blob: a69fb674b912801de8bef7b096b1f209a24dc603 [file] [log] [blame]
// Copyright 2020 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/wgsl/inspector/inspector.h"
#include <unordered_set>
#include <utility>
#include "src/tint/lang/core/builtin_value.h"
#include "src/tint/lang/core/fluent_types.h"
#include "src/tint/lang/core/interpolation_sampling.h"
#include "src/tint/lang/core/interpolation_type.h"
#include "src/tint/lang/core/type/array.h"
#include "src/tint/lang/core/type/bool.h"
#include "src/tint/lang/core/type/depth_multisampled_texture.h"
#include "src/tint/lang/core/type/depth_texture.h"
#include "src/tint/lang/core/type/external_texture.h"
#include "src/tint/lang/core/type/f16.h"
#include "src/tint/lang/core/type/f32.h"
#include "src/tint/lang/core/type/i32.h"
#include "src/tint/lang/core/type/matrix.h"
#include "src/tint/lang/core/type/multisampled_texture.h"
#include "src/tint/lang/core/type/sampled_texture.h"
#include "src/tint/lang/core/type/storage_texture.h"
#include "src/tint/lang/core/type/u32.h"
#include "src/tint/lang/core/type/vector.h"
#include "src/tint/lang/core/type/void.h"
#include "src/tint/lang/wgsl/ast/bool_literal_expression.h"
#include "src/tint/lang/wgsl/ast/call_expression.h"
#include "src/tint/lang/wgsl/ast/float_literal_expression.h"
#include "src/tint/lang/wgsl/ast/id_attribute.h"
#include "src/tint/lang/wgsl/ast/identifier.h"
#include "src/tint/lang/wgsl/ast/int_literal_expression.h"
#include "src/tint/lang/wgsl/ast/interpolate_attribute.h"
#include "src/tint/lang/wgsl/ast/location_attribute.h"
#include "src/tint/lang/wgsl/ast/module.h"
#include "src/tint/lang/wgsl/ast/override.h"
#include "src/tint/lang/wgsl/ast/var.h"
#include "src/tint/lang/wgsl/extension.h"
#include "src/tint/lang/wgsl/sem/builtin_enum_expression.h"
#include "src/tint/lang/wgsl/sem/call.h"
#include "src/tint/lang/wgsl/sem/function.h"
#include "src/tint/lang/wgsl/sem/module.h"
#include "src/tint/lang/wgsl/sem/statement.h"
#include "src/tint/lang/wgsl/sem/struct.h"
#include "src/tint/lang/wgsl/sem/variable.h"
#include "src/tint/utils/containers/unique_vector.h"
#include "src/tint/utils/math/math.h"
#include "src/tint/utils/rtti/switch.h"
#include "src/tint/utils/text/string.h"
using namespace tint::core::fluent_types; // NOLINT
namespace tint::inspector {
namespace {
void AppendResourceBindings(std::vector<ResourceBinding>* dest,
const std::vector<ResourceBinding>& orig) {
TINT_ASSERT(dest);
if (!dest) {
return;
}
dest->reserve(dest->size() + orig.size());
dest->insert(dest->end(), orig.begin(), orig.end());
}
std::tuple<ComponentType, CompositionType> CalculateComponentAndComposition(
const core::type::Type* type) {
// entry point in/out variables must of numeric scalar or vector types.
TINT_ASSERT(type->is_numeric_scalar_or_vector());
ComponentType componentType = Switch(
type->DeepestElement(), //
[&](const core::type::F32*) { return ComponentType::kF32; },
[&](const core::type::F16*) { return ComponentType::kF16; },
[&](const core::type::I32*) { return ComponentType::kI32; },
[&](const core::type::U32*) { return ComponentType::kU32; }, //
TINT_ICE_ON_NO_MATCH);
CompositionType compositionType;
if (auto* vec = type->As<core::type::Vector>()) {
switch (vec->Width()) {
case 2: {
compositionType = CompositionType::kVec2;
break;
}
case 3: {
compositionType = CompositionType::kVec3;
break;
}
case 4: {
compositionType = CompositionType::kVec4;
break;
}
default: {
TINT_UNREACHABLE() << "unhandled composition type";
compositionType = CompositionType::kUnknown;
break;
}
}
} else {
compositionType = CompositionType::kScalar;
}
return {componentType, compositionType};
}
} // namespace
Inspector::Inspector(const Program& program) : program_(program) {}
Inspector::~Inspector() = default;
EntryPoint Inspector::GetEntryPoint(const tint::ast::Function* func) {
EntryPoint entry_point;
TINT_ASSERT(func != nullptr);
TINT_ASSERT(func->IsEntryPoint());
auto* sem = program_.Sem().Get(func);
entry_point.name = func->name->symbol.Name();
entry_point.remapped_name = func->name->symbol.Name();
switch (func->PipelineStage()) {
case ast::PipelineStage::kCompute: {
entry_point.stage = PipelineStage::kCompute;
entry_point.workgroup_storage_size = ComputeWorkgroupStorageSize(func);
auto wgsize = sem->WorkgroupSize();
if (wgsize[0].has_value() && wgsize[1].has_value() && wgsize[2].has_value()) {
entry_point.workgroup_size = {wgsize[0].value(), wgsize[1].value(),
wgsize[2].value()};
}
break;
}
case ast::PipelineStage::kFragment: {
entry_point.stage = PipelineStage::kFragment;
entry_point.pixel_local_members = ComputePixelLocalMemberTypes(func);
break;
}
case ast::PipelineStage::kVertex: {
entry_point.stage = PipelineStage::kVertex;
break;
}
default: {
TINT_UNREACHABLE() << "invalid pipeline stage for entry point '" << entry_point.name
<< "'";
break;
}
}
for (auto* param : sem->Parameters()) {
AddEntryPointInOutVariables(param->Declaration()->name->symbol.Name(),
param->Declaration()->name->symbol.Name(), param->Type(),
param->Declaration()->attributes, param->Attributes().location,
param->Attributes().color, entry_point.input_variables);
entry_point.input_position_used |= ContainsBuiltin(
core::BuiltinValue::kPosition, param->Type(), param->Declaration()->attributes);
entry_point.front_facing_used |= ContainsBuiltin(
core::BuiltinValue::kFrontFacing, param->Type(), param->Declaration()->attributes);
entry_point.sample_index_used |= ContainsBuiltin(
core::BuiltinValue::kSampleIndex, param->Type(), param->Declaration()->attributes);
entry_point.input_sample_mask_used |= ContainsBuiltin(
core::BuiltinValue::kSampleMask, param->Type(), param->Declaration()->attributes);
entry_point.num_workgroups_used |= ContainsBuiltin(
core::BuiltinValue::kNumWorkgroups, param->Type(), param->Declaration()->attributes);
entry_point.vertex_index_used |= ContainsBuiltin(
core::BuiltinValue::kVertexIndex, param->Type(), param->Declaration()->attributes);
entry_point.instance_index_used |= ContainsBuiltin(
core::BuiltinValue::kInstanceIndex, param->Type(), param->Declaration()->attributes);
}
if (!sem->ReturnType()->Is<core::type::Void>()) {
AddEntryPointInOutVariables("<retval>", "", sem->ReturnType(), func->return_type_attributes,
sem->ReturnLocation(), /* @color */ std::nullopt,
entry_point.output_variables);
entry_point.output_sample_mask_used = ContainsBuiltin(
core::BuiltinValue::kSampleMask, sem->ReturnType(), func->return_type_attributes);
entry_point.frag_depth_used = ContainsBuiltin(
core::BuiltinValue::kFragDepth, sem->ReturnType(), func->return_type_attributes);
}
for (auto* var : sem->TransitivelyReferencedGlobals()) {
auto* decl = var->Declaration();
auto name = decl->name->symbol.Name();
auto* global = var->As<sem::GlobalVariable>();
if (auto override_id = global->Attributes().override_id) {
Override override;
override.name = name;
override.id = override_id.value();
auto* type = var->Type();
TINT_ASSERT(type->Is<core::type::Scalar>());
if (type->is_bool_scalar_or_vector()) {
override.type = Override::Type::kBool;
} else if (type->is_float_scalar()) {
if (type->Is<core::type::F16>()) {
override.type = Override::Type::kFloat16;
} else {
override.type = Override::Type::kFloat32;
}
} else if (type->is_signed_integer_scalar()) {
override.type = Override::Type::kInt32;
} else if (type->is_unsigned_integer_scalar()) {
override.type = Override::Type::kUint32;
} else {
TINT_UNREACHABLE();
}
override.is_initialized = global->Declaration()->initializer;
override.is_id_specified =
ast::HasAttribute<ast::IdAttribute>(global->Declaration()->attributes);
entry_point.overrides.push_back(override);
}
}
return entry_point;
}
EntryPoint Inspector::GetEntryPoint(const std::string& entry_point_name) {
auto* func = FindEntryPointByName(entry_point_name);
if (!func) {
return EntryPoint();
}
return GetEntryPoint(func);
}
std::vector<EntryPoint> Inspector::GetEntryPoints() {
std::vector<EntryPoint> result;
for (auto* func : program_.AST().Functions()) {
if (!func->IsEntryPoint()) {
continue;
}
result.push_back(GetEntryPoint(func));
}
return result;
}
std::map<OverrideId, Scalar> Inspector::GetOverrideDefaultValues() {
std::map<OverrideId, Scalar> result;
for (auto* var : program_.AST().GlobalVariables()) {
auto* global = program_.Sem().Get<sem::GlobalVariable>(var);
if (!global || !global->Declaration()->Is<ast::Override>()) {
continue;
}
// If there are conflicting defintions for an override id, that is invalid
// WGSL, so the resolver should catch it. Thus here the inspector just
// assumes all definitions of the override id are the same, so only needs
// to find the first reference to override id.
auto override_id = global->Attributes().override_id.value();
if (result.find(override_id) != result.end()) {
continue;
}
if (global->Initializer()) {
if (auto* value = global->Initializer()->ConstantValue()) {
result[override_id] = Switch(
value->Type(), //
[&](const core::type::I32*) { return Scalar(value->ValueAs<i32>()); },
[&](const core::type::U32*) { return Scalar(value->ValueAs<u32>()); },
[&](const core::type::F32*) { return Scalar(value->ValueAs<f32>()); },
[&](const core::type::F16*) {
// Default value of f16 override is also stored as float scalar.
return Scalar(static_cast<float>(value->ValueAs<f16>()));
},
[&](const core::type::Bool*) { return Scalar(value->ValueAs<bool>()); });
continue;
}
}
// No const-expression initializer for the override
result[override_id] = Scalar();
}
return result;
}
std::map<std::string, OverrideId> Inspector::GetNamedOverrideIds() {
std::map<std::string, OverrideId> result;
for (auto* var : program_.AST().GlobalVariables()) {
auto* global = program_.Sem().Get<sem::GlobalVariable>(var);
if (auto override_id = global->Attributes().override_id) {
auto name = var->name->symbol.Name();
result[name] = override_id.value();
}
}
return result;
}
std::vector<ResourceBinding> Inspector::GetResourceBindings(const std::string& entry_point) {
auto* func = FindEntryPointByName(entry_point);
if (!func) {
return {};
}
std::vector<ResourceBinding> result;
for (auto fn : {
&Inspector::GetUniformBufferResourceBindings,
&Inspector::GetStorageBufferResourceBindings,
&Inspector::GetReadOnlyStorageBufferResourceBindings,
&Inspector::GetSamplerResourceBindings,
&Inspector::GetComparisonSamplerResourceBindings,
&Inspector::GetSampledTextureResourceBindings,
&Inspector::GetMultisampledTextureResourceBindings,
&Inspector::GetStorageTextureResourceBindings,
&Inspector::GetDepthTextureResourceBindings,
&Inspector::GetDepthMultisampledTextureResourceBindings,
&Inspector::GetExternalTextureResourceBindings,
}) {
AppendResourceBindings(&result, (this->*fn)(entry_point));
}
return result;
}
std::vector<ResourceBinding> Inspector::GetUniformBufferResourceBindings(
const std::string& entry_point) {
auto* func = FindEntryPointByName(entry_point);
if (!func) {
return {};
}
std::vector<ResourceBinding> result;
auto* func_sem = program_.Sem().Get(func);
for (auto& ruv : func_sem->TransitivelyReferencedUniformVariables()) {
auto* var = ruv.first;
auto binding_info = ruv.second;
auto* unwrapped_type = var->Type()->UnwrapRef();
ResourceBinding entry;
entry.resource_type = ResourceBinding::ResourceType::kUniformBuffer;
entry.bind_group = binding_info.group;
entry.binding = binding_info.binding;
entry.size = unwrapped_type->Size();
entry.size_no_padding = entry.size;
if (auto* str = unwrapped_type->As<sem::Struct>()) {
entry.size_no_padding = str->SizeNoPadding();
} else {
entry.size_no_padding = entry.size;
}
entry.variable_name = var->Declaration()->name->symbol.Name();
result.push_back(entry);
}
return result;
}
std::vector<ResourceBinding> Inspector::GetStorageBufferResourceBindings(
const std::string& entry_point) {
return GetStorageBufferResourceBindingsImpl(entry_point, false);
}
std::vector<ResourceBinding> Inspector::GetReadOnlyStorageBufferResourceBindings(
const std::string& entry_point) {
return GetStorageBufferResourceBindingsImpl(entry_point, true);
}
std::vector<ResourceBinding> Inspector::GetSamplerResourceBindings(const std::string& entry_point) {
auto* func = FindEntryPointByName(entry_point);
if (!func) {
return {};
}
std::vector<ResourceBinding> result;
auto* func_sem = program_.Sem().Get(func);
for (auto& rs : func_sem->TransitivelyReferencedSamplerVariables()) {
auto binding_info = rs.second;
ResourceBinding entry;
entry.resource_type = ResourceBinding::ResourceType::kSampler;
entry.bind_group = binding_info.group;
entry.binding = binding_info.binding;
entry.variable_name = rs.first->Declaration()->name->symbol.Name();
result.push_back(entry);
}
return result;
}
std::vector<ResourceBinding> Inspector::GetComparisonSamplerResourceBindings(
const std::string& entry_point) {
auto* func = FindEntryPointByName(entry_point);
if (!func) {
return {};
}
std::vector<ResourceBinding> result;
auto* func_sem = program_.Sem().Get(func);
for (auto& rcs : func_sem->TransitivelyReferencedComparisonSamplerVariables()) {
auto binding_info = rcs.second;
ResourceBinding entry;
entry.resource_type = ResourceBinding::ResourceType::kComparisonSampler;
entry.bind_group = binding_info.group;
entry.binding = binding_info.binding;
entry.variable_name = rcs.first->Declaration()->name->symbol.Name();
result.push_back(entry);
}
return result;
}
std::vector<ResourceBinding> Inspector::GetSampledTextureResourceBindings(
const std::string& entry_point) {
return GetSampledTextureResourceBindingsImpl(entry_point, false);
}
std::vector<ResourceBinding> Inspector::GetMultisampledTextureResourceBindings(
const std::string& entry_point) {
return GetSampledTextureResourceBindingsImpl(entry_point, true);
}
std::vector<ResourceBinding> Inspector::GetStorageTextureResourceBindings(
const std::string& entry_point) {
return GetStorageTextureResourceBindingsImpl(entry_point);
}
std::vector<ResourceBinding> Inspector::GetTextureResourceBindings(
const std::string& entry_point,
const tint::TypeInfo* texture_type,
ResourceBinding::ResourceType resource_type) {
auto* func = FindEntryPointByName(entry_point);
if (!func) {
return {};
}
std::vector<ResourceBinding> result;
auto* func_sem = program_.Sem().Get(func);
for (auto& ref : func_sem->TransitivelyReferencedVariablesOfType(texture_type)) {
auto* var = ref.first;
auto binding_info = ref.second;
ResourceBinding entry;
entry.resource_type = resource_type;
entry.bind_group = binding_info.group;
entry.binding = binding_info.binding;
entry.variable_name = var->Declaration()->name->symbol.Name();
auto* tex = var->Type()->UnwrapRef()->As<core::type::Texture>();
entry.dim = TypeTextureDimensionToResourceBindingTextureDimension(tex->dim());
result.push_back(entry);
}
return result;
}
std::vector<ResourceBinding> Inspector::GetDepthTextureResourceBindings(
const std::string& entry_point) {
return GetTextureResourceBindings(entry_point, &tint::TypeInfo::Of<core::type::DepthTexture>(),
ResourceBinding::ResourceType::kDepthTexture);
}
std::vector<ResourceBinding> Inspector::GetDepthMultisampledTextureResourceBindings(
const std::string& entry_point) {
return GetTextureResourceBindings(entry_point,
&tint::TypeInfo::Of<core::type::DepthMultisampledTexture>(),
ResourceBinding::ResourceType::kDepthMultisampledTexture);
}
std::vector<ResourceBinding> Inspector::GetExternalTextureResourceBindings(
const std::string& entry_point) {
return GetTextureResourceBindings(entry_point,
&tint::TypeInfo::Of<core::type::ExternalTexture>(),
ResourceBinding::ResourceType::kExternalTexture);
}
VectorRef<SamplerTexturePair> Inspector::GetSamplerTextureUses(const std::string& entry_point) {
auto* func = FindEntryPointByName(entry_point);
if (!func) {
return {};
}
GenerateSamplerTargets();
auto it = sampler_targets_->find(entry_point);
if (it == sampler_targets_->end()) {
return {};
}
return it->second;
}
std::vector<SamplerTexturePair> Inspector::GetSamplerTextureUses(const std::string& entry_point,
const BindingPoint& placeholder) {
auto* func = FindEntryPointByName(entry_point);
if (!func) {
return {};
}
auto* func_sem = program_.Sem().Get(func);
std::vector<SamplerTexturePair> new_pairs;
for (auto pair : func_sem->TextureSamplerPairs()) {
auto* texture = pair.first->As<sem::GlobalVariable>();
auto* sampler = pair.second ? pair.second->As<sem::GlobalVariable>() : nullptr;
SamplerTexturePair new_pair;
new_pair.sampler_binding_point =
sampler ? *sampler->Attributes().binding_point : placeholder;
new_pair.texture_binding_point = *texture->Attributes().binding_point;
new_pairs.push_back(new_pair);
}
return new_pairs;
}
std::vector<std::string> Inspector::GetUsedExtensionNames() {
auto& extensions = program_.Sem().Module()->Extensions();
std::vector<std::string> out;
out.reserve(extensions.Length());
for (auto ext : extensions) {
out.push_back(tint::ToString(ext));
}
return out;
}
std::vector<std::pair<std::string, Source>> Inspector::GetEnableDirectives() {
std::vector<std::pair<std::string, Source>> result;
// Ast nodes for enable directive are stored within global declarations list
auto global_decls = program_.AST().GlobalDeclarations();
for (auto* node : global_decls) {
if (auto* enable = node->As<ast::Enable>()) {
for (auto* ext : enable->extensions) {
result.push_back({tint::ToString(ext->name), ext->source});
}
}
}
return result;
}
const ast::Function* Inspector::FindEntryPointByName(const std::string& name) {
auto* func = program_.AST().Functions().Find(program_.Symbols().Get(name));
if (!func) {
diagnostics_.AddError(diag::System::Inspector, name + " was not found!");
return nullptr;
}
if (!func->IsEntryPoint()) {
diagnostics_.AddError(diag::System::Inspector, name + " is not an entry point!");
return nullptr;
}
return func;
}
void Inspector::AddEntryPointInOutVariables(std::string name,
std::string variable_name,
const core::type::Type* type,
VectorRef<const ast::Attribute*> attributes,
std::optional<uint32_t> location,
std::optional<uint32_t> color,
std::vector<StageVariable>& variables) const {
// Skip builtins.
if (ast::HasAttribute<ast::BuiltinAttribute>(attributes)) {
return;
}
auto* unwrapped_type = type->UnwrapRef();
if (auto* struct_ty = unwrapped_type->As<sem::Struct>()) {
// Recurse into members.
for (auto* member : struct_ty->Members()) {
AddEntryPointInOutVariables(name + "." + member->Name().Name(), member->Name().Name(),
member->Type(), member->Declaration()->attributes,
member->Attributes().location, member->Attributes().color,
variables);
}
return;
}
// Base case: add the variable.
StageVariable stage_variable;
stage_variable.name = name;
stage_variable.variable_name = variable_name;
std::tie(stage_variable.component_type, stage_variable.composition_type) =
CalculateComponentAndComposition(type);
stage_variable.attributes.location = location;
stage_variable.attributes.color = color;
std::tie(stage_variable.interpolation_type, stage_variable.interpolation_sampling) =
CalculateInterpolationData(type, attributes);
variables.push_back(stage_variable);
}
bool Inspector::ContainsBuiltin(core::BuiltinValue builtin,
const core::type::Type* type,
VectorRef<const ast::Attribute*> attributes) const {
auto* unwrapped_type = type->UnwrapRef();
if (auto* struct_ty = unwrapped_type->As<sem::Struct>()) {
// Recurse into members.
for (auto* member : struct_ty->Members()) {
if (ContainsBuiltin(builtin, member->Type(), member->Declaration()->attributes)) {
return true;
}
}
return false;
}
// Base case: check for builtin
auto* builtin_declaration = ast::GetAttribute<ast::BuiltinAttribute>(attributes);
if (!builtin_declaration) {
return false;
}
return program_.Sem().Get(builtin_declaration)->Value() == builtin;
}
std::vector<ResourceBinding> Inspector::GetStorageBufferResourceBindingsImpl(
const std::string& entry_point,
bool read_only) {
auto* func = FindEntryPointByName(entry_point);
if (!func) {
return {};
}
auto* func_sem = program_.Sem().Get(func);
std::vector<ResourceBinding> result;
for (auto& rsv : func_sem->TransitivelyReferencedStorageBufferVariables()) {
auto* var = rsv.first;
auto binding_info = rsv.second;
if (read_only != (var->Access() == core::Access::kRead)) {
continue;
}
auto* unwrapped_type = var->Type()->UnwrapRef();
ResourceBinding entry;
entry.resource_type = read_only ? ResourceBinding::ResourceType::kReadOnlyStorageBuffer
: ResourceBinding::ResourceType::kStorageBuffer;
entry.bind_group = binding_info.group;
entry.binding = binding_info.binding;
entry.size = unwrapped_type->Size();
if (auto* str = unwrapped_type->As<sem::Struct>()) {
entry.size_no_padding = str->SizeNoPadding();
} else {
entry.size_no_padding = entry.size;
}
entry.variable_name = var->Declaration()->name->symbol.Name();
result.push_back(entry);
}
return result;
}
std::vector<ResourceBinding> Inspector::GetSampledTextureResourceBindingsImpl(
const std::string& entry_point,
bool multisampled_only) {
auto* func = FindEntryPointByName(entry_point);
if (!func) {
return {};
}
std::vector<ResourceBinding> result;
auto* func_sem = program_.Sem().Get(func);
auto referenced_variables = multisampled_only
? func_sem->TransitivelyReferencedMultisampledTextureVariables()
: func_sem->TransitivelyReferencedSampledTextureVariables();
for (auto& ref : referenced_variables) {
auto* var = ref.first;
auto binding_info = ref.second;
ResourceBinding entry;
entry.resource_type = multisampled_only
? ResourceBinding::ResourceType::kMultisampledTexture
: ResourceBinding::ResourceType::kSampledTexture;
entry.bind_group = binding_info.group;
entry.binding = binding_info.binding;
entry.variable_name = var->Declaration()->name->symbol.Name();
auto* texture_type = var->Type()->UnwrapRef()->As<core::type::Texture>();
entry.dim = TypeTextureDimensionToResourceBindingTextureDimension(texture_type->dim());
const core::type::Type* base_type = nullptr;
if (multisampled_only) {
base_type = texture_type->As<core::type::MultisampledTexture>()->type();
} else {
base_type = texture_type->As<core::type::SampledTexture>()->type();
}
entry.sampled_kind = BaseTypeToSampledKind(base_type);
result.push_back(entry);
}
return result;
}
std::vector<ResourceBinding> Inspector::GetStorageTextureResourceBindingsImpl(
const std::string& entry_point) {
auto* func = FindEntryPointByName(entry_point);
if (!func) {
return {};
}
auto* func_sem = program_.Sem().Get(func);
std::vector<ResourceBinding> result;
for (auto& ref :
func_sem->TransitivelyReferencedVariablesOfType<core::type::StorageTexture>()) {
auto* var = ref.first;
auto binding_info = ref.second;
auto* texture_type = var->Type()->UnwrapRef()->As<core::type::StorageTexture>();
ResourceBinding entry;
switch (texture_type->access()) {
case core::Access::kWrite:
entry.resource_type = ResourceBinding::ResourceType::kWriteOnlyStorageTexture;
break;
case core::Access::kReadWrite:
entry.resource_type = ResourceBinding::ResourceType::kReadWriteStorageTexture;
break;
case core::Access::kRead:
entry.resource_type = ResourceBinding::ResourceType::kReadOnlyStorageTexture;
break;
case core::Access::kUndefined:
TINT_UNREACHABLE() << "unhandled storage texture access";
}
entry.bind_group = binding_info.group;
entry.binding = binding_info.binding;
entry.variable_name = var->Declaration()->name->symbol.Name();
entry.dim = TypeTextureDimensionToResourceBindingTextureDimension(texture_type->dim());
auto* base_type = texture_type->type();
entry.sampled_kind = BaseTypeToSampledKind(base_type);
entry.image_format =
TypeTexelFormatToResourceBindingTexelFormat(texture_type->texel_format());
result.push_back(entry);
}
return result;
}
void Inspector::GenerateSamplerTargets() {
// Do not re-generate, since |program_| should not change during the lifetime
// of the inspector.
if (sampler_targets_ != nullptr) {
return;
}
sampler_targets_ =
std::make_unique<std::unordered_map<std::string, UniqueVector<SamplerTexturePair, 4>>>();
auto& sem = program_.Sem();
for (auto* node : program_.ASTNodes().Objects()) {
auto* c = node->As<ast::CallExpression>();
if (!c) {
continue;
}
auto* call = sem.Get(c)->UnwrapMaterialize()->As<sem::Call>();
if (!call) {
continue;
}
auto* i = call->Target()->As<sem::BuiltinFn>();
if (!i) {
continue;
}
const auto& signature = i->Signature();
int sampler_index = signature.IndexOf(core::ParameterUsage::kSampler);
if (sampler_index == -1) {
continue;
}
int texture_index = signature.IndexOf(core::ParameterUsage::kTexture);
if (texture_index == -1) {
continue;
}
auto* call_func = call->Stmt()->Function();
Vector<const sem::Function*, 4> entry_points;
if (call_func->Declaration()->IsEntryPoint()) {
entry_points = {call_func};
} else {
entry_points = call_func->AncestorEntryPoints();
}
if (entry_points.IsEmpty()) {
continue;
}
auto* t = c->args[static_cast<size_t>(texture_index)];
auto* s = c->args[static_cast<size_t>(sampler_index)];
GetOriginatingResources(
std::array<const ast::Expression*, 2>{t, s},
[&](std::array<const sem::GlobalVariable*, 2> globals) {
auto texture_binding_point = *globals[0]->Attributes().binding_point;
auto sampler_binding_point = *globals[1]->Attributes().binding_point;
for (auto* entry_point : entry_points) {
const auto& ep_name = entry_point->Declaration()->name->symbol.Name();
(*sampler_targets_)[ep_name].Add(
{sampler_binding_point, texture_binding_point});
}
});
}
}
std::tuple<InterpolationType, InterpolationSampling> Inspector::CalculateInterpolationData(
const core::type::Type* type,
VectorRef<const ast::Attribute*> attributes) const {
auto* interpolation_attribute = ast::GetAttribute<ast::InterpolateAttribute>(attributes);
if (type->is_integer_scalar_or_vector()) {
return {InterpolationType::kFlat, InterpolationSampling::kNone};
}
if (!interpolation_attribute) {
return {InterpolationType::kPerspective, InterpolationSampling::kCenter};
}
auto& sem = program_.Sem();
auto ast_interpolation_type =
sem.Get<sem::BuiltinEnumExpression<core::InterpolationType>>(interpolation_attribute->type)
->Value();
auto ast_sampling_type = core::InterpolationSampling::kUndefined;
if (interpolation_attribute->sampling) {
ast_sampling_type = sem.Get<sem::BuiltinEnumExpression<core::InterpolationSampling>>(
interpolation_attribute->sampling)
->Value();
}
if (ast_interpolation_type != core::InterpolationType::kFlat &&
ast_sampling_type == core::InterpolationSampling::kUndefined) {
ast_sampling_type = core::InterpolationSampling::kCenter;
}
auto interpolation_type = InterpolationType::kUnknown;
switch (ast_interpolation_type) {
case core::InterpolationType::kPerspective:
interpolation_type = InterpolationType::kPerspective;
break;
case core::InterpolationType::kLinear:
interpolation_type = InterpolationType::kLinear;
break;
case core::InterpolationType::kFlat:
interpolation_type = InterpolationType::kFlat;
break;
case core::InterpolationType::kUndefined:
break;
}
auto sampling_type = InterpolationSampling::kUnknown;
switch (ast_sampling_type) {
case core::InterpolationSampling::kUndefined:
sampling_type = InterpolationSampling::kNone;
break;
case core::InterpolationSampling::kCenter:
sampling_type = InterpolationSampling::kCenter;
break;
case core::InterpolationSampling::kCentroid:
sampling_type = InterpolationSampling::kCentroid;
break;
case core::InterpolationSampling::kSample:
sampling_type = InterpolationSampling::kSample;
break;
}
return {interpolation_type, sampling_type};
}
uint32_t Inspector::ComputeWorkgroupStorageSize(const ast::Function* func) const {
uint32_t total_size = 0;
auto* func_sem = program_.Sem().Get(func);
for (const sem::Variable* var : func_sem->TransitivelyReferencedGlobals()) {
if (var->AddressSpace() == core::AddressSpace::kWorkgroup) {
auto* ty = var->Type()->UnwrapRef();
uint32_t align = ty->Align();
uint32_t size = ty->Size();
// This essentially matches std430 layout rules from GLSL, which are in
// turn specified as an upper bound for Vulkan layout sizing. Since D3D
// and Metal are even less specific, we assume Vulkan behavior as a
// good-enough approximation everywhere.
total_size += tint::RoundUp(16u, tint::RoundUp(align, size));
}
}
return total_size;
}
std::vector<PixelLocalMemberType> Inspector::ComputePixelLocalMemberTypes(
const ast::Function* func) const {
auto* func_sem = program_.Sem().Get(func);
for (const sem::Variable* var : func_sem->TransitivelyReferencedGlobals()) {
if (var->AddressSpace() != core::AddressSpace::kPixelLocal) {
continue;
}
auto* str = var->Type()->UnwrapRef()->As<sem::Struct>();
std::vector<PixelLocalMemberType> types;
types.reserve(str->Members().Length());
for (auto* member : str->Members()) {
PixelLocalMemberType type = Switch(
member->Type(), //
[&](const core::type::F32*) { return PixelLocalMemberType::kF32; },
[&](const core::type::I32*) { return PixelLocalMemberType::kI32; },
[&](const core::type::U32*) { return PixelLocalMemberType::kU32; }, //
TINT_ICE_ON_NO_MATCH);
types.push_back(type);
}
return types;
}
return {};
}
template <size_t N, typename F>
void Inspector::GetOriginatingResources(std::array<const ast::Expression*, N> exprs, F&& callback) {
if (TINT_UNLIKELY(!program_.IsValid())) {
TINT_ICE() << "attempting to get originating resources in invalid program";
return;
}
auto& sem = program_.Sem();
std::array<const sem::GlobalVariable*, N> globals{};
std::array<const sem::Parameter*, N> parameters{};
UniqueVector<const ast::CallExpression*, 8> callsites;
for (size_t i = 0; i < N; i++) {
const sem::Variable* root_ident = sem.GetVal(exprs[i])->RootIdentifier();
if (auto* global = root_ident->As<sem::GlobalVariable>()) {
globals[i] = global;
} else if (auto* param = root_ident->As<sem::Parameter>()) {
auto* func = tint::As<sem::Function>(param->Owner());
if (func->CallSites().IsEmpty()) {
// One or more of the expressions is a parameter, but this function
// is not called. Ignore.
return;
}
for (auto* call : func->CallSites()) {
callsites.Add(call->Declaration());
}
parameters[i] = param;
} else {
TINT_ICE() << "cannot resolve originating resource with expression type "
<< exprs[i]->TypeInfo().name;
return;
}
}
if (callsites.Length()) {
for (auto* call_expr : callsites) {
// Make a copy of the expressions for this callsite
std::array<const ast::Expression*, N> call_exprs = exprs;
// Patch all the parameter expressions with their argument
for (size_t i = 0; i < N; i++) {
if (auto* param = parameters[i]) {
call_exprs[i] = call_expr->args[param->Index()];
}
}
// Now call GetOriginatingResources() with from the callsite
GetOriginatingResources(call_exprs, callback);
}
} else {
// All the expressions resolved to globals
callback(globals);
}
}
std::vector<Inspector::LevelSampleInfo> Inspector::GetTextureQueries(const std::string& ep_name) {
std::vector<LevelSampleInfo> res;
std::unordered_set<BindingPoint> seen = {};
auto sample_type_for_call_and_type = [](wgsl::BuiltinFn builtin, const core::type::Type* ty) {
if (builtin == wgsl::BuiltinFn::kTextureNumLevels) {
return TextureQueryType::kTextureNumLevels;
}
if (builtin == wgsl::BuiltinFn::kTextureLoad) {
if (!ty->UnwrapRef()
->IsAnyOf<core::type::MultisampledTexture,
core::type::DepthMultisampledTexture>()) {
return TextureQueryType::kTextureNumLevels;
}
}
return TextureQueryType::kTextureNumSamples;
};
Hashmap<const sem::Function*, Hashmap<const ast::Parameter*, TextureQueryType, 4>, 8>
fn_to_data;
auto record_function_param = [&fn_to_data](const sem::Function* func,
const ast::Parameter* param, TextureQueryType type) {
fn_to_data.GetOrAddZero(func).Add(param, type);
};
auto save_if_needed = [&res, &seen](const sem::GlobalVariable* global, TextureQueryType type) {
auto binding = global->Attributes().binding_point.value();
if (seen.insert(binding).second) {
res.emplace_back(LevelSampleInfo{type, binding.group, binding.binding});
}
};
auto& sem = program_.Sem();
const auto* ep = FindEntryPointByName(ep_name);
if (!ep) {
return {};
}
// This works in dependency order such that we'll see the texture call first and can record
// any function parameter information and then as we walk up the function chain we can look
// the call data.
for (auto* fn_decl : sem.Module()->DependencyOrderedDeclarations()) {
auto* fn = sem.Get<sem::Function>(fn_decl);
if (!fn) {
continue;
}
// This is an entrypoint, make sure it's the requested entry point
if (fn->Declaration()->IsEntryPoint()) {
if (fn->Declaration() != ep) {
continue;
}
} else {
// Not an entry point, make sure it was called from the requested entry point
if (!fn->HasAncestorEntryPoint(ep->name->symbol)) {
continue;
}
}
for (auto* call : fn->DirectCalls()) {
// Builtin function call, record the texture information. If the used texture maps
// back up to a function parameter just store the type of the call and we'll track the
// function callback up in the `sem::Function` branch.
tint::Switch(
call->Target(),
[&](const sem::BuiltinFn* builtin) {
if (builtin->Fn() != wgsl::BuiltinFn::kTextureNumLevels &&
builtin->Fn() != wgsl::BuiltinFn::kTextureNumSamples &&
builtin->Fn() != wgsl::BuiltinFn::kTextureLoad) {
return;
}
auto* texture_expr = call->Declaration()->args[0];
auto* texture_sem = sem.GetVal(texture_expr)->RootIdentifier();
TINT_ASSERT(texture_sem);
auto type = sample_type_for_call_and_type(builtin->Fn(), texture_sem->Type());
tint::Switch(
texture_sem, //
[&](const sem::GlobalVariable* global) { save_if_needed(global, type); },
[&](const sem::Parameter* param) {
record_function_param(fn, param->Declaration(), type);
},
TINT_ICE_ON_NO_MATCH);
},
[&](const sem::Function* func) {
// A function call, check to see if any params needed to be tracked back to a
// global texture.
auto param_to_type = fn_to_data.Get(func);
if (!param_to_type) {
return;
}
TINT_ASSERT(call->Arguments().Length() == func->Declaration()->params.Length());
for (size_t i = 0; i < call->Arguments().Length(); i++) {
auto param = func->Declaration()->params[i];
// Determine if this had a texture we cared about
auto type = param_to_type->Get(param);
if (!type) {
continue;
}
auto* arg = call->Arguments()[i];
auto* texture_sem = arg->RootIdentifier();
tint::Switch(
texture_sem,
[&](const sem::GlobalVariable* global) {
save_if_needed(global, *type);
},
[&](const sem::Parameter* p) {
record_function_param(fn, p->Declaration(), *type);
},
TINT_ICE_ON_NO_MATCH);
}
});
}
}
return res;
}
} // namespace tint::inspector