blob: 57e96f5b34943a16307eca851b1927252f3bb03d [file] [log] [blame]
// Copyright 2019 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "dawn/dawn_proc.h"
#include "dawn/native/Instance.h"
#include "dawn/native/null/DeviceNull.h"
#include "dawn/utils/TerribleCommandBuffer.h"
#include "dawn/wire/WireClient.h"
namespace dawn {
namespace {
// dawn_wire and dawn_native contain duplicated code for the handling of GetProcAddress
// so we run the tests against both implementations. This enum is used as a test parameters to
// know which implementation to test.
enum class DawnFlavor {
Native,
Wire,
};
std::ostream& operator<<(std::ostream& stream, DawnFlavor flavor) {
switch (flavor) {
case DawnFlavor::Native:
stream << "dawn_native";
break;
case DawnFlavor::Wire:
stream << "dawn_wire";
break;
default:
DAWN_UNREACHABLE();
break;
}
return stream;
}
class GetProcAddressTests : public testing::TestWithParam<DawnFlavor> {
public:
GetProcAddressTests()
: testing::TestWithParam<DawnFlavor>(),
mNativeInstance(native::APICreateInstance(nullptr)),
mAdapterBase(mNativeInstance.Get(),
AcquireRef(new native::null::PhysicalDevice()),
native::FeatureLevel::Core,
native::TogglesState(native::ToggleStage::Adapter),
wgpu::PowerPreference::Undefined) {}
void SetUp() override {
switch (GetParam()) {
case DawnFlavor::Native: {
mDevice = wgpu::Device::Acquire(
reinterpret_cast<WGPUDevice>(mAdapterBase.APICreateDevice()));
mProcs = native::GetProcs();
break;
}
case DawnFlavor::Wire: {
mC2sBuf = std::make_unique<utils::TerribleCommandBuffer>();
wire::WireClientDescriptor clientDesc = {};
clientDesc.serializer = mC2sBuf.get();
mWireClient = std::make_unique<wire::WireClient>(clientDesc);
// Note that currently we are passing a null device since we do not actually use the
// device in determining the resulting proc addresses. If/when we actually care
// about features on the device to determine a proc address, this should be updated
// accordingly.
mDevice = nullptr;
mProcs = wire::client::GetProcs();
mC2sBuf->SetHandler(mWireClient.get());
break;
}
default:
DAWN_UNREACHABLE();
break;
}
dawnProcSetProcs(&mProcs);
}
void TearDown() override {
// Destroy the device before freeing the instance or the wire client in the destructor
mDevice = wgpu::Device();
if (mC2sBuf != nullptr) {
mC2sBuf->SetHandler(nullptr);
}
}
protected:
Ref<native::InstanceBase> mNativeInstance;
native::AdapterBase mAdapterBase;
std::unique_ptr<utils::TerribleCommandBuffer> mC2sBuf;
std::unique_ptr<wire::WireClient> mWireClient;
wgpu::Device mDevice;
DawnProcTable mProcs;
};
// Test GetProcAddress with and without devices on some valid examples
TEST_P(GetProcAddressTests, ValidExamples) {
ASSERT_EQ(mProcs.getProcAddress2(nullptr, {"wgpuDeviceCreateBuffer", SIZE_MAX}),
reinterpret_cast<WGPUProc>(mProcs.deviceCreateBuffer));
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {"wgpuDeviceCreateBuffer", SIZE_MAX}),
reinterpret_cast<WGPUProc>(mProcs.deviceCreateBuffer));
ASSERT_EQ(mProcs.getProcAddress2(nullptr, {"wgpuQueueSubmit", SIZE_MAX}),
reinterpret_cast<WGPUProc>(mProcs.queueSubmit));
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {"wgpuQueueSubmit", SIZE_MAX}),
reinterpret_cast<WGPUProc>(mProcs.queueSubmit));
// Test a longer string, truncated correctly with the length field.
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {"wgpuQueueSubmitExtraString", 15}),
reinterpret_cast<WGPUProc>(mProcs.queueSubmit));
}
// Test GetProcAddress with and without devices on nullptr procName
TEST_P(GetProcAddressTests, Nullptr) {
ASSERT_EQ(mProcs.getProcAddress2(nullptr, {nullptr, SIZE_MAX}), nullptr);
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {nullptr, SIZE_MAX}), nullptr);
}
// Test GetProcAddress with and without devices on some invalid
TEST_P(GetProcAddressTests, InvalidExamples) {
ASSERT_EQ(mProcs.getProcAddress2(nullptr, {"wgpuDeviceDoSomething", SIZE_MAX}), nullptr);
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {"wgpuDeviceDoSomething", SIZE_MAX}), nullptr);
// Test a "valid" string, truncated to not match with the length field.
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {"wgpuQueueSubmit", 14}), nullptr);
// Trigger the condition where lower_bound will return the end of the procMap.
ASSERT_EQ(mProcs.getProcAddress2(nullptr, {"zzzzzzz", SIZE_MAX}), nullptr);
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {"zzzzzzz", SIZE_MAX}), nullptr);
ASSERT_EQ(mProcs.getProcAddress2(nullptr, {"ZZ", SIZE_MAX}), nullptr);
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {"ZZ", SIZE_MAX}), nullptr);
// Some more potential corner cases.
ASSERT_EQ(mProcs.getProcAddress2(nullptr, {"", SIZE_MAX}), nullptr);
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {"", SIZE_MAX}), nullptr);
ASSERT_EQ(mProcs.getProcAddress2(nullptr, {"0", SIZE_MAX}), nullptr);
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {"0", SIZE_MAX}), nullptr);
}
// Test that GetProcAddress supports freestanding function that are handled specially
TEST_P(GetProcAddressTests, FreeStandingFunctions) {
ASSERT_EQ(mProcs.getProcAddress2(nullptr, {"wgpuGetProcAddress", SIZE_MAX}),
reinterpret_cast<WGPUProc>(mProcs.getProcAddress));
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {"wgpuGetProcAddress", SIZE_MAX}),
reinterpret_cast<WGPUProc>(mProcs.getProcAddress));
ASSERT_EQ(mProcs.getProcAddress2(nullptr, {"wgpuCreateInstance", SIZE_MAX}),
reinterpret_cast<WGPUProc>(mProcs.createInstance));
ASSERT_EQ(mProcs.getProcAddress2(mDevice.Get(), {"wgpuCreateInstance", SIZE_MAX}),
reinterpret_cast<WGPUProc>(mProcs.createInstance));
}
INSTANTIATE_TEST_SUITE_P(,
GetProcAddressTests,
testing::Values(DawnFlavor::Native, DawnFlavor::Wire),
testing::PrintToStringParamName());
TEST(GetProcAddressInternalTests, CheckDawnNativeProcMapOrder) {
std::vector<std::string_view> names = native::GetProcMapNamesForTesting();
for (size_t i = 1; i < names.size(); i++) {
ASSERT_LT(names[i - 1], names[i]);
}
}
TEST(GetProcAddressInternalTests, CheckDawnWireClientProcMapOrder) {
std::vector<std::string_view> names = wire::client::GetProcMapNamesForTesting();
for (size_t i = 1; i < names.size(); i++) {
ASSERT_LT(names[i - 1], names[i]);
}
}
} // anonymous namespace
} // namespace dawn