blob: ce607a0496774eafd467a44be46211727f0cb2b4 [file] [log] [blame]
/// Copyright 2021 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/glsl/writer/ast_printer/ast_printer.h"
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <limits>
#include <set>
#include <utility>
#include <vector>
#include "src/tint/lang/core/constant/splat.h"
#include "src/tint/lang/core/constant/value.h"
#include "src/tint/lang/core/fluent_types.h"
#include "src/tint/lang/core/type/array.h"
#include "src/tint/lang/core/type/atomic.h"
#include "src/tint/lang/core/type/depth_multisampled_texture.h"
#include "src/tint/lang/core/type/depth_texture.h"
#include "src/tint/lang/core/type/multisampled_texture.h"
#include "src/tint/lang/core/type/sampled_texture.h"
#include "src/tint/lang/core/type/storage_texture.h"
#include "src/tint/lang/core/type/texture_dimension.h"
#include "src/tint/lang/glsl/writer/ast_raise/combine_samplers.h"
#include "src/tint/lang/glsl/writer/ast_raise/pad_structs.h"
#include "src/tint/lang/glsl/writer/ast_raise/texture_1d_to_2d.h"
#include "src/tint/lang/glsl/writer/ast_raise/texture_builtins_from_uniform.h"
#include "src/tint/lang/glsl/writer/common/options.h"
#include "src/tint/lang/glsl/writer/common/printer_support.h"
#include "src/tint/lang/wgsl/ast/call_statement.h"
#include "src/tint/lang/wgsl/ast/id_attribute.h"
#include "src/tint/lang/wgsl/ast/internal_attribute.h"
#include "src/tint/lang/wgsl/ast/interpolate_attribute.h"
#include "src/tint/lang/wgsl/ast/transform/add_block_attribute.h"
#include "src/tint/lang/wgsl/ast/transform/add_empty_entry_point.h"
#include "src/tint/lang/wgsl/ast/transform/binding_remapper.h"
#include "src/tint/lang/wgsl/ast/transform/builtin_polyfill.h"
#include "src/tint/lang/wgsl/ast/transform/canonicalize_entry_point_io.h"
#include "src/tint/lang/wgsl/ast/transform/clamp_frag_depth.h"
#include "src/tint/lang/wgsl/ast/transform/demote_to_helper.h"
#include "src/tint/lang/wgsl/ast/transform/direct_variable_access.h"
#include "src/tint/lang/wgsl/ast/transform/disable_uniformity_analysis.h"
#include "src/tint/lang/wgsl/ast/transform/expand_compound_assignment.h"
#include "src/tint/lang/wgsl/ast/transform/fold_constants.h"
#include "src/tint/lang/wgsl/ast/transform/manager.h"
#include "src/tint/lang/wgsl/ast/transform/multiplanar_external_texture.h"
#include "src/tint/lang/wgsl/ast/transform/offset_first_index.h"
#include "src/tint/lang/wgsl/ast/transform/preserve_padding.h"
#include "src/tint/lang/wgsl/ast/transform/promote_initializers_to_let.h"
#include "src/tint/lang/wgsl/ast/transform/promote_side_effects_to_decl.h"
#include "src/tint/lang/wgsl/ast/transform/remove_continue_in_switch.h"
#include "src/tint/lang/wgsl/ast/transform/remove_phonies.h"
#include "src/tint/lang/wgsl/ast/transform/renamer.h"
#include "src/tint/lang/wgsl/ast/transform/robustness.h"
#include "src/tint/lang/wgsl/ast/transform/simplify_pointers.h"
#include "src/tint/lang/wgsl/ast/transform/single_entry_point.h"
#include "src/tint/lang/wgsl/ast/transform/std140.h"
#include "src/tint/lang/wgsl/ast/transform/unshadow.h"
#include "src/tint/lang/wgsl/ast/transform/zero_init_workgroup_memory.h"
#include "src/tint/lang/wgsl/ast/variable_decl_statement.h"
#include "src/tint/lang/wgsl/helpers/append_vector.h"
#include "src/tint/lang/wgsl/helpers/check_supported_extensions.h"
#include "src/tint/lang/wgsl/sem/block_statement.h"
#include "src/tint/lang/wgsl/sem/builtin_enum_expression.h"
#include "src/tint/lang/wgsl/sem/call.h"
#include "src/tint/lang/wgsl/sem/function.h"
#include "src/tint/lang/wgsl/sem/member_accessor_expression.h"
#include "src/tint/lang/wgsl/sem/module.h"
#include "src/tint/lang/wgsl/sem/statement.h"
#include "src/tint/lang/wgsl/sem/struct.h"
#include "src/tint/lang/wgsl/sem/switch_statement.h"
#include "src/tint/lang/wgsl/sem/value_constructor.h"
#include "src/tint/lang/wgsl/sem/value_conversion.h"
#include "src/tint/lang/wgsl/sem/variable.h"
#include "src/tint/utils/containers/map.h"
#include "src/tint/utils/ice/ice.h"
#include "src/tint/utils/macros/defer.h"
#include "src/tint/utils/macros/scoped_assignment.h"
#include "src/tint/utils/rtti/switch.h"
#include "src/tint/utils/text/string.h"
#include "src/tint/utils/text/string_stream.h"
using namespace tint::core::number_suffixes; // NOLINT
using namespace tint::core::fluent_types; // NOLINT
namespace tint::glsl::writer {
namespace {
const char kTempNamePrefix[] = "tint_tmp";
bool last_is_break(const ast::BlockStatement* stmts) {
return tint::IsAnyOf<ast::BreakStatement>(stmts->Last());
}
bool IsRelational(tint::core::BinaryOp op) {
return op == tint::core::BinaryOp::kEqual || op == tint::core::BinaryOp::kNotEqual ||
op == tint::core::BinaryOp::kLessThan || op == tint::core::BinaryOp::kGreaterThan ||
op == tint::core::BinaryOp::kLessThanEqual ||
op == tint::core::BinaryOp::kGreaterThanEqual;
}
bool RequiresOESSampleVariables(tint::core::BuiltinValue builtin) {
switch (builtin) {
case tint::core::BuiltinValue::kSampleIndex:
case tint::core::BuiltinValue::kSampleMask:
return true;
default:
return false;
}
}
} // namespace
SanitizedResult::SanitizedResult() = default;
SanitizedResult::~SanitizedResult() = default;
SanitizedResult::SanitizedResult(SanitizedResult&&) = default;
SanitizedResult Sanitize(const Program& in,
const Options& options,
const std::string& entry_point) {
ast::transform::Manager manager;
ast::transform::DataMap data;
manager.Add<ast::transform::FoldConstants>();
manager.Add<ast::transform::DisableUniformityAnalysis>();
// ExpandCompoundAssignment must come before BuiltinPolyfill
manager.Add<ast::transform::ExpandCompoundAssignment>();
if (!entry_point.empty()) {
manager.Add<ast::transform::SingleEntryPoint>();
data.Add<ast::transform::SingleEntryPoint::Config>(entry_point);
}
manager.Add<ast::transform::PreservePadding>(); // Must come before DirectVariableAccess
manager.Add<ast::transform::Unshadow>(); // Must come before DirectVariableAccess
manager.Add<ast::transform::PromoteSideEffectsToDecl>();
if (!options.disable_robustness) {
// Robustness must come after PromoteSideEffectsToDecl
// Robustness must come before BuiltinPolyfill and CanonicalizeEntryPointIO
manager.Add<ast::transform::Robustness>();
}
// Note: it is more efficient for MultiplanarExternalTexture to come after Robustness
data.Add<ast::transform::MultiplanarExternalTexture::NewBindingPoints>(
options.external_texture_options.bindings_map);
manager.Add<ast::transform::MultiplanarExternalTexture>();
{ // Builtin polyfills
ast::transform::BuiltinPolyfill::Builtins polyfills;
polyfills.acosh = ast::transform::BuiltinPolyfill::Level::kRangeCheck;
polyfills.atanh = ast::transform::BuiltinPolyfill::Level::kRangeCheck;
polyfills.bgra8unorm = true;
polyfills.bitshift_modulo = true;
polyfills.conv_f32_to_iu32 = true;
polyfills.count_leading_zeros = true;
polyfills.count_trailing_zeros = true;
polyfills.extract_bits = ast::transform::BuiltinPolyfill::Level::kClampParameters;
polyfills.first_leading_bit = true;
polyfills.first_trailing_bit = true;
polyfills.insert_bits = ast::transform::BuiltinPolyfill::Level::kClampParameters;
polyfills.int_div_mod = !options.disable_polyfill_integer_div_mod;
polyfills.saturate = true;
polyfills.texture_sample_base_clamp_to_edge_2d_f32 = true;
polyfills.workgroup_uniform_load = true;
polyfills.dot_4x8_packed = true;
polyfills.pack_unpack_4x8 = true;
polyfills.pack_4xu8_clamp = true;
data.Add<ast::transform::BuiltinPolyfill::Config>(polyfills);
manager.Add<ast::transform::BuiltinPolyfill>(); // Must come before DirectVariableAccess
}
manager.Add<ast::transform::DirectVariableAccess>();
if (!options.disable_workgroup_init) {
// ZeroInitWorkgroupMemory must come before CanonicalizeEntryPointIO as
// ZeroInitWorkgroupMemory may inject new builtin parameters.
manager.Add<ast::transform::ZeroInitWorkgroupMemory>();
}
manager.Add<ast::transform::AddBlockAttribute>();
manager.Add<ast::transform::OffsetFirstIndex>();
// ClampFragDepth must come before CanonicalizeEntryPointIO, or the assignments to FragDepth are
// lost
manager.Add<ast::transform::ClampFragDepth>();
// CanonicalizeEntryPointIO must come after Robustness
manager.Add<ast::transform::CanonicalizeEntryPointIO>();
// PadStructs must come after CanonicalizeEntryPointIO
manager.Add<PadStructs>();
// DemoteToHelper must come after PromoteSideEffectsToDecl and ExpandCompoundAssignment.
manager.Add<ast::transform::DemoteToHelper>();
manager.Add<ast::transform::RemovePhonies>();
// TextureBuiltinsFromUniform must come before CombineSamplers to preserve texture binding point
// info, instead of combined sampler binding point. As a result, TextureBuiltinsFromUniform also
// comes before BindingRemapper so the binding point info it reflects is before remapping.
manager.Add<TextureBuiltinsFromUniform>();
data.Add<TextureBuiltinsFromUniform::Config>(
options.texture_builtins_from_uniform.ubo_binding,
options.texture_builtins_from_uniform.ubo_bindingpoint_ordering);
data.Add<CombineSamplersInfo>(options.combined_samplers_info);
manager.Add<CombineSamplers>();
data.Add<ast::transform::BindingRemapper::Remappings>(
options.binding_remapper_options.binding_points,
std::unordered_map<BindingPoint, core::Access>{},
/* allow_collisions */ true);
manager.Add<ast::transform::BindingRemapper>();
manager.Add<ast::transform::PromoteInitializersToLet>();
manager.Add<ast::transform::RemoveContinueInSwitch>();
manager.Add<ast::transform::AddEmptyEntryPoint>();
// Std140 must come after PromoteSideEffectsToDecl and before SimplifyPointers.
manager.Add<ast::transform::Std140>();
manager.Add<Texture1DTo2D>();
manager.Add<ast::transform::SimplifyPointers>();
data.Add<ast::transform::CanonicalizeEntryPointIO::Config>(
ast::transform::CanonicalizeEntryPointIO::ShaderStyle::kGlsl);
data.Add<ast::transform::OffsetFirstIndex::Config>(options.first_vertex_offset,
options.first_instance_offset);
data.Add<ast::transform::ClampFragDepth::Config>(options.depth_range_offsets);
SanitizedResult result;
ast::transform::DataMap outputs;
result.program = manager.Run(in, data, outputs);
return result;
}
ASTPrinter::ASTPrinter(const Program& program, const Version& version)
: builder_(ProgramBuilder::Wrap(program)), version_(version) {}
ASTPrinter::~ASTPrinter() = default;
bool ASTPrinter::Generate() {
if (!tint::wgsl::CheckSupportedExtensions(
"GLSL", builder_.AST(), diagnostics_,
Vector{
wgsl::Extension::kChromiumDisableUniformityAnalysis,
wgsl::Extension::kChromiumExperimentalPushConstant,
wgsl::Extension::kChromiumInternalDualSourceBlending,
wgsl::Extension::kChromiumInternalGraphite,
wgsl::Extension::kF16,
wgsl::Extension::kDualSourceBlending,
})) {
return false;
}
{
auto out = Line();
out << "#version " << version_.major_version << version_.minor_version << "0";
if (version_.IsES()) {
out << " es";
}
}
auto helpers_insertion_point = current_buffer_->lines.size();
Line();
auto* mod = builder_.Sem().Module();
for (auto* decl : mod->DependencyOrderedDeclarations()) {
if (decl->IsAnyOf<ast::Alias, ast::ConstAssert, ast::DiagnosticDirective>()) {
continue; // These are not emitted.
}
Switch(
decl, //
[&](const ast::Variable* global) { return EmitGlobalVariable(global); },
[&](const ast::Struct* str) {
auto* sem = builder_.Sem().Get(str);
bool has_rt_arr = false;
if (auto* arr = sem->Members().Back()->Type()->As<core::type::Array>()) {
has_rt_arr = arr->Count()->Is<core::type::RuntimeArrayCount>();
}
bool is_block =
ast::HasAttribute<ast::transform::AddBlockAttribute::BlockAttribute>(
str->attributes) &&
!sem->UsedAs(core::AddressSpace::kPushConstant);
if (!has_rt_arr && !is_block) {
EmitStructType(current_buffer_, sem);
}
},
[&](const ast::Function* func) {
if (func->IsEntryPoint()) {
EmitEntryPointFunction(func);
} else {
EmitFunction(func);
}
},
[&](const ast::Enable* enable) {
// Record the required extension for generating extension directive later
RecordExtension(enable);
}, //
[&](const ast::Requires*) {
// Do nothing for requiring language features in GLSL.
}, //
TINT_ICE_ON_NO_MATCH);
}
TextBuffer extensions;
if (version_.IsES() && requires_oes_sample_variables_) {
extensions.Append("#extension GL_OES_sample_variables : require");
}
if (requires_f16_extension_) {
extensions.Append("#extension GL_AMD_gpu_shader_half_float : require");
}
if (requires_dual_source_blending_extension_) {
extensions.Append("#extension GL_EXT_blend_func_extended : require");
}
auto indent = current_buffer_->current_indent;
if (!extensions.lines.empty()) {
current_buffer_->Insert(extensions, helpers_insertion_point, indent);
helpers_insertion_point += extensions.lines.size();
}
if (version_.IsES() && requires_default_precision_qualifier_) {
current_buffer_->Insert("precision highp float;", helpers_insertion_point++, indent);
current_buffer_->Insert("precision highp int;", helpers_insertion_point++, indent);
}
if (!helpers_.lines.empty()) {
current_buffer_->Insert("", helpers_insertion_point++, indent);
current_buffer_->Insert(helpers_, helpers_insertion_point, indent);
helpers_insertion_point += helpers_.lines.size();
}
return !diagnostics_.ContainsErrors();
}
void ASTPrinter::RecordExtension(const ast::Enable* enable) {
// Deal with extension node here, recording it within the generator for later emition.
if (enable->HasExtension(wgsl::Extension::kF16)) {
requires_f16_extension_ = true;
}
if (enable->HasExtension(wgsl::Extension::kChromiumInternalDualSourceBlending) ||
enable->HasExtension(wgsl::Extension::kDualSourceBlending)) {
requires_dual_source_blending_extension_ = true;
}
}
void ASTPrinter::EmitIndexAccessor(StringStream& out, const ast::IndexAccessorExpression* expr) {
EmitExpression(out, expr->object);
out << "[";
EmitExpression(out, expr->index);
out << "]";
}
void ASTPrinter::EmitBitcastCall(StringStream& out, const ast::CallExpression* call) {
auto* arg = call->args[0];
auto* src_type = TypeOf(arg)->UnwrapRef();
auto* dst_type = TypeOf(call);
if (!dst_type->is_integer_scalar_or_vector() && !dst_type->is_float_scalar_or_vector()) {
diagnostics_.AddError(Source{})
<< "Unable to do bitcast to type " << dst_type->FriendlyName();
return;
}
// Handle identity bitcast.
if (src_type == dst_type) {
return EmitExpression(out, arg);
}
// Use packFloat2x16 and unpackFloat2x16 for f16 types.
if (src_type->DeepestElement()->Is<core::type::F16>()) {
// Source type must be vec2<f16> or vec4<f16>, since type f16 and vec3<f16> can only have
// identity bitcast.
auto* src_vec = src_type->As<core::type::Vector>();
TINT_ASSERT(src_vec);
TINT_ASSERT(((src_vec->Width() == 2u) || (src_vec->Width() == 4u)));
std::string fn =
GetOrAdd(bitcast_funcs_, BinaryOperandType{{src_type, dst_type}}, [&]() -> std::string {
TextBuffer b;
TINT_DEFER(helpers_.Append(b));
auto fn_name = UniqueIdentifier("tint_bitcast_from_f16");
{
auto decl = Line(&b);
EmitTypeAndName(decl, dst_type, core::AddressSpace::kUndefined,
core::Access::kUndefined, fn_name);
{
ScopedParen sp(decl);
EmitTypeAndName(decl, src_type, core::AddressSpace::kUndefined,
core::Access::kUndefined, "src");
}
decl << " {";
}
{
ScopedIndent si(&b);
switch (src_vec->Width()) {
case 2: {
Line(&b) << "uint r = packFloat2x16(src);";
break;
}
case 4: {
Line(&b)
<< "uvec2 r = uvec2(packFloat2x16(src.xy), packFloat2x16(src.zw));";
break;
}
}
auto s = Line(&b);
s << "return ";
if (dst_type->is_float_scalar_or_vector()) {
s << "uintBitsToFloat";
} else {
EmitType(s, dst_type, core::AddressSpace::kUndefined,
core::Access::kReadWrite, "");
}
s << "(r);";
}
Line(&b) << "}";
return fn_name;
});
// Call the helper
out << fn;
{
ScopedParen sp(out);
EmitExpression(out, arg);
}
} else if (dst_type->DeepestElement()->Is<core::type::F16>()) {
// Destination type must be vec2<f16> or vec4<f16>.
auto* dst_vec = dst_type->As<core::type::Vector>();
TINT_ASSERT(dst_vec);
TINT_ASSERT(((dst_vec->Width() == 2u) || (dst_vec->Width() == 4u)));
std::string fn =
GetOrAdd(bitcast_funcs_, BinaryOperandType{{src_type, dst_type}}, [&]() -> std::string {
TextBuffer b;
TINT_DEFER(helpers_.Append(b));
auto fn_name = UniqueIdentifier("tint_bitcast_to_f16");
{
auto decl = Line(&b);
EmitTypeAndName(decl, dst_type, core::AddressSpace::kUndefined,
core::Access::kUndefined, fn_name);
{
ScopedParen sp(decl);
EmitTypeAndName(decl, src_type, core::AddressSpace::kUndefined,
core::Access::kUndefined, "src");
}
decl << " {";
}
{
ScopedIndent si(&b);
if (auto src_vec = src_type->As<core::type::Vector>()) {
// Source vector type must be vec2<f32/i32/u32>, destination type vec4<f16>.
TINT_ASSERT(
(src_vec->DeepestElement()
->IsAnyOf<core::type::I32, core::type::U32, core::type::F32>()));
TINT_ASSERT((src_vec->Width() == 2u));
{
auto s = Line(&b);
s << "uvec2 r = ";
if (src_type->is_float_scalar_or_vector()) {
s << "floatBitsToUint";
} else {
s << "uvec2";
}
s << "(src);";
}
Line(&b) << "f16vec2 v_xy = unpackFloat2x16(r.x);";
Line(&b) << "f16vec2 v_zw = unpackFloat2x16(r.y);";
Line(&b) << "return f16vec4(v_xy.x, v_xy.y, v_zw.x, v_zw.y);";
} else {
// Source scalar type must be f32/i32/u32, destination type vec2<f16>.
TINT_ASSERT(
(src_type
->IsAnyOf<core::type::I32, core::type::U32, core::type::F32>()));
{
auto s = Line(&b);
s << "uint r = ";
if (src_type->is_float_scalar_or_vector()) {
s << "floatBitsToUint";
} else {
s << "uint";
}
s << "(src);";
}
Line(&b) << "return unpackFloat2x16(r);";
}
}
Line(&b) << "}";
return fn_name;
});
// Call the helper
out << fn;
{
ScopedParen sp(out);
EmitExpression(out, arg);
}
} else {
if (src_type->is_float_scalar_or_vector() &&
dst_type->is_signed_integer_scalar_or_vector()) {
out << "floatBitsToInt";
} else if (src_type->is_float_scalar_or_vector() &&
dst_type->is_unsigned_integer_scalar_or_vector()) {
out << "floatBitsToUint";
} else if (src_type->is_signed_integer_scalar_or_vector() &&
dst_type->is_float_scalar_or_vector()) {
out << "intBitsToFloat";
} else if (src_type->is_unsigned_integer_scalar_or_vector() &&
dst_type->is_float_scalar_or_vector()) {
out << "uintBitsToFloat";
} else {
EmitType(out, dst_type, core::AddressSpace::kUndefined, core::Access::kReadWrite, "");
}
ScopedParen sp(out);
EmitExpression(out, arg);
}
}
void ASTPrinter::EmitAssign(const ast::AssignmentStatement* stmt) {
auto out = Line();
EmitExpression(out, stmt->lhs);
out << " = ";
EmitExpression(out, stmt->rhs);
out << ";";
}
void ASTPrinter::EmitVectorRelational(StringStream& out, const ast::BinaryExpression* expr) {
switch (expr->op) {
case core::BinaryOp::kEqual:
out << "equal";
break;
case core::BinaryOp::kNotEqual:
out << "notEqual";
break;
case core::BinaryOp::kLessThan:
out << "lessThan";
break;
case core::BinaryOp::kGreaterThan:
out << "greaterThan";
break;
case core::BinaryOp::kLessThanEqual:
out << "lessThanEqual";
break;
case core::BinaryOp::kGreaterThanEqual:
out << "greaterThanEqual";
break;
default:
break;
}
ScopedParen sp(out);
EmitExpression(out, expr->lhs);
out << ", ";
EmitExpression(out, expr->rhs);
}
void ASTPrinter::EmitBitwiseBoolOp(StringStream& out, const ast::BinaryExpression* expr) {
auto* bool_type = TypeOf(expr->lhs)->UnwrapRef();
auto* uint_type = BoolTypeToUint(bool_type);
// Cast result to bool scalar or vector type.
EmitType(out, bool_type, core::AddressSpace::kUndefined, core::Access::kReadWrite, "");
ScopedParen outerCastParen(out);
// Cast LHS to uint scalar or vector type.
EmitType(out, uint_type, core::AddressSpace::kUndefined, core::Access::kReadWrite, "");
{
ScopedParen innerCastParen(out);
// Emit LHS.
EmitExpression(out, expr->lhs);
}
// Emit operator.
if (expr->op == core::BinaryOp::kAnd) {
out << " & ";
} else if (TINT_LIKELY(expr->op == core::BinaryOp::kOr)) {
out << " | ";
} else {
TINT_ICE() << "unexpected binary op: " << expr->op;
}
// Cast RHS to uint scalar or vector type.
EmitType(out, uint_type, core::AddressSpace::kUndefined, core::Access::kReadWrite, "");
{
ScopedParen innerCastParen(out);
// Emit RHS.
EmitExpression(out, expr->rhs);
}
}
void ASTPrinter::EmitFloatModulo(StringStream& out, const ast::BinaryExpression* expr) {
std::string fn;
auto* ret_ty = TypeOf(expr)->UnwrapRef();
auto* lhs_ty = TypeOf(expr->lhs)->UnwrapRef();
auto* rhs_ty = TypeOf(expr->rhs)->UnwrapRef();
fn = tint::GetOrAdd(float_modulo_funcs_, BinaryOperandType{{lhs_ty, rhs_ty}},
[&]() -> std::string {
TextBuffer b;
TINT_DEFER(helpers_.Append(b));
auto fn_name = UniqueIdentifier("tint_float_modulo");
std::vector<std::string> parameter_names;
{
auto decl = Line(&b);
EmitTypeAndName(decl, ret_ty, core::AddressSpace::kUndefined,
core::Access::kUndefined, fn_name);
{
ScopedParen sp(decl);
const auto* ty = TypeOf(expr->lhs)->UnwrapRef();
EmitTypeAndName(decl, ty, core::AddressSpace::kUndefined,
core::Access::kUndefined, "lhs");
decl << ", ";
ty = TypeOf(expr->rhs)->UnwrapRef();
EmitTypeAndName(decl, ty, core::AddressSpace::kUndefined,
core::Access::kUndefined, "rhs");
}
decl << " {";
}
{
ScopedIndent si(&b);
Line(&b) << "return (lhs - rhs * trunc(lhs / rhs));";
}
Line(&b) << "}";
Line(&b);
return fn_name;
});
// Call the helper
out << fn;
{
ScopedParen sp(out);
EmitExpression(out, expr->lhs);
out << ", ";
EmitExpression(out, expr->rhs);
}
}
void ASTPrinter::EmitBinary(StringStream& out, const ast::BinaryExpression* expr) {
if (IsRelational(expr->op) && !TypeOf(expr->lhs)->UnwrapRef()->Is<core::type::Scalar>()) {
EmitVectorRelational(out, expr);
return;
}
if (expr->op == core::BinaryOp::kLogicalAnd || expr->op == core::BinaryOp::kLogicalOr) {
auto name = UniqueIdentifier(kTempNamePrefix);
{
auto pre = Line();
pre << "bool " << name << " = ";
EmitExpression(pre, expr->lhs);
pre << ";";
}
if (expr->op == core::BinaryOp::kLogicalOr) {
Line() << "if (!" << name << ") {";
} else {
Line() << "if (" << name << ") {";
}
{
ScopedIndent si(this);
auto pre = Line();
pre << name << " = ";
EmitExpression(pre, expr->rhs);
pre << ";";
}
Line() << "}";
out << "(" << name << ")";
return;
}
if ((expr->op == core::BinaryOp::kAnd || expr->op == core::BinaryOp::kOr) &&
TypeOf(expr->lhs)->UnwrapRef()->is_bool_scalar_or_vector()) {
EmitBitwiseBoolOp(out, expr);
return;
}
if (expr->op == core::BinaryOp::kModulo &&
(TypeOf(expr->lhs)->UnwrapRef()->is_float_scalar_or_vector() ||
TypeOf(expr->rhs)->UnwrapRef()->is_float_scalar_or_vector())) {
EmitFloatModulo(out, expr);
return;
}
ScopedParen sp(out);
EmitExpression(out, expr->lhs);
out << " ";
switch (expr->op) {
case core::BinaryOp::kAnd:
out << "&";
break;
case core::BinaryOp::kOr:
out << "|";
break;
case core::BinaryOp::kXor:
out << "^";
break;
case core::BinaryOp::kLogicalAnd:
case core::BinaryOp::kLogicalOr: {
// These are both handled above.
TINT_UNREACHABLE();
}
case core::BinaryOp::kEqual:
out << "==";
break;
case core::BinaryOp::kNotEqual:
out << "!=";
break;
case core::BinaryOp::kLessThan:
out << "<";
break;
case core::BinaryOp::kGreaterThan:
out << ">";
break;
case core::BinaryOp::kLessThanEqual:
out << "<=";
break;
case core::BinaryOp::kGreaterThanEqual:
out << ">=";
break;
case core::BinaryOp::kShiftLeft:
out << "<<";
break;
case core::BinaryOp::kShiftRight:
out << R"(>>)";
break;
case core::BinaryOp::kAdd:
out << "+";
break;
case core::BinaryOp::kSubtract:
out << "-";
break;
case core::BinaryOp::kMultiply:
out << "*";
break;
case core::BinaryOp::kDivide:
out << "/";
break;
case core::BinaryOp::kModulo:
out << "%";
break;
}
out << " ";
EmitExpression(out, expr->rhs);
}
void ASTPrinter::EmitStatements(VectorRef<const ast::Statement*> stmts) {
for (auto* s : stmts) {
EmitStatement(s);
}
}
void ASTPrinter::EmitStatementsWithIndent(VectorRef<const ast::Statement*> stmts) {
ScopedIndent si(this);
EmitStatements(stmts);
}
void ASTPrinter::EmitBlock(const ast::BlockStatement* stmt) {
Line() << "{";
EmitStatementsWithIndent(stmt->statements);
Line() << "}";
}
void ASTPrinter::EmitBreak(const ast::BreakStatement*) {
Line() << "break;";
}
void ASTPrinter::EmitBreakIf(const ast::BreakIfStatement* b) {
auto out = Line();
out << "if (";
EmitExpression(out, b->condition);
out << ") { break; }";
}
void ASTPrinter::EmitCall(StringStream& out, const ast::CallExpression* expr) {
auto* call = builder_.Sem().Get<sem::Call>(expr);
Switch(
call->Target(), //
[&](const sem::Function* fn) { EmitFunctionCall(out, call, fn); },
[&](const sem::BuiltinFn* builtin) { EmitBuiltinCall(out, call, builtin); },
[&](const sem::ValueConversion* conv) { EmitValueConversion(out, call, conv); },
[&](const sem::ValueConstructor* ctor) { EmitValueConstructor(out, call, ctor); },
TINT_ICE_ON_NO_MATCH);
}
void ASTPrinter::EmitFunctionCall(StringStream& out,
const sem::Call* call,
const sem::Function* fn) {
const auto& args = call->Arguments();
auto* ident = fn->Declaration()->name;
out << ident->symbol.Name();
ScopedParen sp(out);
bool first = true;
for (auto* arg : args) {
if (!first) {
out << ", ";
}
first = false;
EmitExpression(out, arg->Declaration());
}
}
void ASTPrinter::EmitBuiltinCall(StringStream& out,
const sem::Call* call,
const sem::BuiltinFn* builtin) {
auto* expr = call->Declaration();
if (builtin->IsTexture()) {
EmitTextureCall(out, call, builtin);
} else if (builtin->Fn() == wgsl::BuiltinFn::kCountOneBits) {
EmitCountOneBitsCall(out, expr);
} else if (builtin->Fn() == wgsl::BuiltinFn::kSelect) {
EmitSelectCall(out, expr, builtin);
} else if (builtin->Fn() == wgsl::BuiltinFn::kBitcast) {
EmitBitcastCall(out, expr);
} else if (builtin->Fn() == wgsl::BuiltinFn::kDot) {
EmitDotCall(out, expr, builtin);
} else if (builtin->Fn() == wgsl::BuiltinFn::kModf) {
EmitModfCall(out, expr, builtin);
} else if (builtin->Fn() == wgsl::BuiltinFn::kFrexp) {
EmitFrexpCall(out, expr, builtin);
} else if (builtin->Fn() == wgsl::BuiltinFn::kDegrees) {
EmitDegreesCall(out, expr, builtin);
} else if (builtin->Fn() == wgsl::BuiltinFn::kRadians) {
EmitRadiansCall(out, expr, builtin);
} else if (builtin->Fn() == wgsl::BuiltinFn::kQuantizeToF16) {
EmitQuantizeToF16Call(out, expr, builtin);
} else if (builtin->Fn() == wgsl::BuiltinFn::kArrayLength) {
EmitArrayLength(out, expr);
} else if (builtin->Fn() == wgsl::BuiltinFn::kExtractBits) {
EmitExtractBits(out, expr);
} else if (builtin->Fn() == wgsl::BuiltinFn::kInsertBits) {
EmitInsertBits(out, expr);
} else if (builtin->Fn() == wgsl::BuiltinFn::kFma && version_.IsES()) {
EmitEmulatedFMA(out, expr);
} else if (builtin->Fn() == wgsl::BuiltinFn::kAbs &&
TypeOf(expr->args[0])->UnwrapRef()->is_unsigned_integer_scalar_or_vector()) {
// GLSL does not support abs() on unsigned arguments. However, it's a no-op.
EmitExpression(out, expr->args[0]);
} else if ((builtin->Fn() == wgsl::BuiltinFn::kAny || builtin->Fn() == wgsl::BuiltinFn::kAll) &&
TypeOf(expr->args[0])->UnwrapRef()->Is<core::type::Scalar>()) {
// GLSL does not support any() or all() on scalar arguments. It's a no-op.
EmitExpression(out, expr->args[0]);
} else if (builtin->IsBarrier()) {
EmitBarrierCall(out, builtin);
} else if (builtin->IsAtomic()) {
EmitWorkgroupAtomicCall(out, expr, builtin);
} else {
auto name = generate_builtin_name(builtin);
if (name.empty()) {
return;
}
out << name;
ScopedParen sp(out);
bool first = true;
for (auto* arg : call->Arguments()) {
if (!first) {
out << ", ";
}
first = false;
EmitExpression(out, arg->Declaration());
}
}
}
void ASTPrinter::EmitValueConversion(StringStream& out,
const sem::Call* call,
const sem::ValueConversion* conv) {
EmitType(out, conv->Target(), core::AddressSpace::kUndefined, core::Access::kReadWrite, "");
ScopedParen sp(out);
EmitExpression(out, call->Arguments()[0]->Declaration());
}
void ASTPrinter::EmitValueConstructor(StringStream& out,
const sem::Call* call,
const sem::ValueConstructor* ctor) {
auto* type = ctor->ReturnType();
// If the value constructor is empty then we need to construct with the zero value for all
// components.
if (call->Arguments().IsEmpty()) {
EmitZeroValue(out, type);
return;
}
EmitType(out, type, core::AddressSpace::kUndefined, core::Access::kReadWrite, "");
ScopedParen sp(out);
bool first = true;
for (auto* arg : call->Arguments()) {
if (!first) {
out << ", ";
}
first = false;
EmitExpression(out, arg->Declaration());
}
}
void ASTPrinter::EmitWorkgroupAtomicCall(StringStream& out,
const ast::CallExpression* expr,
const sem::BuiltinFn* builtin) {
auto call = [&](const char* name) {
out << name;
{
ScopedParen sp(out);
for (size_t i = 0; i < expr->args.Length(); i++) {
auto* arg = expr->args[i];
if (i > 0) {
out << ", ";
}
EmitExpression(out, arg);
}
}
return;
};
switch (builtin->Fn()) {
case wgsl::BuiltinFn::kAtomicLoad: {
// GLSL does not have an atomicLoad, so we emulate it with
// atomicOr using 0 as the OR value
out << "atomicOr";
{
ScopedParen sp(out);
EmitExpression(out, expr->args[0]);
out << ", 0";
if (builtin->ReturnType()->Is<core::type::U32>()) {
out << "u";
}
}
return;
}
case wgsl::BuiltinFn::kAtomicCompareExchangeWeak: {
EmitStructType(&helpers_, builtin->ReturnType()->As<core::type::Struct>());
auto* dest = expr->args[0];
auto* compare_value = expr->args[1];
auto* value = expr->args[2];
std::string result = UniqueIdentifier("atomic_compare_result");
{
auto pre = Line();
EmitTypeAndName(pre, builtin->ReturnType(), core::AddressSpace::kUndefined,
core::Access::kUndefined, result);
pre << ";";
}
{
auto pre = Line();
pre << result << ".old_value = atomicCompSwap";
{
ScopedParen sp(pre);
EmitExpression(pre, dest);
pre << ", ";
EmitExpression(pre, compare_value);
pre << ", ";
EmitExpression(pre, value);
}
pre << ";";
}
{
auto pre = Line();
pre << result << ".exchanged = " << result << ".old_value == ";
EmitExpression(pre, compare_value);
pre << ";";
}
out << result;
return;
}
case wgsl::BuiltinFn::kAtomicAdd:
call("atomicAdd");
return;
case wgsl::BuiltinFn::kAtomicSub:
out << "atomicAdd";
{
ScopedParen sp(out);
TINT_ASSERT(expr->args.Length() == 2);
EmitExpression(out, expr->args[0]);
out << ", -";
{
ScopedParen argSP(out);
EmitExpression(out, expr->args[1]);
}
}
return;
case wgsl::BuiltinFn::kAtomicMax:
call("atomicMax");
return;
case wgsl::BuiltinFn::kAtomicMin:
call("atomicMin");
return;
case wgsl::BuiltinFn::kAtomicAnd:
call("atomicAnd");
return;
case wgsl::BuiltinFn::kAtomicOr:
call("atomicOr");
return;
case wgsl::BuiltinFn::kAtomicXor:
call("atomicXor");
return;
case wgsl::BuiltinFn::kAtomicExchange:
case wgsl::BuiltinFn::kAtomicStore:
// GLSL does not have an atomicStore, so we emulate it with
// atomicExchange.
call("atomicExchange");
return;
default:
break;
}
TINT_UNREACHABLE() << "unsupported atomic builtin: " << builtin->Fn();
}
void ASTPrinter::EmitArrayLength(StringStream& out, const ast::CallExpression* expr) {
out << "uint(";
EmitExpression(out, expr->args[0]);
out << ".length())";
}
void ASTPrinter::EmitExtractBits(StringStream& out, const ast::CallExpression* expr) {
out << "bitfieldExtract(";
EmitExpression(out, expr->args[0]);
out << ", int(";
EmitExpression(out, expr->args[1]);
out << "), int(";
EmitExpression(out, expr->args[2]);
out << "))";
}
void ASTPrinter::EmitInsertBits(StringStream& out, const ast::CallExpression* expr) {
out << "bitfieldInsert(";
EmitExpression(out, expr->args[0]);
out << ", ";
EmitExpression(out, expr->args[1]);
out << ", int(";
EmitExpression(out, expr->args[2]);
out << "), int(";
EmitExpression(out, expr->args[3]);
out << "))";
}
void ASTPrinter::EmitEmulatedFMA(StringStream& out, const ast::CallExpression* expr) {
out << "((";
EmitExpression(out, expr->args[0]);
out << ") * (";
EmitExpression(out, expr->args[1]);
out << ") + (";
EmitExpression(out, expr->args[2]);
out << "))";
}
void ASTPrinter::EmitCountOneBitsCall(StringStream& out, const ast::CallExpression* expr) {
// GLSL's bitCount returns an integer type, so cast it to the appropriate
// unsigned type.
EmitType(out, TypeOf(expr)->UnwrapRef(), core::AddressSpace::kUndefined,
core::Access::kReadWrite, "");
out << "(bitCount(";
EmitExpression(out, expr->args[0]);
out << "))";
}
void ASTPrinter::EmitSelectCall(StringStream& out,
const ast::CallExpression* expr,
const sem::BuiltinFn* builtin) {
// GLSL does not support ternary expressions with a bool vector conditional,
// so polyfill with a helper.
if (auto* vec = builtin->Parameters()[2]->Type()->As<core::type::Vector>()) {
CallBuiltinHelper(out, expr, builtin,
[&](TextBuffer* b, const std::vector<std::string>& params) {
auto l = Line(b);
l << " return ";
EmitType(l, builtin->ReturnType(), core::AddressSpace::kUndefined,
core::Access::kUndefined, "");
{
ScopedParen sp(l);
for (uint32_t i = 0; i < vec->Width(); i++) {
if (i > 0) {
l << ", ";
}
l << params[2] << "[" << i << "] ? " << params[1] << "[" << i
<< "] : " << params[0] << "[" << i << "]";
}
}
l << ";";
});
return;
}
auto* expr_false = expr->args[0];
auto* expr_true = expr->args[1];
auto* expr_cond = expr->args[2];
ScopedParen paren(out);
EmitExpression(out, expr_cond);
out << " ? ";
EmitExpression(out, expr_true);
out << " : ";
EmitExpression(out, expr_false);
}
void ASTPrinter::EmitDotCall(StringStream& out,
const ast::CallExpression* expr,
const sem::BuiltinFn* builtin) {
auto* vec_ty = builtin->Parameters()[0]->Type()->As<core::type::Vector>();
std::string fn = "dot";
if (vec_ty->type()->is_integer_scalar()) {
// GLSL does not have a builtin for dot() with integer vector types.
// Generate the helper function if it hasn't been created already
fn = tint::GetOrAdd(int_dot_funcs_, vec_ty, [&]() -> std::string {
TextBuffer b;
TINT_DEFER(helpers_.Append(b));
auto fn_name = UniqueIdentifier("tint_int_dot");
std::string v;
{
StringStream s;
EmitType(s, vec_ty->type(), core::AddressSpace::kUndefined, core::Access::kRead,
"");
v = s.str();
}
{ // (u)int tint_int_dot([i|u]vecN a, [i|u]vecN b) {
auto l = Line(&b);
EmitType(l, vec_ty->type(), core::AddressSpace::kUndefined, core::Access::kRead,
"");
l << " " << fn_name << "(";
EmitType(l, vec_ty, core::AddressSpace::kUndefined, core::Access::kRead, "");
l << " a, ";
EmitType(l, vec_ty, core::AddressSpace::kUndefined, core::Access::kRead, "");
l << " b) {";
}
{
auto l = Line(&b);
l << " return ";
for (uint32_t i = 0; i < vec_ty->Width(); i++) {
if (i > 0) {
l << " + ";
}
l << "a[" << i << "]*b[" << i << "]";
}
l << ";";
}
Line(&b) << "}";
return fn_name;
});
}
out << fn;
ScopedParen sp(out);
EmitExpression(out, expr->args[0]);
out << ", ";
EmitExpression(out, expr->args[1]);
}
void ASTPrinter::EmitModfCall(StringStream& out,
const ast::CallExpression* expr,
const sem::BuiltinFn* builtin) {
TINT_ASSERT(expr->args.Length() == 1);
CallBuiltinHelper(
out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) {
// Emit the builtin return type unique to this overload. This does not
// exist in the AST, so it will not be generated in Generate().
EmitStructType(&helpers_, builtin->ReturnType()->As<core::type::Struct>());
{
auto l = Line(b);
EmitType(l, builtin->ReturnType(), core::AddressSpace::kUndefined,
core::Access::kUndefined, "");
l << " result;";
}
Line(b) << "result.fract = modf(" << params[0] << ", result.whole);";
Line(b) << "return result;";
});
}
void ASTPrinter::EmitFrexpCall(StringStream& out,
const ast::CallExpression* expr,
const sem::BuiltinFn* builtin) {
TINT_ASSERT(expr->args.Length() == 1);
CallBuiltinHelper(
out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) {
// Emit the builtin return type unique to this overload. This does not
// exist in the AST, so it will not be generated in Generate().
EmitStructType(&helpers_, builtin->ReturnType()->As<core::type::Struct>());
{
auto l = Line(b);
EmitType(l, builtin->ReturnType(), core::AddressSpace::kUndefined,
core::Access::kUndefined, "");
l << " result;";
}
Line(b) << "result.fract = frexp(" << params[0] << ", result.exp);";
Line(b) << "return result;";
});
}
void ASTPrinter::EmitDegreesCall(StringStream& out,
const ast::CallExpression* expr,
const sem::BuiltinFn* builtin) {
auto* return_elem_type = builtin->ReturnType()->DeepestElement();
const std::string suffix = Is<core::type::F16>(return_elem_type) ? "hf" : "f";
CallBuiltinHelper(out, expr, builtin,
[&](TextBuffer* b, const std::vector<std::string>& params) {
Line(b) << "return " << params[0] << " * " << std::setprecision(20)
<< sem::kRadToDeg << suffix << ";";
});
}
void ASTPrinter::EmitRadiansCall(StringStream& out,
const ast::CallExpression* expr,
const sem::BuiltinFn* builtin) {
auto* return_elem_type = builtin->ReturnType()->DeepestElement();
const std::string suffix = Is<core::type::F16>(return_elem_type) ? "hf" : "f";
CallBuiltinHelper(out, expr, builtin,
[&](TextBuffer* b, const std::vector<std::string>& params) {
Line(b) << "return " << params[0] << " * " << std::setprecision(20)
<< sem::kDegToRad << suffix << ";";
});
}
void ASTPrinter::EmitQuantizeToF16Call(StringStream& out,
const ast::CallExpression* expr,
const sem::BuiltinFn* builtin) {
// Emulate by casting to f16 and back again.
CallBuiltinHelper(
out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) {
const auto v = params[0];
if (auto* vec = builtin->ReturnType()->As<core::type::Vector>()) {
switch (vec->Width()) {
case 2: {
Line(b) << "return unpackHalf2x16(packHalf2x16(" << v << "));";
return;
}
case 3: {
Line(b) << "return vec3(";
Line(b) << " unpackHalf2x16(packHalf2x16(" << v << ".xy)),";
Line(b) << " unpackHalf2x16(packHalf2x16(" << v << ".zz)).x);";
return;
}
default: {
Line(b) << "return vec4(";
Line(b) << " unpackHalf2x16(packHalf2x16(" << v << ".xy)),";
Line(b) << " unpackHalf2x16(packHalf2x16(" << v << ".zw)));";
return;
}
}
}
Line(b) << "return unpackHalf2x16(packHalf2x16(vec2(" << v << "))).x;";
});
}
void ASTPrinter::EmitBarrierCall(StringStream& out, const sem::BuiltinFn* builtin) {
// TODO(crbug.com/tint/661): Combine sequential barriers to a single
// instruction.
if (builtin->Fn() == wgsl::BuiltinFn::kWorkgroupBarrier) {
out << "barrier()";
} else if (builtin->Fn() == wgsl::BuiltinFn::kStorageBarrier) {
out << "{ barrier(); memoryBarrierBuffer(); }";
} else if (builtin->Fn() == wgsl::BuiltinFn::kTextureBarrier) {
out << "{ barrier(); memoryBarrierImage(); }";
} else {
TINT_UNREACHABLE() << "unexpected barrier builtin type " << builtin->Fn();
}
}
const ast::Expression* ASTPrinter::CreateF32Zero(const sem::Statement* stmt) {
auto* zero = builder_.Expr(0_f);
auto* f32 = builder_.create<core::type::F32>();
auto* sem_zero = builder_.create<sem::ValueExpression>(
zero, f32, core::EvaluationStage::kRuntime, stmt, /* constant_value */ nullptr,
/* has_side_effects */ false);
builder_.Sem().Add(zero, sem_zero);
return zero;
}
void ASTPrinter::EmitTextureCall(StringStream& out,
const sem::Call* call,
const sem::BuiltinFn* builtin) {
using Usage = core::ParameterUsage;
auto& signature = builtin->Signature();
auto* expr = call->Declaration();
auto arguments = expr->args;
// Returns the argument with the given usage
auto arg = [&](Usage usage) {
auto idx = signature.IndexOf(usage);
return (idx >= 0) ? arguments[static_cast<size_t>(idx)] : nullptr;
};
auto* texture = arg(Usage::kTexture);
if (TINT_UNLIKELY(!texture)) {
TINT_ICE() << "missing texture argument";
}
auto* texture_type = TypeOf(texture)->UnwrapRef()->As<core::type::Texture>();
auto emit_signed_int_type = [&](const core::type::Type* ty) {
uint32_t width = ty->Elements().count;
if (width > 1) {
out << "ivec" << width;
} else {
out << "int";
}
};
auto emit_unsigned_int_type = [&](const core::type::Type* ty) {
uint32_t width = ty->Elements().count;
if (width > 1) {
out << "uvec" << width;
} else {
out << "uint";
}
};
auto emit_expr_as_signed = [&](const ast::Expression* e) {
auto* ty = TypeOf(e)->UnwrapRef();
if (!ty->is_unsigned_integer_scalar_or_vector()) {
EmitExpression(out, e);
return;
}
emit_signed_int_type(ty);
ScopedParen sp(out);
EmitExpression(out, e);
return;
};
switch (builtin->Fn()) {
case wgsl::BuiltinFn::kTextureDimensions: {
// textureDimensions() returns an unsigned scalar / vector in WGSL.
// textureSize() / imageSize() returns a signed scalar / vector in GLSL.
// Cast.
emit_unsigned_int_type(call->Type());
ScopedParen sp(out);
if (texture_type->Is<core::type::StorageTexture>()) {
out << "imageSize(";
} else {
out << "textureSize(";
}
EmitExpression(out, texture);
// The LOD parameter is mandatory on textureSize() for non-multisampled
// textures.
if (!texture_type->Is<core::type::StorageTexture>() &&
!texture_type->Is<core::type::MultisampledTexture>() &&
!texture_type->Is<core::type::DepthMultisampledTexture>()) {
out << ", ";
if (auto* level_arg = arg(Usage::kLevel)) {
emit_expr_as_signed(level_arg);
} else {
out << "0";
}
}
out << ")";
// textureSize() on array samplers returns the array size in the
// final component, so strip it out.
if (texture_type->dim() == core::type::TextureDimension::k2dArray ||
texture_type->dim() == core::type::TextureDimension::kCubeArray) {
out << ".xy";
}
return;
}
case wgsl::BuiltinFn::kTextureNumLayers: {
// textureNumLayers() returns an unsigned scalar in WGSL.
// textureSize() / imageSize() returns a signed scalar / vector in GLSL.
// Cast.
out << "uint";
ScopedParen sp(out);
if (texture_type->Is<core::type::StorageTexture>()) {
out << "imageSize(";
} else {
out << "textureSize(";
}
// textureSize() on sampler2dArray returns the array size in the
// final component, so return it
EmitExpression(out, texture);
// The LOD parameter is mandatory on textureSize() for non-multisampled
// textures.
if (!texture_type->Is<core::type::StorageTexture>() &&
!texture_type->Is<core::type::MultisampledTexture>() &&
!texture_type->Is<core::type::DepthMultisampledTexture>()) {
out << ", ";
if (auto* level_arg = arg(Usage::kLevel)) {
emit_expr_as_signed(level_arg);
} else {
out << "0";
}
}
out << ").z";
return;
}
case wgsl::BuiltinFn::kTextureNumLevels: {
// textureNumLevels() returns an unsigned scalar in WGSL.
// textureQueryLevels() returns a signed scalar in GLSL.
// Cast.
out << "uint";
ScopedParen sp(out);
out << "textureQueryLevels(";
EmitExpression(out, texture);
out << ")";
return;
}
case wgsl::BuiltinFn::kTextureNumSamples: {
// textureNumSamples() returns an unsigned scalar in WGSL.
// textureSamples() returns a signed scalar in GLSL.
// Cast.
out << "uint";
ScopedParen sp(out);
out << "textureSamples(";
EmitExpression(out, texture);
out << ")";
return;
}
default:
break;
}
uint32_t glsl_ret_width = 4u;
bool append_depth_ref_to_coords = true;
bool is_depth = texture_type->Is<core::type::DepthTexture>();
switch (builtin->Fn()) {
case wgsl::BuiltinFn::kTextureSample:
case wgsl::BuiltinFn::kTextureSampleBias:
out << "texture";
if (is_depth) {
glsl_ret_width = 1u;
}
break;
case wgsl::BuiltinFn::kTextureSampleLevel:
out << "textureLod";
if (is_depth) {
glsl_ret_width = 1u;
}
break;
case wgsl::BuiltinFn::kTextureGather:
case wgsl::BuiltinFn::kTextureGatherCompare:
out << "textureGather";
append_depth_ref_to_coords = false;
break;
case wgsl::BuiltinFn::kTextureSampleGrad:
out << "textureGrad";
break;
case wgsl::BuiltinFn::kTextureSampleCompare:
case wgsl::BuiltinFn::kTextureSampleCompareLevel:
out << "texture";
glsl_ret_width = 1;
break;
case wgsl::BuiltinFn::kTextureLoad:
if (texture_type->Is<core::type::StorageTexture>()) {
out << "imageLoad";
} else {
out << "texelFetch";
}
break;
case wgsl::BuiltinFn::kTextureStore:
out << "imageStore";
break;
default:
TINT_ICE() << "Unhandled texture builtin '" << std::string(builtin->str()) << "'";
}
if (builtin->Signature().IndexOf(core::ParameterUsage::kOffset) >= 0) {
out << "Offset";
}
out << "(";
EmitExpression(out, texture);
out << ", ";
auto* param_coords = arg(Usage::kCoords);
if (TINT_UNLIKELY(!param_coords)) {
TINT_ICE() << "missing coords argument";
}
if (auto* array_index = arg(Usage::kArrayIndex)) {
// Array index needs to be appended to the coordinates.
param_coords =
tint::wgsl::AppendVector(&builder_, param_coords, array_index)->Declaration();
}
// GLSL requires Dref to be appended to the coordinates, *unless* it's
// samplerCubeArrayShadow, in which case it will be handled as a separate
// parameter.
if (texture_type->dim() == core::type::TextureDimension::kCubeArray) {
append_depth_ref_to_coords = false;
}
if (is_depth && append_depth_ref_to_coords) {
auto* depth_ref = arg(Usage::kDepthRef);
if (!depth_ref) {
// Sampling a depth texture in GLSL always requires a depth reference, so
// append zero here.
depth_ref = CreateF32Zero(builder_.Sem().Get(param_coords)->Stmt());
}
param_coords = tint::wgsl::AppendVector(&builder_, param_coords, depth_ref)->Declaration();
}
emit_expr_as_signed(param_coords);
for (auto usage : {Usage::kLevel, Usage::kDdx, Usage::kDdy, Usage::kSampleIndex}) {
if (auto* e = arg(usage)) {
out << ", ";
if (usage == Usage::kLevel && is_depth) {
// WGSL's textureSampleLevel() "level" param is i32 for depth textures,
// whereas GLSL's textureLod() "lod" param is always float, so cast it.
out << "float(";
EmitExpression(out, e);
out << ")";
} else {
emit_expr_as_signed(e);
}
}
}
if (auto* e = arg(Usage::kValue)) {
out << ", ";
EmitExpression(out, e);
}
// GLSL's textureGather always requires a refZ parameter.
if (is_depth && builtin->Fn() == wgsl::BuiltinFn::kTextureGather) {
out << ", 0.0";
}
// [1] samplerCubeArrayShadow requires a separate depthRef parameter
if (is_depth && !append_depth_ref_to_coords) {
if (auto* e = arg(Usage::kDepthRef)) {
out << ", ";
EmitExpression(out, e);
} else if (builtin->Fn() == wgsl::BuiltinFn::kTextureSample) {
out << ", 0.0f";
}
}
for (auto usage : {Usage::kOffset, Usage::kComponent, Usage::kBias}) {
if (auto* e = arg(usage)) {
out << ", ";
emit_expr_as_signed(e);
}
}
out << ")";
if (builtin->ReturnType()->Is<core::type::Void>()) {
return;
}
// If the builtin return type does not match the number of elements of the
// GLSL builtin, we need to swizzle the expression to generate the correct
// number of components.
uint32_t wgsl_ret_width = 1;
if (auto* vec = builtin->ReturnType()->As<core::type::Vector>()) {
wgsl_ret_width = vec->Width();
}
if (wgsl_ret_width < glsl_ret_width) {
out << ".";
for (uint32_t i = 0; i < wgsl_ret_width; i++) {
out << "xyz"[i];
}
}
if (TINT_UNLIKELY(wgsl_ret_width > glsl_ret_width)) {
TINT_ICE() << "WGSL return width (" << wgsl_ret_width
<< ") is wider than GLSL return width (" << glsl_ret_width << ") for "
<< builtin->Fn();
}
}
std::string ASTPrinter::generate_builtin_name(const sem::BuiltinFn* builtin) {
switch (builtin->Fn()) {
case wgsl::BuiltinFn::kAbs:
case wgsl::BuiltinFn::kAcos:
case wgsl::BuiltinFn::kAcosh:
case wgsl::BuiltinFn::kAll:
case wgsl::BuiltinFn::kAny:
case wgsl::BuiltinFn::kAsin:
case wgsl::BuiltinFn::kAsinh:
case wgsl::BuiltinFn::kAtan:
case wgsl::BuiltinFn::kAtanh:
case wgsl::BuiltinFn::kCeil:
case wgsl::BuiltinFn::kClamp:
case wgsl::BuiltinFn::kCos:
case wgsl::BuiltinFn::kCosh:
case wgsl::BuiltinFn::kCross:
case wgsl::BuiltinFn::kDeterminant:
case wgsl::BuiltinFn::kDistance:
case wgsl::BuiltinFn::kDot:
case wgsl::BuiltinFn::kExp:
case wgsl::BuiltinFn::kExp2:
case wgsl::BuiltinFn::kFloor:
case wgsl::BuiltinFn::kFrexp:
case wgsl::BuiltinFn::kLdexp:
case wgsl::BuiltinFn::kLength:
case wgsl::BuiltinFn::kLog:
case wgsl::BuiltinFn::kLog2:
case wgsl::BuiltinFn::kMax:
case wgsl::BuiltinFn::kMin:
case wgsl::BuiltinFn::kModf:
case wgsl::BuiltinFn::kNormalize:
case wgsl::BuiltinFn::kPow:
case wgsl::BuiltinFn::kReflect:
case wgsl::BuiltinFn::kRefract:
case wgsl::BuiltinFn::kRound:
case wgsl::BuiltinFn::kSign:
case wgsl::BuiltinFn::kSin:
case wgsl::BuiltinFn::kSinh:
case wgsl::BuiltinFn::kSqrt:
case wgsl::BuiltinFn::kStep:
case wgsl::BuiltinFn::kTan:
case wgsl::BuiltinFn::kTanh:
case wgsl::BuiltinFn::kTranspose:
case wgsl::BuiltinFn::kTrunc:
return builtin->str();
case wgsl::BuiltinFn::kAtan2:
return "atan";
case wgsl::BuiltinFn::kCountOneBits:
return "bitCount";
case wgsl::BuiltinFn::kDpdx:
return "dFdx";
case wgsl::BuiltinFn::kDpdxCoarse:
if (version_.IsES()) {
return "dFdx";
}
return "dFdxCoarse";
case wgsl::BuiltinFn::kDpdxFine:
if (version_.IsES()) {
return "dFdx";
}
return "dFdxFine";
case wgsl::BuiltinFn::kDpdy:
return "dFdy";
case wgsl::BuiltinFn::kDpdyCoarse:
if (version_.IsES()) {
return "dFdy";
}
return "dFdyCoarse";
case wgsl::BuiltinFn::kDpdyFine:
if (version_.IsES()) {
return "dFdy";
}
return "dFdyFine";
case wgsl::BuiltinFn::kFaceForward:
return "faceforward";
case wgsl::BuiltinFn::kFract:
return "fract";
case wgsl::BuiltinFn::kFma:
return "fma";
case wgsl::BuiltinFn::kFwidth:
case wgsl::BuiltinFn::kFwidthCoarse:
case wgsl::BuiltinFn::kFwidthFine:
return "fwidth";
case wgsl::BuiltinFn::kInverseSqrt:
return "inversesqrt";
case wgsl::BuiltinFn::kMix:
return "mix";
case wgsl::BuiltinFn::kPack2X16Float:
return "packHalf2x16";
case wgsl::BuiltinFn::kPack2X16Snorm:
return "packSnorm2x16";
case wgsl::BuiltinFn::kPack2X16Unorm:
return "packUnorm2x16";
case wgsl::BuiltinFn::kPack4X8Snorm:
return "packSnorm4x8";
case wgsl::BuiltinFn::kPack4X8Unorm:
return "packUnorm4x8";
case wgsl::BuiltinFn::kReverseBits:
return "bitfieldReverse";
case wgsl::BuiltinFn::kSmoothstep:
return "smoothstep";
case wgsl::BuiltinFn::kUnpack2X16Float:
return "unpackHalf2x16";
case wgsl::BuiltinFn::kUnpack2X16Snorm:
return "unpackSnorm2x16";
case wgsl::BuiltinFn::kUnpack2X16Unorm:
return "unpackUnorm2x16";
case wgsl::BuiltinFn::kUnpack4X8Snorm:
return "unpackSnorm4x8";
case wgsl::BuiltinFn::kUnpack4X8Unorm:
return "unpackUnorm4x8";
default:
diagnostics_.AddError(Source{}) << "Unknown builtin method: " << builtin;
}
return "";
}
void ASTPrinter::EmitCase(const ast::CaseStatement* stmt) {
auto* sem = builder_.Sem().Get<sem::CaseStatement>(stmt);
for (auto* selector : sem->Selectors()) {
auto out = Line();
if (selector->IsDefault()) {
out << "default";
} else {
out << "case ";
EmitConstant(out, selector->Value());
}
out << ":";
if (selector == sem->Selectors().back()) {
out << " {";
}
}
{
ScopedIndent si(this);
EmitStatements(stmt->body->statements);
if (!last_is_break(stmt->body)) {
Line() << "break;";
}
}
Line() << "}";
}
void ASTPrinter::EmitContinue(const ast::ContinueStatement*) {
if (emit_continuing_) {
emit_continuing_();
}
Line() << "continue;";
}
void ASTPrinter::EmitDiscard(const ast::DiscardStatement*) {
// TODO(dsinclair): Verify this is correct when the discard semantics are
// defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361)
Line() << "discard;";
}
void ASTPrinter::EmitExpression(StringStream& out, const ast::Expression* expr) {
if (auto* sem = builder_.Sem().GetVal(expr)) {
if (auto* constant = sem->ConstantValue()) {
EmitConstant(out, constant);
return;
}
}
Switch(
expr, //
[&](const ast::IndexAccessorExpression* a) { EmitIndexAccessor(out, a); },
[&](const ast::BinaryExpression* b) { EmitBinary(out, b); },
[&](const ast::CallExpression* c) { EmitCall(out, c); },
[&](const ast::IdentifierExpression* i) { EmitIdentifier(out, i); },
[&](const ast::LiteralExpression* l) { EmitLiteral(out, l); },
[&](const ast::MemberAccessorExpression* m) { EmitMemberAccessor(out, m); },
[&](const ast::UnaryOpExpression* u) { EmitUnaryOp(out, u); }, //
TINT_ICE_ON_NO_MATCH);
}
void ASTPrinter::EmitIdentifier(StringStream& out, const ast::IdentifierExpression* expr) {
out << expr->identifier->symbol.Name();
}
void ASTPrinter::EmitIf(const ast::IfStatement* stmt) {
{
auto out = Line();
out << "if (";
EmitExpression(out, stmt->condition);
out << ") {";
}
EmitStatementsWithIndent(stmt->body->statements);
if (stmt->else_statement) {
Line() << "} else {";
if (auto* block = stmt->else_statement->As<ast::BlockStatement>()) {
EmitStatementsWithIndent(block->statements);
} else {
EmitStatementsWithIndent(Vector{stmt->else_statement});
}
}
Line() << "}";
}
void ASTPrinter::EmitFunction(const ast::Function* func) {
auto* sem = builder_.Sem().Get(func);
if (ast::HasAttribute<ast::InternalAttribute>(func->attributes)) {
// An internal function. Do not emit.
return;
}
{
auto out = Line();
auto name = func->name->symbol.Name();
EmitType(out, sem->ReturnType(), core::AddressSpace::kUndefined, core::Access::kReadWrite,
"");
out << " " << name << "(";
bool first = true;
for (auto* v : sem->Parameters()) {
if (!first) {
out << ", ";
}
first = false;
auto const* type = v->Type();
if (auto* ptr = type->As<core::type::Pointer>()) {
// Transform pointer parameters in to `inout` parameters.
// The WGSL spec is highly restrictive in what can be passed in pointer
// parameters, which allows for this transformation. See:
// https://gpuweb.github.io/gpuweb/wgsl/#function-restriction
out << "inout ";
type = ptr->StoreType();
}
// Note: WGSL only allows for AddressSpace::kUndefined on parameters, however
// the sanitizer transforms generates load / store functions for storage
// or uniform buffers. These functions have a buffer parameter with
// AddressSpace::kStorage or AddressSpace::kUniform. This is required to
// correctly translate the parameter to a [RW]ByteAddressBuffer for
// storage buffers and a uint4[N] for uniform buffers.
EmitTypeAndName(out, type, v->AddressSpace(), v->Access(),
v->Declaration()->name->symbol.Name());
}
out << ") {";
}
EmitStatementsWithIndent(func->body->statements);
Line() << "}";
Line();
}
void ASTPrinter::EmitGlobalVariable(const ast::Variable* global) {
Switch(
global, //
[&](const ast::Var* var) {
auto* sem = builder_.Sem().Get<sem::GlobalVariable>(global);
switch (sem->AddressSpace()) {
case core::AddressSpace::kUniform:
EmitUniformVariable(var, sem);
return;
case core::AddressSpace::kStorage:
EmitStorageVariable(var, sem);
return;
case core::AddressSpace::kHandle:
EmitHandleVariable(var, sem);
return;
case core::AddressSpace::kPrivate:
EmitPrivateVariable(sem);
return;
case core::AddressSpace::kWorkgroup:
EmitWorkgroupVariable(sem);
return;
case core::AddressSpace::kIn:
case core::AddressSpace::kOut:
EmitIOVariable(sem);
return;
case core::AddressSpace::kPushConstant:
EmitPushConstant(sem);
return;
default: {
TINT_ICE() << "unhandled address space " << sem->AddressSpace();
}
}
},
[&](const ast::Let* let) { EmitProgramConstVariable(let); },
[&](const ast::Override*) {
// Override is removed with SubstituteOverride
diagnostics_.AddError(Source{})
<< "override-expressions should have been removed with the "
"SubstituteOverride transform";
},
[&](const ast::Const*) {
// Constants are embedded at their use
}, //
TINT_ICE_ON_NO_MATCH);
}
void ASTPrinter::EmitUniformVariable(const ast::Var* var, const sem::Variable* sem) {
auto* type = sem->Type()->UnwrapRef();
auto* str = type->As<core::type::Struct>();
if (TINT_UNLIKELY(!str)) {
TINT_ICE() << "storage variable must be of struct type";
}
auto bp = *sem->As<sem::GlobalVariable>()->Attributes().binding_point;
{
auto out = Line();
out << "layout(binding = " << bp.binding << ", std140";
out << ") uniform " << UniqueIdentifier(StructName(str) + "_ubo") << " {";
}
EmitStructMembers(current_buffer_, str);
auto name = var->name->symbol.Name();
Line() << "} " << name << ";";
Line();
}
void ASTPrinter::EmitStorageVariable(const ast::Var* var, const sem::Variable* sem) {
auto* type = sem->Type()->UnwrapRef();
auto* str = type->As<core::type::Struct>();
if (TINT_UNLIKELY(!str)) {
TINT_ICE() << "storage variable must be of struct type";
}
auto bp = *sem->As<sem::GlobalVariable>()->Attributes().binding_point;
Line() << "layout(binding = " << bp.binding << ", std430) buffer "
<< UniqueIdentifier(StructName(str) + "_ssbo") << " {";
EmitStructMembers(current_buffer_, str);
auto name = var->name->symbol.Name();
Line() << "} " << name << ";";
Line();
}
void ASTPrinter::EmitHandleVariable(const ast::Var* var, const sem::Variable* sem) {
auto out = Line();
auto name = var->name->symbol.Name();
auto* type = sem->Type()->UnwrapRef();
if (type->Is<core::type::Sampler>()) {
// GLSL ignores Sampler variables.
return;
}
if (auto* storage = type->As<core::type::StorageTexture>()) {
out << "layout(";
switch (storage->texel_format()) {
case core::TexelFormat::kBgra8Unorm:
TINT_ICE() << "bgra8unorm should have been polyfilled to rgba8unorm";
case core::TexelFormat::kR32Uint:
out << "r32ui";
break;
case core::TexelFormat::kR32Sint:
out << "r32i";
break;
case core::TexelFormat::kR32Float:
out << "r32f";
break;
case core::TexelFormat::kRgba8Unorm:
out << "rgba8";
break;
case core::TexelFormat::kRgba8Snorm:
out << "rgba8_snorm";
break;
case core::TexelFormat::kRgba8Uint:
out << "rgba8ui";
break;
case core::TexelFormat::kRgba8Sint:
out << "rgba8i";
break;
case core::TexelFormat::kRg32Uint:
out << "rg32ui";
break;
case core::TexelFormat::kRg32Sint:
out << "rg32i";
break;
case core::TexelFormat::kRg32Float:
out << "rg32f";
break;
case core::TexelFormat::kRgba16Uint:
out << "rgba16ui";
break;
case core::TexelFormat::kRgba16Sint:
out << "rgba16i";
break;
case core::TexelFormat::kRgba16Float:
out << "rgba16f";
break;
case core::TexelFormat::kRgba32Uint:
out << "rgba32ui";
break;
case core::TexelFormat::kRgba32Sint:
out << "rgba32i";
break;
case core::TexelFormat::kRgba32Float:
out << "rgba32f";
break;
case core::TexelFormat::kR8Unorm:
out << "r8";
break;
case core::TexelFormat::kUndefined:
TINT_ICE() << "invalid texel format";
}
out << ") ";
}
EmitTypeAndName(out, type, sem->AddressSpace(), sem->Access(), name);
out << ";";
}
void ASTPrinter::EmitPrivateVariable(const sem::Variable* var) {
auto* decl = var->Declaration();
auto out = Line();
auto name = decl->name->symbol.Name();
auto* type = var->Type()->UnwrapRef();
EmitTypeAndName(out, type, var->AddressSpace(), var->Access(), name);
out << " = ";
if (auto* initializer = decl->initializer) {
EmitExpression(out, initializer);
} else {
EmitZeroValue(out, var->Type()->UnwrapRef());
}
out << ";";
}
void ASTPrinter::EmitWorkgroupVariable(const sem::Variable* var) {
auto* decl = var->Declaration();
auto out = Line();
out << "shared ";
auto name = decl->name->symbol.Name();
auto* type = var->Type()->UnwrapRef();
EmitTypeAndName(out, type, var->AddressSpace(), var->Access(), name);
if (auto* initializer = decl->initializer) {
out << " = ";
EmitExpression(out, initializer);
}
out << ";";
}
void ASTPrinter::EmitIOVariable(const sem::GlobalVariable* var) {
auto* decl = var->Declaration();
if (auto* attr = ast::GetAttribute<ast::BuiltinAttribute>(decl->attributes)) {
auto builtin = builder_.Sem().Get(attr)->Value();
// Use of gl_SampleID requires the GL_OES_sample_variables extension
if (RequiresOESSampleVariables(builtin)) {
requires_oes_sample_variables_ = true;
}
// Do not emit builtin (gl_) variables.
return;
}
auto out = Line();
EmitAttributes(out, var);
EmitInterpolationQualifiers(out, decl->attributes);
auto name = decl->name->symbol.Name();
auto* type = var->Type()->UnwrapRef();
EmitTypeAndName(out, type, var->AddressSpace(), var->Access(), name);
if (auto* initializer = decl->initializer) {
out << " = ";
EmitExpression(out, initializer);
}
out << ";";
}
void ASTPrinter::EmitPushConstant(const sem::GlobalVariable* var) {
auto* decl = var->Declaration();
auto out = Line();
auto name = decl->name->symbol.Name();
auto* type = var->Type()->UnwrapRef();
out << "layout(location=0) ";
EmitTypeAndName(out, type, var->AddressSpace(), var->Access(), name);
out << ";";
}
void ASTPrinter::EmitInterpolationQualifiers(StringStream& out,
VectorRef<const ast::Attribute*> attributes) {
for (auto* attr : attributes) {
if (auto* interpolate = attr->As<ast::InterpolateAttribute>()) {
auto& sem = builder_.Sem();
auto i_type =
sem.Get<sem::BuiltinEnumExpression<core::InterpolationType>>(interpolate->type)
->Value();
switch (i_type) {
case core::InterpolationType::kPerspective:
case core::InterpolationType::kLinear:
case core::InterpolationType::kUndefined:
break;
case core::InterpolationType::kFlat:
out << "flat ";
break;
}
if (interpolate->sampling) {
auto i_smpl = sem.Get<sem::BuiltinEnumExpression<core::InterpolationSampling>>(
interpolate->sampling)
->Value();
switch (i_smpl) {
case core::InterpolationSampling::kCentroid:
out << "centroid ";
break;
case core::InterpolationSampling::kSample:
case core::InterpolationSampling::kCenter:
case core::InterpolationSampling::kUndefined:
break;
}
}
}
}
}
void ASTPrinter::EmitAttributes(StringStream& out, const sem::GlobalVariable* var) {
auto& attrs = var->Attributes();
bool first = true;
if (attrs.location.has_value()) {
out << (first ? "layout(" : ", ");
out << "location = " << std::to_string(attrs.location.value());
first = false;
}
if (attrs.index.has_value()) {
out << ", index = " << std::to_string(attrs.index.value());
}
if (!first) {
out << ") ";
}
}
void ASTPrinter::EmitEntryPointFunction(const ast::Function* func) {
auto* func_sem = builder_.Sem().Get(func);
if (func->PipelineStage() == ast::PipelineStage::kFragment) {
requires_default_precision_qualifier_ = true;
}
if (func->PipelineStage() == ast::PipelineStage::kCompute) {
auto out = Line();
// Emit the layout(local_size) attributes.
auto wgsize = func_sem->WorkgroupSize();
out << "layout(";
for (size_t i = 0; i < 3; i++) {
if (i > 0) {
out << ", ";
}
out << "local_size_" << (i == 0 ? "x" : i == 1 ? "y" : "z") << " = ";
if (!wgsize[i].has_value()) {
diagnostics_.AddError(Source{})
<< "override-expressions should have been removed with the SubstituteOverride "
"transform";
return;
}
out << std::to_string(wgsize[i].value());
}
out << ") in;";
}
// Emit original entry point signature
{
auto out = Line();
EmitTypeAndName(out, func_sem->ReturnType(), core::AddressSpace::kUndefined,
core::Access::kUndefined, func->name->symbol.Name());
out << "(";
bool first = true;
// Emit entry point parameters.
for (auto* var : func->params) {
auto* sem = builder_.Sem().Get(var);
auto* type = sem->Type();
if (TINT_UNLIKELY(!type->Is<core::type::Struct>())) {
// ICE likely indicates that the CanonicalizeEntryPointIO transform was
// not run, or a builtin parameter was added after it was run.
TINT_ICE() << "Unsupported non-struct entry point parameter";
}
if (!first) {
out << ", ";
}
first = false;
EmitTypeAndName(out, type, sem->AddressSpace(), sem->Access(),
var->name->symbol.Name());
}
out << ") {";
}
// Emit original entry point function body
{
ScopedIndent si(this);
if (func->PipelineStage() == ast::PipelineStage::kVertex) {
Line() << "gl_PointSize = 1.0;";
}
EmitStatements(func->body->statements);
if (!Is<ast::ReturnStatement>(func->body->Last())) {
ast::ReturnStatement ret(GenerationID{}, ast::NodeID{}, Source{});
EmitStatement(&ret);
}
}
Line() << "}";
}
void ASTPrinter::EmitConstant(StringStream& out, const core::constant::Value* constant) {
Switch(
constant->Type(), //
[&](const core::type::Bool*) { out << (constant->ValueAs<AInt>() ? "true" : "false"); },
[&](const core::type::F32*) { PrintF32(out, constant->ValueAs<f32>()); },
[&](const core::type::F16*) { PrintF16(out, constant->ValueAs<f16>()); },
[&](const core::type::I32*) { PrintI32(out, constant->ValueAs<i32>()); },
[&](const core::type::U32*) { out << constant->ValueAs<AInt>() << "u"; },
[&](const core::type::Vector* v) {
EmitType(out, v, core::AddressSpace::kUndefined, core::Access::kUndefined, "");
ScopedParen sp(out);
if (auto* splat = constant->As<core::constant::Splat>()) {
EmitConstant(out, splat->el);
return;
}
for (size_t i = 0; i < v->Width(); i++) {
if (i > 0) {
out << ", ";
}
EmitConstant(out, constant->Index(i));
}
},
[&](const core::type::Matrix* m) {
EmitType(out, m, core::AddressSpace::kUndefined, core::Access::kUndefined, "");
ScopedParen sp(out);
for (size_t column_idx = 0; column_idx < m->columns(); column_idx++) {
if (column_idx > 0) {
out << ", ";
}
EmitConstant(out, constant->Index(column_idx));
}
},
[&](const core::type::Array* a) {
EmitType(out, a, core::AddressSpace::kUndefined, core::Access::kUndefined, "");
ScopedParen sp(out);
auto count = a->ConstantCount();
if (!count) {
diagnostics_.AddError(Source{}) << core::type::Array::kErrExpectedConstantCount;
return;
}
for (size_t i = 0; i < count; i++) {
if (i > 0) {
out << ", ";
}
EmitConstant(out, constant->Index(i));
}
},
[&](const core::type::Struct* s) {
EmitStructType(&helpers_, s);
out << StructName(s);
ScopedParen sp(out);
for (size_t i = 0; i < s->Members().Length(); i++) {
if (i > 0) {
out << ", ";
}
EmitConstant(out, constant->Index(i));
}
}, //
TINT_ICE_ON_NO_MATCH);
}
void ASTPrinter::EmitLiteral(StringStream& out, const ast::LiteralExpression* lit) {
Switch(
lit, //
[&](const ast::BoolLiteralExpression* l) { out << (l->value ? "true" : "false"); },
[&](const ast::FloatLiteralExpression* l) {
if (l->suffix == ast::FloatLiteralExpression::Suffix::kH) {
PrintF16(out, static_cast<float>(l->value));
} else {
PrintF32(out, static_cast<float>(l->value));
}
},
[&](const ast::IntLiteralExpression* i) {
switch (i->suffix) {
case ast::IntLiteralExpression::Suffix::kNone:
case ast::IntLiteralExpression::Suffix::kI: {
PrintI32(out, static_cast<int32_t>(i->value));
return;
}
case ast::IntLiteralExpression::Suffix::kU: {
out << i->value << "u";
return;
}
}
diagnostics_.AddError(Source{}) << "unknown integer literal suffix type";
}, //
TINT_ICE_ON_NO_MATCH);
}
void ASTPrinter::EmitZeroValue(StringStream& out, const core::type::Type* type) {
if (type->Is<core::type::Bool>()) {
out << "false";
} else if (type->Is<core::type::F32>()) {
out << "0.0f";
} else if (type->Is<core::type::F16>()) {
out << "0.0hf";
} else if (type->Is<core::type::I32>()) {
out << "0";
} else if (type->Is<core::type::U32>()) {
out << "0u";
} else if (auto* vec = type->As<core::type::Vector>()) {
EmitType(out, type, core::AddressSpace::kUndefined, core::Access::kReadWrite, "");
ScopedParen sp(out);
for (uint32_t i = 0; i < vec->Width(); i++) {
if (i != 0) {
out << ", ";
}
EmitZeroValue(out, vec->type());
}
} else if (auto* mat = type->As<core::type::Matrix>()) {
EmitType(out, type, core::AddressSpace::kUndefined, core::Access::kReadWrite, "");
ScopedParen sp(out);
for (uint32_t i = 0; i < (mat->rows() * mat->columns()); i++) {
if (i != 0) {
out << ", ";
}
EmitZeroValue(out, mat->type());
}
} else if (auto* str = type->As<core::type::Struct>()) {
EmitType(out, type, core::AddressSpace::kUndefined, core::Access::kUndefined, "");
bool first = true;
ScopedParen sp(out);
for (auto* member : str->Members()) {
if (!first) {
out << ", ";
} else {
first = false;
}
EmitZeroValue(out, member->Type());
}
} else if (auto* arr = type->As<core::type::Array>()) {
EmitType(out, type, core::AddressSpace::kUndefined, core::Access::kUndefined, "");
ScopedParen sp(out);
auto count = arr->ConstantCount();
if (!count) {
diagnostics_.AddError(Source{}) << core::type::Array::kErrExpectedConstantCount;
return;
}
for (uint32_t i = 0; i < count; i++) {
if (i != 0) {
out << ", ";
}
EmitZeroValue(out, arr->ElemType());
}
} else {
diagnostics_.AddError(Source{})
<< "Invalid type for zero emission: " << type->FriendlyName();
}
}
void ASTPrinter::EmitLoop(const ast::LoopStatement* stmt) {
auto emit_continuing = [this, stmt] {
if (stmt->continuing && !stmt->continuing->Empty()) {
EmitBlock(stmt->continuing);
}
};
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
Line() << "while (true) {";
{
ScopedIndent si(this);
EmitStatements(stmt->body->statements);
emit_continuing_();
}
Line() << "}";
}
void ASTPrinter::EmitForLoop(const ast::ForLoopStatement* stmt) {
// Nest a for loop with a new block. In HLSL the initializer scope is not
// nested by the for-loop, so we may get variable redefinitions.
Line() << "{";
IncrementIndent();
TINT_DEFER({
DecrementIndent();
Line() << "}";
});
TextBuffer init_buf;
if (auto* init = stmt->initializer) {
TINT_SCOPED_ASSIGNMENT(current_buffer_, &init_buf);
EmitStatement(init);
}
TextBuffer cond_pre;
StringStream cond_buf;
if (auto* cond = stmt->condition) {
TINT_SCOPED_ASSIGNMENT(current_buffer_, &cond_pre);
EmitExpression(cond_buf, cond);
}
TextBuffer cont_buf;
if (auto* cont = stmt->continuing) {
TINT_SCOPED_ASSIGNMENT(current_buffer_, &cont_buf);
EmitStatement(cont);
}
// If the for-loop has a multi-statement conditional and / or continuing, then
// we cannot emit this as a regular for-loop in HLSL. Instead we need to
// generate a `while(true)` loop.
bool emit_as_loop = cond_pre.lines.size() > 0 || cont_buf.lines.size() > 1;
// If the for-loop has multi-statement initializer, or is going to be emitted
// as a `while(true)` loop, then declare the initializer statement(s) before
// the loop.
if (init_buf.lines.size() > 1 || (stmt->initializer && emit_as_loop)) {
current_buffer_->Append(init_buf);
init_buf.lines.clear(); // Don't emit the initializer again in the 'for'
}
if (emit_as_loop) {
auto emit_continuing = [&] { current_buffer_->Append(cont_buf); };
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
Line() << "while (true) {";
IncrementIndent();
TINT_DEFER({
DecrementIndent();
Line() << "}";
});
if (stmt->condition) {
current_buffer_->Append(cond_pre);
Line() << "if (!(" << cond_buf.str() << ")) { break; }";
}
EmitStatements(stmt->body->statements);
emit_continuing_();
} else {
// For-loop can be generated.
{
auto out = Line();
out << "for";
{
ScopedParen sp(out);
if (!init_buf.lines.empty()) {
out << init_buf.lines[0].content << " ";
} else {
out << "; ";
}
out << cond_buf.str() << "; ";
if (!cont_buf.lines.empty()) {
out << tint::TrimSuffix(cont_buf.lines[0].content, ";");
}
}
out << " {";
}
{
auto emit_continuing = [] { return true; };
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
EmitStatementsWithIndent(stmt->body->statements);
}
Line() << "}";
}
}
void ASTPrinter::EmitWhile(const ast::WhileStatement* stmt) {
TextBuffer cond_pre;
StringStream cond_buf;
{
auto* cond = stmt->condition;
TINT_SCOPED_ASSIGNMENT(current_buffer_, &cond_pre);
EmitExpression(cond_buf, cond);
}
auto emit_continuing = [&] {};
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
// If the whilehas a multi-statement conditional, then we cannot emit this
// as a regular while in GLSL. Instead we need to generate a `while(true)` loop.
bool emit_as_loop = cond_pre.lines.size() > 0;
if (emit_as_loop) {
Line() << "while (true) {";
IncrementIndent();
TINT_DEFER({
DecrementIndent();
Line() << "}";
});
current_buffer_->Append(cond_pre);
Line() << "if (!(" << cond_buf.str() << ")) { break; }";
EmitStatements(stmt->body->statements);
} else {
// While can be generated.
{
auto out = Line();
out << "while";
{
ScopedParen sp(out);
out << cond_buf.str();
}
out << " {";
}
EmitStatementsWithIndent(stmt->body->statements);
Line() << "}";
}
}
void ASTPrinter::EmitMemberAccessor(StringStream& out, const ast::MemberAccessorExpression* expr) {
EmitExpression(out, expr->object);
out << ".";
auto* sem = builder_.Sem().Get(expr)->UnwrapLoad();
Switch(
sem,
[&](const sem::Swizzle*) {
// Swizzles output the name directly
out << expr->member->symbol.Name();
},
[&](const sem::StructMemberAccess* member_access) {
out << member_access->Member()->Name().Name();
}, //
TINT_ICE_ON_NO_MATCH);
}
void ASTPrinter::EmitReturn(const ast::ReturnStatement* stmt) {
if (stmt->value) {
auto out = Line();
out << "return ";
EmitExpression(out, stmt->value);
out << ";";
} else {
Line() << "return;";
}
}
void ASTPrinter::EmitStatement(const ast::Statement* stmt) {
Switch(
stmt, //
[&](const ast::AssignmentStatement* a) { EmitAssign(a); },
[&](const ast::BlockStatement* b) { EmitBlock(b); },
[&](const ast::BreakStatement* b) { EmitBreak(b); },
[&](const ast::BreakIfStatement* b) { EmitBreakIf(b); },
[&](const ast::CallStatement* c) {
auto out = Line();
EmitCall(out, c->expr);
out << ";";
},
[&](const ast::ContinueStatement* c) { EmitContinue(c); },
[&](const ast::DiscardStatement* d) { EmitDiscard(d); },
[&](const ast::IfStatement* i) { EmitIf(i); },
[&](const ast::LoopStatement* l) { EmitLoop(l); },
[&](const ast::ForLoopStatement* l) { EmitForLoop(l); },
[&](const ast::WhileStatement* l) { EmitWhile(l); },
[&](const ast::ReturnStatement* r) { EmitReturn(r); },
[&](const ast::SwitchStatement* s) { EmitSwitch(s); },
[&](const ast::VariableDeclStatement* v) {
Switch(
v->variable, //
[&](const ast::Var* var) { EmitVar(var); },
[&](const ast::Let* let) { EmitLet(let); },
[&](const ast::Const*) {
// Constants are embedded at their use
}, //
TINT_ICE_ON_NO_MATCH);
},
[&](const ast::ConstAssert*) {
// Not emitted
}, //
TINT_ICE_ON_NO_MATCH);
}
void ASTPrinter::EmitSwitch(const ast::SwitchStatement* stmt) {
{ // switch(expr) {
auto out = Line();
out << "switch(";
EmitExpression(out, stmt->condition);
out << ") {";
}
{
ScopedIndent si(this);
for (auto* s : stmt->body) {
EmitCase(s);
}
}
Line() << "}";
}
void ASTPrinter::EmitType(StringStream& out,
const core::type::Type* type,
core::AddressSpace address_space,
core::Access access,
const std::string& name,
bool* name_printed /* = nullptr */) {
if (name_printed) {
*name_printed = false;
}
switch (address_space) {
case core::AddressSpace::kIn: {
out << "in ";
break;
}
case core::AddressSpace::kOut: {
out << "out ";
break;
}
case core::AddressSpace::kUniform:
case core::AddressSpace::kPushConstant:
case core::AddressSpace::kHandle: {
out << "uniform ";
break;
}
default:
break;
}
if (auto* ary = type->As<core::type::Array>()) {
const core::type::Type* base_type = ary;
std::vector<uint32_t> sizes;
while (auto* arr = base_type->As<core::type::Array>()) {
if (arr->Count()->Is<core::type::RuntimeArrayCount>()) {
sizes.push_back(0);
} else {
auto count = arr->ConstantCount();
if (!count) {
diagnostics_.AddError(Source{}) << core::type::Array::kErrExpectedConstantCount;
return;
}
sizes.push_back(count.value());
}
base_type = arr->ElemType();
}
EmitType(out, base_type, address_space, access, "");
if (!name.empty()) {
out << " " << name;
if (name_printed) {
*name_printed = true;
}
}
for (uint32_t size : sizes) {
if (size > 0) {
out << "[" << size << "]";
} else {
out << "[]";
}
}
} else if (type->Is<core::type::Bool>()) {
out << "bool";
} else if (type->Is<core::type::F32>()) {
out << "float";
} else if (type->Is<core::type::F16>()) {
out << "float16_t";
} else if (type->Is<core::type::I32>()) {
out << "int";
} else if (auto* mat = type->As<core::type::Matrix>()) {
TINT_ASSERT((mat->type()->IsAnyOf<core::type::F32, core::type::F16>()));
if (mat->type()->Is<core::type::F16>()) {
out << "f16";
}
out << "mat" << mat->columns();
if (mat->rows() != mat->columns()) {
out << "x" << mat->rows();
}
} else if (TINT_UNLIKELY(type->Is<core::type::Pointer>())) {
TINT_ICE() << "Attempting to emit pointer type. These should have been removed with the "
"SimplifyPointers transform";
} else if (type->Is<core::type::Sampler>()) {
} else if (auto* str = type->As<core::type::Struct>()) {
out << StructName(str);
} else if (auto* tex = type->As<core::type::Texture>()) {
if (TINT_UNLIKELY(tex->Is<core::type::ExternalTexture>())) {
TINT_ICE() << "Multiplanar external texture transform was not run.";
}
auto* storage = tex->As<core::type::StorageTexture>();
auto* ms = tex->As<core::type::MultisampledTexture>();
auto* depth_ms = tex->As<core::type::DepthMultisampledTexture>();
auto* sampled = tex->As<core::type::SampledTexture>();
out << "highp ";
if (storage) {
switch (storage->access()) {
case core::Access::kRead:
out << "readonly ";
break;
case core::Access::kWrite:
out << "writeonly ";
break;
case core::Access::kReadWrite: {
// ESSL 3.1 SPEC (chapter 4.9, Memory Access Qualifiers):
// Except for image variables qualified with the format qualifiers r32f, r32i,
// and r32ui, image variables must specify either memory qualifier readonly or
// the memory qualifier writeonly.
switch (storage->texel_format()) {
case core::TexelFormat::kR32Float:
case core::TexelFormat::kR32Sint:
case core::TexelFormat::kR32Uint:
break;
default: {
// TODO(dawn:1972): Fix the tests that contain read-write storage
// textures with illegal formats.
out << "writeonly ";
break;
}
}
} break;
default:
TINT_UNREACHABLE() << "unexpected storage texture access " << storage->access();
}
}
auto* subtype = sampled ? sampled->type()
: storage ? storage->type()
: ms ? ms->type()
: nullptr;
if (!subtype || subtype->Is<core::type::F32>()) {
} else if (subtype->Is<core::type::I32>()) {
out << "i";
} else if (TINT_LIKELY(subtype->Is<core::type::U32>())) {
out << "u";
} else {
TINT_ICE() << "Unsupported texture type";
}
out << (storage ? "image" : "sampler");
switch (tex->dim()) {
case core::type::TextureDimension::k1d:
out << "1D";
break;
case core::type::TextureDimension::k2d:
out << ((ms || depth_ms) ? "2DMS" : "2D");
break;
case core::type::TextureDimension::k2dArray:
out << ((ms || depth_ms) ? "2DMSArray" : "2DArray");
break;
case core::type::TextureDimension::k3d:
out << "3D";
break;
case core::type::TextureDimension::kCube:
out << "Cube";
break;
case core::type::TextureDimension::kCubeArray:
out << "CubeArray";
break;
default:
TINT_UNREACHABLE() << "unexpected TextureDimension " << tex->dim();
}
if (tex->Is<core::type::DepthTexture>()) {
out << "Shadow";
}
} else if (type->Is<core::type::U32>()) {
out << "uint";
} else if (auto* vec = type->As<core::type::Vector>()) {
auto width = vec->Width();
if (vec->type()->Is<core::type::F32>() && width >= 1 && width <= 4) {
out << "vec" << width;
} else if (vec->type()->Is<core::type::F16>() && width >= 1 && width <= 4) {
out << "f16vec" << width;
} else if (vec->type()->Is<core::type::I32>() && width >= 1 && width <= 4) {
out << "ivec" << width;
} else if (vec->type()->Is<core::type::U32>() && width >= 1 && width <= 4) {
out << "uvec" << width;
} else if (vec->type()->Is<core::type::Bool>() && width >= 1 && width <= 4) {
out << "bvec" << width;
} else {
out << "vector<";
EmitType(out, vec->type(), address_space, access, "");
out << ", " << width << ">";
}
} else if (auto* atomic = type->As<core::type::Atomic>()) {
EmitType(out, atomic->Type(), address_space, access, name);
} else if (type->Is<core::type::Void>()) {
out << "void";
} else {
diagnostics_.AddError(Source{}) << "unknown type in EmitType";
}
}
void ASTPrinter::EmitTypeAndName(StringStream& out,
const core::type::Type* type,
core::AddressSpace address_space,
core::Access access,
const std::string& name) {
bool printed_name = false;
EmitType(out, type, address_space, access, name, &printed_name);
if (!name.empty() && !printed_name) {
out << " " << name;
}
}
void ASTPrinter::EmitStructType(TextBuffer* b, const core::type::Struct* str) {
auto it = emitted_structs_.emplace(str);
if (!it.second) {
return;
}
auto address_space_uses = str->AddressSpaceUsage();
Line(b) << "struct " << StructName(str) << " {";
EmitStructMembers(b, str);
Line(b) << "};";
Line(b);
}
void ASTPrinter::EmitStructMembers(TextBuffer* b, const core::type::Struct* str) {
ScopedIndent si(b);
for (auto* mem : str->Members()) {
auto name = mem->Name().Name();
auto* ty = mem->Type();
auto out = Line(b);
EmitTypeAndName(out, ty, core::AddressSpace::kUndefined, core::Access::kReadWrite, name);
out << ";";
}
}
void ASTPrinter::EmitUnaryOp(StringStream& out, const ast::UnaryOpExpression* expr) {
switch (expr->op) {
case core::UnaryOp::kIndirection:
case core::UnaryOp::kAddressOf:
EmitExpression(out, expr->expr);
return;
case core::UnaryOp::kComplement:
out << "~";
break;
case core::UnaryOp::kNot:
if (TypeOf(expr)->UnwrapRef()->Is<core::type::Scalar>()) {
out << "!";
} else {
out << "not";
}
break;
case core::UnaryOp::kNegation:
out << "-";
break;
}
ScopedParen sp(out);
EmitExpression(out, expr->expr);
}
void ASTPrinter::EmitVar(const ast::Var* var) {
auto* sem = builder_.Sem().Get(var);
auto* type = sem->Type()->UnwrapRef();
auto out = Line();
EmitTypeAndName(out, type, sem->AddressSpace(), sem->Access(), var->name->symbol.Name());
out << " = ";
if (var->initializer) {
EmitExpression(out, var->initializer);
} else {
EmitZeroValue(out, type);
}
out << ";";
}
void ASTPrinter::EmitLet(const ast::Let* let) {
auto* sem = builder_.Sem().Get(let);
auto* type = sem->Type()->UnwrapRef();
auto out = Line();
// TODO(senorblanco): handle const
EmitTypeAndName(out, type, core::AddressSpace::kUndefined, core::Access::kUndefined,
let->name->symbol.Name());
out << " = ";
EmitExpression(out, let->initializer);
out << ";";
}
void ASTPrinter::EmitProgramConstVariable(const ast::Variable* var) {
auto* sem = builder_.Sem().Get(var);
auto* type = sem->Type();
auto out = Line();
out << "const ";
EmitTypeAndName(out, type, core::AddressSpace::kUndefined, core::Access::kUndefined,
var->name->symbol.Name());
out << " = ";
EmitExpression(out, var->initializer);
out << ";";
}
template <typename F>
void ASTPrinter::CallBuiltinHelper(StringStream& out,
const ast::CallExpression* call,
const sem::BuiltinFn* builtin,
F&& build) {
// Generate the helper function if it hasn't been created already
auto fn = tint::GetOrAdd(builtins_, builtin, [&]() -> std::string {
TextBuffer b;
TINT_DEFER(helpers_.Append(b));
auto fn_name = UniqueIdentifier(std::string("tint_") + wgsl::str(builtin->Fn()));
std::vector<std::string> parameter_names;
{
auto decl = Line(&b);
EmitTypeAndName(decl, builtin->ReturnType(), core::AddressSpace::kUndefined,
core::Access::kUndefined, fn_name);
{
ScopedParen sp(decl);
for (auto* param : builtin->Parameters()) {
if (!parameter_names.empty()) {
decl << ", ";
}
auto param_name = "param_" + std::to_string(parameter_names.size());
const auto* ty = param->Type();
if (auto* ptr = ty->As<core::type::Pointer>()) {
decl << "inout ";
ty = ptr->StoreType();
}
EmitTypeAndName(decl, ty, core::AddressSpace::kUndefined,
core::Access::kUndefined, param_name);
parameter_names.emplace_back(std::move(param_name));
}
}
decl << " {";
}
{
ScopedIndent si(&b);
build(&b, parameter_names);
}
Line(&b) << "}";
Line(&b);
return fn_name;
});
// Call the helper
out << fn;
{
ScopedParen sp(out);
bool first = true;
for (auto* arg : call->args) {
if (!first) {
out << ", ";
}
first = false;
EmitExpression(out, arg);
}
}
}
core::type::Type* ASTPrinter::BoolTypeToUint(const core::type::Type* type) {
auto* u32 = builder_.create<core::type::U32>();
if (type->Is<core::type::Bool>()) {
return u32;
} else if (auto* vec = type->As<core::type::Vector>()) {
return builder_.create<core::type::Vector>(u32, vec->Width());
} else {
return nullptr;
}
}
std::string ASTPrinter::StructName(const core::type::Struct* s) {
auto name = s->Name().Name();
if (HasPrefix(name, "__")) {
name = tint::GetOrAdd(builtin_struct_names_, s,
[&] { return UniqueIdentifier(name.substr(2)); });
}
return name;
}
std::string ASTPrinter::UniqueIdentifier(const std::string& prefix /* = "" */) {
return builder_.Symbols().New(prefix).Name();
}
} // namespace tint::glsl::writer