint/utils/text/string_stream.h"
namespace tint::core::intrinsic {
const Number Number::any{Number::kAny};
const Number Number::invalid{Number::kInvalid};
Any::Any() : Base(0u, core::type::Flags{}) {}
Any::~Any() = default;
bool Any::Equals(const core::type::UniqueNode&) const {
return false;
}
std::string Any::FriendlyName() const {
return "<any>";
}
core::type::Type* Any::Clone(core::type::CloneContext&) const {
return nullptr;
}
namespace {
/// The Vector `N` template argument value for arrays of parameters.
constexpr const size_t kNumFixedParams = decltype(Overload{}.parameters)::static_length;
/// The Vector `N` template argument value for arrays of overload candidates.
constexpr const size_t kNumFixedCandidates = 8;
/// Candidate holds information about an overload evaluated for resolution.
struct Candidate {
/// The candidate overload
const OverloadInfo* overload;
/// The template types and numbers
TemplateState templates;
/// The parameter types for the candidate overload
Vector<Overload::Parameter, kNumFixedParams> parameters;
/// The match-score of the candidate overload.
/// A score of zero indicates an exact match.
/// Non-zero scores are used for diagnostics when no overload matches.
/// Lower scores are displayed first (top-most).
size_t score;
};
/// A list of candidates
using Candidates = Vector<Candidate, kNumFixedCandidates>;
/// Callback function when no overloads match.
using OnNoMatch = std::function<std::string(VectorRef<Candidate>)>;
/// Sorts the candidates based on their score, with the lowest (best-ranking) scores first.
static inline void SortCandidates(Candidates& candidates) {
std::stable_sort(candidates.begin(), candidates.end(),
[&](const Candidate& a, const Candidate& b) { return a.score < b.score; });
}
/// Attempts to find a single intrinsic overload that matches the provided argument types.
/// @param context the intrinsic context
/// @param intrinsic the intrinsic being called
/// @param intrinsic_name the name of the intrinsic
/// @param args the argument types
/// @param templates initial template state. This may contain explicitly specified template
/// arguments. For example `vec3<f32>()` would have the first template-type
/// defined as `f32`.
/// @param on_no_match an error callback when no intrinsic overloads matched the provided
/// arguments.
/// @returns the matched intrinsic
Result<Overload, std::string> MatchIntrinsic(Context& context,
const IntrinsicInfo& intrinsic,
std::string_view intrinsic_name,
VectorRef<const core::type::Type*> args,
EvaluationStage earliest_eval_stage,
TemplateState templates,
const OnNoMatch& on_no_match);
/// Evaluates the single overload for the provided argument types.
/// @param context the intrinsic context
/// @param overload the overload being considered
/// @param args the argument types
/// @param templates initial template state. This may contain explicitly specified template
/// arguments. For example `vec3<f32>()` would have the first template-type
/// template as `f32`.
/// @returns the evaluated Candidate information.
Candidate ScoreOverload(Context& context,
const OverloadInfo& overload,
VectorRef<const core::type::Type*> args,
EvaluationStage earliest_eval_stage,
const TemplateState& templates);
/// Performs overload resolution given the list of candidates, by ranking the conversions of
/// arguments to the each of the candidate's parameter types.
/// @param context the intrinsic context
/// @param candidates the list of candidate overloads
/// @param intrinsic_name the name of the intrinsic
/// @param args the argument types
/// @param templates initial template state. This may contain explicitly specified template
/// arguments. For example `vec3<f32>()` would have the first template-type
/// template as `f32`.
/// @see https://www.w3.org/TR/WGSL/#overload-resolution-section
/// @returns the resolved Candidate.
Result<Candidate, std::string> ResolveCandidate(Context& context,
Candidates&& candidates,
std::string_view intrinsic_name,
VectorRef<const core::type::Type*> args,
TemplateState templates);
/// Match constructs a new MatchState
/// @param context the intrinsic context
/// @param templates the template state used for matcher evaluation
/// @param overload the overload being evaluated
/// @param matcher_indices pointer to a list of matcher indices
MatchState Match(Context& context,
TemplateState& templates,
const OverloadInfo& overload,
const MatcherIndex* matcher_indices,
EvaluationStage earliest_eval_stage);
// Prints the list of candidates for emitting diagnostics
void PrintCandidates(StringStream& ss,
Context& context,
VectorRef<Candidate> candidates,
std::string_view intrinsic_name);
/// Raises an ICE when no overload is a clear winner of overload resolution
std::string ErrAmbiguousOverload(Context& context,
std::string_view intrinsic_name,
VectorRef<const core::type::Type*> args,
TemplateState templates,
VectorRef<Candidate> candidates);
/// @return a string representing a call to a builtin with the given argument
/// types.
std::string CallSignature(std::string_view intrinsic_name,
VectorRef<const core::type::Type*> args,
const core::type::Type* template_arg = nullptr) {
StringStream ss;
ss << intrinsic_name;
if (template_arg) {
ss << "<" << template_arg->FriendlyName() << ">";
}
ss << "(";
{
bool first = true;
for (auto* arg : args) {
if (!first) {
ss << ", ";
}
first = false;
ss << arg->FriendlyName();
}
}
ss << ")";
return ss.str();
}
Result<Overload, std::string> MatchIntrinsic(Context& context,
const IntrinsicInfo& intrinsic,
std::string_view intrinsic_name,
VectorRef<const core::type::Type*> args,
EvaluationStage earliest_eval_stage,
TemplateState templates,
const OnNoMatch& on_no_match) {
size_t num_matched = 0;
size_t match_idx = 0;
Vector<Candidate, kNumFixedCandidates> candidates;
candidates.Reserve(intrinsic.num_overloads);
for (size_t overload_idx = 0; overload_idx < static_cast<size_t>(intrinsic.num_overloads);
overload_idx++) {
auto& overload = context.data[intrinsic.overloads + overload_idx];
auto candidate = ScoreOverload(context, overload, args, earliest_eval_stage, templates);
if (candidate.score == 0) {
match_idx = overload_idx;
num_matched++;
}
candidates.Push(std::move(candidate));
}
// How many candidates matched?
if (num_matched == 0) {
// Sort the candidates with the most promising first
SortCandidates(candidates);
return on_no_match(std::move(candidates));
}
Candidate match;
if (num_matched == 1) {
match = std::move(candidates[match_idx]);
} else {
auto result = ResolveCandidate(context, std::move(candidates), intrinsic_name, args,
std::move(templates));
if (TINT_UNLIKELY(result != Success)) {
return result.Failure();
}
match = result.Get();
}
// Build the return type
const core::type::Type* return_type = nullptr;
if (auto* matcher_indices = context.data[match.overload->return_matcher_indices]) {
Any any;
return_type =
Match(context, match.templates, *match.overload, matcher_indices, earliest_eval_stage)
.Type(&any);
if (TINT_UNLIKELY(!return_type)) {
std::string err = "MatchState.Match() returned null";
TINT_ICE() << err;
return err;
}
} else {
return_type = context.types.void_();
}
return Overload{match.overload, return_type, std::move(match.parameters),
context.data[match.overload->const_eval_fn]};
}
Candidate ScoreOverload(Context& context,
const OverloadInfo& overload,
VectorRef<const core::type::Type*> args,
EvaluationStage earliest_eval_stage,
const TemplateState& in_templates) {
// Penalty weights for overload mismatching.
// This scoring is used to order the suggested overloads in diagnostic on overload mismatch, and
// has no impact for a correct program.
// The overloads with the lowest score will be displayed first (top-most).
constexpr int kMismatchedParamCountPenalty = 3;
constexpr int kMismatchedParamTypePenalty = 2;
constexpr int kMismatchedTemplateCountPenalty = 1;
constexpr int kMismatchedTemplateTypePenalty = 1;
constexpr int kMismatchedTemplateNumberPenalty = 1;
const size_t num_parameters = static_cast<size_t>(overload.num_parameters);
const size_t num_arguments = static_cast<size_t>(args.Length());
size_t score = 0;
if (num_parameters != num_arguments) {
score += kMismatchedParamCountPenalty * (std::max(num_parameters, num_arguments) -
std::min(num_parameters, num_arguments));
}
if (score == 0) {
// Check that all of the template arguments provided are actually expected by the overload.
const size_t expected_templates = overload.num_templates;
const size_t provided_templates = in_templates.Count();
if (provided_templates > expected_templates) {
score += kMismatchedTemplateCountPenalty * (provided_templates - expected_templates);
}
}
// Make a mutable copy of the input templates so we can implicitly match more templated
// arguments.
TemplateState templates(in_templates);
// Invoke the matchers for each parameter <-> argument pair.
// If any arguments cannot be matched, then `score` will be increased.
// If the overload has any template types or numbers then these will be set based on the
// argument types. Template types may be refined by constraining with later argument types. For
// example calling `F<T>(T, T)` with the argument types (abstract-int, i32) will first set T to
// abstract-int when matching the first argument, and then constrained down to i32 when matching
// the second argument.
// Note that inferred template types are not tested against their matchers at this point.
auto num_params = std::min(num_parameters, num_arguments);
for (size_t p = 0; p < num_params; p++) {
auto& parameter = context.data[overload.parameters + p];
auto* matcher_indices = context.data[parameter.matcher_indices];
if (!Match(context, templates, overload, matcher_indices, earliest_eval_stage)
.Type(args[p])) {
score += kMismatchedParamTypePenalty;
}
}
if (score == 0) {
for (size_t i = 0; i < overload.num_templates; i++) {
auto& tmpl = context.data[overload.templates + i];
auto* matcher_indices = context.data[tmpl.matcher_indices];
if (!matcher_indices) {
continue;
}
auto matcher =
Match(context, templates, overload, matcher_indices, earliest_eval_stage);
switch (tmpl.kind) {
case TemplateInfo::Kind::kType: {
// Check all constrained template types matched their constraint matchers.
// If the template type *does not* match any of the types in the constraint
// matcher, then `score` is incremented. If the template type *does* match a
// type, then the template type is replaced with the first matching type.
// The order of types in the template matcher is important here, which can
// be controlled with the [[precedence(N)]] decorations on the types in the
// def file.
if (auto* type = templates.Type(i)) {
if (auto* ty = matcher.Type(type)) {
// Template type matched one of the types in the template type's
// matcher. Replace the template type with this type.
templates.SetType(i, ty);
continue;
}
}
score += kMismatchedTemplateTypePenalty;
break;
}
case TemplateInfo::Kind::kNumber: {
// Checking that the inferred number matches the constraints on the
// template. Increments `score` if the template numbers do not match their
// constraint matchers.
auto number = templates.Num(i);
if (!number.IsValid() || !matcher.Num(number).IsValid()) {
score += kMismatchedTemplateNumberPenalty;
}
}
}
}
}
// Now that all the template types have been finalized, we can construct the parameters.
Vector<Overload::Parameter, kNumFixedParams> parameters;
if (score == 0) {
parameters.Reserve(num_params);
for (size_t p = 0; p < num_params; p++) {
auto& parameter = context.data[overload.parameters + p];
auto* matcher_indices = context.data[parameter.matcher_indices];
auto* ty = Match(context, templates, overload, matcher_indices, earliest_eval_stage)
.Type(args[p]);
parameters.Emplace(ty, parameter.usage);
}
}
return Candidate{&overload, templates, parameters, score};
}
Result<Candidate, std::string> ResolveCandidate(Context& context,
Candidates&& candidates,
std::string_view intrinsic_name,
VectorRef<const core::type::Type*> args,
TemplateState templates) {
Vector<uint32_t, kNumFixedParams> best_ranks;
best_ranks.Resize(args.Length(), 0xffffffff);
size_t num_matched = 0;
Candidate* best = nullptr;
for (auto& candidate : candidates) {
if (candidate.score > 0) {
continue; // Candidate has already been ruled out.
}
bool some_won = false; // An argument ranked less than the 'best' overload's argument
bool some_lost = false; // An argument ranked more than the 'best' overload's argument
for (size_t i = 0; i < args.Length(); i++) {
auto rank = core::type::Type::ConversionRank(args[i], candidate.parameters[i].type);
if (best_ranks[i] > rank) {
best_ranks[i] = rank;
some_won = true;
} else if (best_ranks[i] < rank) {
some_lost = true;
}
}
// If no arguments of this candidate ranked worse than the previous best candidate, then
// this candidate becomes the new best candidate.
// If no arguments of this candidate ranked better than the previous best candidate, then
// this candidate is removed from the list of matches.
// If neither of the above apply, then we have two candidates with no clear winner, which
// results in an ambiguous overload error. In this situation the loop ends with
// `num_matched > 1`.
if (some_won) {
// One or more arguments of this candidate ranked better than the previous best
// candidate's argument(s).
num_matched++;
if (!some_lost) {
// All arguments were at as-good or better than the previous best.
if (best) {
// Mark the previous best candidate as no longer being in the running, by
// setting its score to a non-zero value. We pick 1 as this is the closest to 0
// (match) as we can get.
best->score = 1;
num_matched--;
}
// This candidate is the new best.
best = &candidate;
}
} else {
// No arguments ranked better than the current best.
// Change the score of this candidate to a non-zero value, so that it's not considered a
// match.
candidate.score = 1;
}
}
if (num_matched > 1) {
// Re-sort the candidates with the most promising first
SortCandidates(candidates);
// Raise an error
return ErrAmbiguousOverload(context, intrinsic_name, args, templates, candidates);
}
return std::move(*best);
}
MatchState Match(Context& context,
TemplateState& templates,
const OverloadInfo& overload,
const MatcherIndex* matcher_indices,
EvaluationStage earliest_eval_stage) {
return MatchState{context.types, context.symbols, templates, context.data,
overload, matcher_indices, earliest_eval_stage};
}
void PrintCandidates(StringStream& ss,
Context& context,
VectorRef<Candidate> candidates,
std::string_view intrinsic_name) {
for (auto& candidate : candidates) {
ss << " ";
PrintOverload(ss, context, *candidate.overload, intrinsic_name);
ss << std::endl;
}
}
std::string ErrAmbiguousOverload(Context& context,
std::string_view intrinsic_name,
VectorRef<const core::type::Type*> args,
TemplateState templates,
VectorRef<Candidate> candidates) {
StringStream ss;
ss << "ambiguous overload while attempting to match " << intrinsic_name;
for (size_t i = 0; i < std::numeric_limits<size_t>::max(); i++) {
if (auto* ty = templates.Type(i)) {
ss << ((i == 0) ? "<" : ", ") << ty->FriendlyName();
} else {
if (i > 0) {
ss << ">";
}
break;
}
}
ss << "(";
bool first = true;
for (auto* arg : args) {
if (!first) {
ss << ", ";
}
first = false;
ss << arg->FriendlyName();
}
ss << "):\n";
for (auto& candidate : candidates) {
if (candidate.score == 0) {
ss << " ";
PrintOverload(ss, context, *candidate.overload, intrinsic_name);
ss << std::endl;
}
}
TINT_ICE() << ss.str();
return ss.str();
}
} // namespace
void PrintOverload(StringStream& ss,
Context& context,
const OverloadInfo& overload,
std::string_view intrinsic_name) {
TemplateState templates;
// TODO(crbug.com/tint/1730): Use input evaluation stage to output only relevant overloads.
auto earliest_eval_stage = EvaluationStage::kConstant;
ss << intrinsic_name;
bool print_template_type = false;
if (overload.num_templates > 0) {
if (overload.flags.Contains(OverloadFlag::kIsConverter)) {
// Print for conversions
// e.g. vec3<T>(vec3<U>) -> vec3<f32>
print_template_type = true;
} else if ((overload.num_parameters == 0) &&
overload.flags.Contains(OverloadFlag::kIsConstructor)) {
// Print for constructors with no params
// e.g. vec2<T>() -> vec2<T>
print_template_type = true;
}
}
if (print_template_type) {
ss << "<";
ss << context.data[overload.templates].name;
ss << ">";
}
ss << "(";
for (size_t p = 0; p < overload.num_parameters; p++) {
auto& parameter = context.data[overload.parameters + p];
if (p > 0) {
ss << ", ";
}
if (parameter.usage != ParameterUsage::kNone) {
ss << ToString(parameter.usage) << ": ";
}
auto* matcher_indices = context.data[parameter.matcher_indices];
ss << Match(context, templates, overload, matcher_indices, earliest_eval_stage).TypeName();
}
ss << ")";
if (overload.return_matcher_indices.IsValid()) {
ss << " -> ";
auto* matcher_indices = context.data[overload.return_matcher_indices];
ss << Match(context, templates, overload, matcher_indices, earliest_eval_stage).TypeName();
}
bool first = true;
auto separator = [&] {
ss << (first ? " where: " : ", ");
first = false;
};
for (size_t i = 0; i < overload.num_templates; i++) {
auto& tmpl = context.data[overload.templates + i];
if (auto* matcher_indices = context.data[tmpl.matcher_indices]) {
auto matcher =
Match(context, templates, overload, matcher_indices, earliest_eval_stage);
separator();
ss << tmpl.name;
ss << " is ";
if (tmpl.kind == TemplateInfo::Kind::kType) {
ss << matcher.TypeName();
} else {
ss << matcher.NumName();
}
}
}
}
Result<Overload, std::string> LookupFn(Context& context,
std::string_view intrinsic_name,
size_t function_id,
VectorRef<const core::type::Type*> args,
EvaluationStage earliest_eval_stage) {
// Generates an error when no overloads match the provided arguments
auto on_no_match = [&](VectorRef<Candidate> candidates) {
StringStream ss;
ss << "no matching call to " << CallSignature(intrinsic_name, args) << std::endl;
if (!candidates.IsEmpty()) {
ss << std::endl
<< candidates.Length() << " candidate function"
<< (candidates.Length() > 1 ? "s:" : ":") << std::endl;
PrintCandidates(ss, context, candidates, intrinsic_name);
}
return ss.str();
};
// Resolve the intrinsic overload
return MatchIntrinsic(context, context.data.builtins[function_id], intrinsic_name, args,
earliest_eval_stage, TemplateState{}, on_no_match);
}
Result<Overload, std::string> LookupUnary(Context& context,
core::UnaryOp op,
const core::type::Type* arg,
EvaluationStage earliest_eval_stage) {
const IntrinsicInfo* intrinsic_info = nullptr;
std::string_view intrinsic_name;
switch (op) {
case core::UnaryOp::kComplement:
intrinsic_info = &context.data.unary_complement;
intrinsic_name = "operator ~ ";
break;
case core::UnaryOp::kNegation:
intrinsic_info = &context.data.unary_minus;
intrinsic_name = "operator - ";
break;
case core::UnaryOp::kAddressOf:
intrinsic_info = &context.data.unary_and;
intrinsic_name = "operator & ";
break;
case core::UnaryOp::kIndirection:
intrinsic_info = &context.data.unary_star;
intrinsic_name = "operator * ";
break;
case core::UnaryOp::kNot:
intrinsic_info = &context.data.unary_not;
intrinsic_name = "operator ! ";
break;
}
Vector args{arg};
// Generates an error when no overloads match the provided arguments
auto on_no_match = [&, name = intrinsic_name](VectorRef<Candidate> candidates) {
StringStream ss;
ss << "no matching overload for " << CallSignature(name, args) << std::endl;
if (!candidates.IsEmpty()) {
ss << std::endl
<< candidates.Length() << " candidate operator"
<< (candidates.Length() > 1 ? "s:" : ":") << std::endl;
PrintCandidates(ss, context, candidates, name);
}
return ss.str();
};
// Resolve the intrinsic overload
return MatchIntrinsic(context, *intrinsic_info, intrinsic_name, args, earliest_eval_stage,
TemplateState{}, on_no_match);
}
Result<Overload, std::string> LookupBinary(Context& context,
core::BinaryOp op,
const core::type::Type* lhs,
const core::type::Type* rhs,
EvaluationStage earliest_eval_stage,
bool is_compound) {
const IntrinsicInfo* intrinsic_info = nullptr;
std::string_view intrinsic_name;
switch (op) {
case core::BinaryOp::kAnd:
intrinsic_info = &context.data.binary_and;
intrinsic_name = is_compound ? "operator &= " : "operator & ";
break;
case core::BinaryOp::kOr:
intrinsic_info = &context.data.binary_or;
intrinsic_name = is_compound ? "operator |= " : "operator | ";
break;
case core::BinaryOp::kXor:
intrinsic_info = &context.data.binary_xor;
intrinsic_name = is_compound ? "operator ^= " : "operator ^ ";
break;
case core::BinaryOp::kLogicalAnd:
intrinsic_info = &context.data.binary_logical_and;
intrinsic_name = "operator && ";
break;
case core::BinaryOp::kLogicalOr:
intrinsic_info = &context.data.binary_logical_or;
intrinsic_name = "operator || ";
break;
case core::BinaryOp::kEqual:
intrinsic_info = &context.data.binary_equal;
intrinsic_name = "operator == ";
break;
case core::BinaryOp::kNotEqual:
intrinsic_info = &context.data.binary_not_equal;
intrinsic_name = "operator != ";
break;
case core::BinaryOp::kLessThan:
intrinsic_info = &context.data.binary_less_than;
intrinsic_name = "operator < ";
break;
case core::BinaryOp::kGreaterThan:
intrinsic_info = &context.data.binary_greater_than;
intrinsic_name = "operator > ";
break;
case core::BinaryOp::kLessThanEqual:
intrinsic_info = &context.data.binary_less_than_equal;
intrinsic_name = "operator <= ";
break;
case core::BinaryOp::kGreaterThanEqual:
intrinsic_info = &context.data.binary_greater_than_equal;
intrinsic_name = "operator >= ";
break;
case core::BinaryOp::kShiftLeft:
intrinsic_info = &context.data.binary_shift_left;
intrinsic_name = is_compound ? "operator <<= " : "operator << ";
break;
case core::BinaryOp::kShiftRight:
intrinsic_info = &context.data.binary_shift_right;
intrinsic_name = is_compound ? "operator >>= " : "operator >> ";
break;
case core::BinaryOp::kAdd:
intrinsic_info = &context.data.binary_plus;
intrinsic_name = is_compound ? "operator += " : "operator + ";
break;
case core::BinaryOp::kSubtract:
intrinsic_info = &context.data.binary_minus;
intrinsic_name = is_compound ? "operator -= " : "operator - ";
break;
case core::BinaryOp::kMultiply:
intrinsic_info = &context.data.binary_star;
intrinsic_name = is_compound ? "operator *= " : "operator * ";
break;
case core::BinaryOp::kDivide:
intrinsic_info = &context.data.binary_divide;
intrinsic_name = is_compound ? "operator /= " : "operator / ";
break;
case core::BinaryOp::kModulo:
intrinsic_info = &context.data.binary_modulo;
intrinsic_name = is_compound ? "operator %= " : "operator % ";
break;
}
Vector args{lhs, rhs};
// Generates an error when no overloads match the provided arguments
auto on_no_match = [&, name = intrinsic_name](VectorRef<Candidate> candidates) {
StringStream ss;
ss << "no matching overload for " << CallSignature(name, args) << std::endl;
if (!candidates.IsEmpty()) {
ss << std::endl
<< candidates.Length() << " candidate operator"
<< (candidates.Length() > 1 ? "s:" : ":") << std::endl;
PrintCandidates(ss, context, candidates, name);
}
return ss.str();
};
// Resolve the intrinsic overload
return MatchIntrinsic(context, *intrinsic_info, intrinsic_name, args, earliest_eval_stage,
TemplateState{}, on_no_match);
}
Result<Overload, std::string> LookupCtorConv(Context& context,
std::string_view type_name,
size_t type_id,
const core::type::Type* template_arg,
VectorRef<const core::type::Type*> args,
EvaluationStage earliest_eval_stage) {
// Generates an error when no overloads match the provided arguments
auto on_no_match = [&](VectorRef<Candidate> candidates) {
StringStream ss;
ss << "no matching constructor for " << CallSignature(type_name, args, template_arg)
<< std::endl;
Candidates ctor, conv;
for (auto candidate : candidates) {
if (candidate.overload->flags.Contains(OverloadFlag::kIsConstructor)) {
ctor.Push(candidate);
} else {
conv.Push(candidate);
}
}
if (!ctor.IsEmpty()) {
ss << std::endl
<< ctor.Length() << " candidate constructor" << (ctor.Length() > 1 ? "s:" : ":")
<< std::endl;
PrintCandidates(ss, context, ctor, type_name);
}
if (!conv.IsEmpty()) {
ss << std::endl
<< conv.Length() << " candidate conversion" << (conv.Length() > 1 ? "s:" : ":")
<< std::endl;
PrintCandidates(ss, context, conv, type_name);
}
return ss.str();
};
// If a template type was provided, then close the 0'th type with this.
TemplateState templates;
if (template_arg) {
templates.Type(0, template_arg);
}
// Resolve the intrinsic overload
return MatchIntrinsic(context, context.data.ctor_conv[type_id], type_name, args,
earliest_eval_stage, templates, on_no_match);
}
} // namespace tint::core::intrinsic
/// TypeInfo for the Any type declared in the anonymous namespace above
TINT_INSTANTIATE_TYPEINFO(tint::core::intrinsic::Any);