| // Copyright 2021 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // WGSL builtin definition file // |
| // // |
| // This file is used to generate parts of the Tint BuiltinTable, various // |
| // enum definition files, as well as test .wgsl files. // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Enumerators // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // https://gpuweb.github.io/gpuweb/wgsl/#storage-class |
| enum storage_class { |
| function |
| private |
| workgroup |
| uniform |
| storage |
| @internal handle |
| } |
| |
| // https://gpuweb.github.io/gpuweb/wgsl/#memory-access-mode |
| enum access { |
| read |
| write |
| read_write |
| } |
| |
| // https://gpuweb.github.io/gpuweb/wgsl/#texel-formats |
| enum texel_format { |
| rgba8unorm |
| rgba8snorm |
| rgba8uint |
| rgba8sint |
| rgba16uint |
| rgba16sint |
| rgba16float |
| r32uint |
| r32sint |
| r32float |
| rg32uint |
| rg32sint |
| rg32float |
| rgba32uint |
| rgba32sint |
| rgba32float |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // WGSL primitive types // |
| // Types may be decorated with @precedence(N) to prioritize which type // |
| // will be picked when multiple types of a matcher match. // |
| // This is used to ensure that abstract numerical types materialize to the // |
| // concrete type with the lowest conversion rank. // |
| // Types with higher the precedence values will be matched first. // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // https://gpuweb.github.io/gpuweb/wgsl/#plain-types-section |
| type bool |
| @precedence(4) @display("abstract-float") type af |
| @precedence(3) @display("abstract-int") type ai |
| @precedence(2) type i32 |
| @precedence(1) type u32 |
| @precedence(0) type f32 |
| type vec2<T> |
| type vec3<T> |
| type vec4<T> |
| type mat2x2<T> |
| type mat2x3<T> |
| type mat2x4<T> |
| type mat3x2<T> |
| type mat3x3<T> |
| type mat3x4<T> |
| type mat4x2<T> |
| type mat4x3<T> |
| type mat4x4<T> |
| @display("vec{N}<{T}>") type vec<N: num, T> |
| @display("mat{N}x{M}<{T}>") type mat<N: num, M: num, T> |
| type ptr<S: storage_class, T, A: access> |
| type atomic<T> |
| type array<T> |
| type sampler |
| type sampler_comparison |
| type texture_1d<T> |
| type texture_2d<T> |
| type texture_2d_array<T> |
| type texture_3d<T> |
| type texture_cube<T> |
| type texture_cube_array<T> |
| type texture_multisampled_2d<T> |
| type texture_depth_2d |
| type texture_depth_2d_array |
| type texture_depth_cube |
| type texture_depth_cube_array |
| type texture_depth_multisampled_2d |
| type texture_storage_1d<F: texel_format, A: access> |
| type texture_storage_2d<F: texel_format, A: access> |
| type texture_storage_2d_array<F: texel_format, A: access> |
| type texture_storage_3d<F: texel_format, A: access> |
| type texture_external |
| |
| type __modf_result |
| @display("__modf_result_vec{N}") type __modf_result_vec<N: num> |
| type __frexp_result |
| @display("__frexp_result_vec{N}") type __frexp_result_vec<N: num> |
| |
| type __atomic_compare_exchange_result<T> |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Type matchers // |
| // // |
| // A type matcher that can match one or more types. // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| match fiu32: f32 | i32 | u32 |
| match fi32: f32 | i32 |
| match iu32: i32 | u32 |
| match scalar: f32 | i32 | u32 | bool |
| match abstract_or_scalar: ai | af | f32 | i32 | u32 | bool |
| match af_f32: af | f32 |
| match scalar_no_f32: i32 | u32 | bool |
| match scalar_no_i32: f32 | u32 | bool |
| match scalar_no_u32: f32 | i32 | bool |
| match scalar_no_bool: f32 | i32 | u32 |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Enum matchers // |
| // // |
| // A number matcher that can match one or more enumerator values. // |
| // All enumerator values listed in the match declaration need to be from the // |
| // same enum. // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // https://gpuweb.github.io/gpuweb/wgsl/#texel-formats |
| match f32_texel_format: |
| rgba8unorm | rgba8snorm | rgba16float | r32float | rg32float | rgba32float |
| match i32_texel_format: |
| rgba8sint | rgba16sint | r32sint | rg32sint | rgba32sint |
| match u32_texel_format: |
| rgba8uint | rgba16uint | r32uint | rg32uint | rgba32uint |
| |
| match write_only: write |
| |
| match function_private_workgroup: function | private | workgroup |
| match workgroup_or_storage: workgroup | storage |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Builtin Functions // |
| // // |
| // The builtin function declarations below declare all the built-in // |
| // functions supported by the WGSL language. This builtin definition // |
| // language supports simple static-type function declarations, as well as // |
| // single overload declarations that can match a number of different // |
| // argument types via the use of template types and template numbers // |
| // // |
| // * Basic example: // |
| // // |
| // fn isInf(f32) -> bool // |
| // // |
| // Declares an overload of the function 'isInf' that accepts a single // |
| // parameter of type 'f32' and returns a 'bool'. // |
| // // |
| // A template type is a type determined by the arguments to the builtin. // |
| // // |
| // * Template type example without constraint: // |
| // // |
| // fn arrayLength<T>(array<T>) -> u32 // |
| // // |
| // Declares an overload of the function 'arrayLength' that accepts a // |
| // single argument of an array type with no constraints on the array // |
| // element type. This overload will always return a value of the same type // |
| // as its single argument. // |
| // // |
| // * Template type example with constraint: // |
| // // |
| // fn abs<T: fiu32>(T) -> T // |
| // // |
| // Declares an overload of the function 'abs' that accepts a single // |
| // argument of type 'f32', 'i32' or 'u32', which returns a value of the // |
| // same argument type. // |
| // // |
| // Similarly a template number is a number or enumerator that is determined // |
| // by the arguments to the builtin. // |
| // // |
| // * Template number example: // |
| // // |
| // fn dpdx<N: num>(vec<N, f32>) -> vec<N, f32> // |
| // // |
| // Declares an overload of the function 'dpdx' that accepts a single // |
| // argument of a variable-sized vector of 'f32', which returns a value of // |
| // the same argument type. // |
| // // |
| // // |
| // Matching algorithm for a single overload: // |
| // ----------------------------------------- // |
| // // |
| // The goal of matching is to compare a function call's arguments and any // |
| // explicitly provided template types in the program source against an // |
| // overload declaration in this file, and determine if the call satisfies // |
| // the form and type constraints of the overload. If the call matches an // |
| // overload, then the overload is added to the list of 'overload candidates' // |
| // used for overload resolution (described below). // |
| // // |
| // Prior to matching an overload, all template types are undefined. // |
| // // |
| // Template types are first defined with the type of the leftmost argument // |
| // that matches against that template type name. Subsequent arguments that // |
| // attempt to match against the template type name will either reject the // |
| // overload or refine the template, in one of 3 ways: // |
| // (a) Fail to match, causing the overload to be immediately rejected. // |
| // (b) Match the existing template type, either exactly or via implicit // |
| // conversion, and overload resolution continues. // |
| // (c) Match via implicit conversion of the currently defined template type // |
| // to the argument type. In this situation, the template type is refined // |
| // with the more constrained argument type, and overload resolution // |
| // continues. // |
| // // |
| // To better understand, let's consider the following hypothetical overload // |
| // declaration: // |
| // // |
| // fn foo<T: scalar>(T, T); // |
| // // |
| // T - is the template type name // |
| // scalar - is a matcher for the types 'f32', 'i32', 'u32' or 'bool' // |
| // (declared above) // |
| // <T: scalar> - declares the template type T, with the constraint that T // |
| // must match one of 'f32', 'i32', 'u32' or 'bool'. // |
| // // |
| // The process for resolving this overload is as follows: // |
| // // |
| // (1) The overload resolver begins by attempting to match the argument // |
| // types from left to right. // |
| // The first parameter type is compared against the argument type T. // |
| // As the template type T has not been defined yet, T is defined as the // |
| // type of the first argument. // |
| // There's no verification that the T type is a scalar at this stage. // |
| // (2) The second parameter is then compared against the second argument. // |
| // As the template type T is now defined the argument type is compared // |
| // against the value of the defined type of T. Depending on the // |
| // comparison of the argument type to the template type, either the // |
| // actions of (a), (b) or (c) from above will occur. // |
| // (3) If all the parameters matched, constraints on the template types // |
| // need to be checked next. If the defined type does not match the // |
| // 'match' constraint, then the overload is no longer considered. // |
| // // |
| // This algorithm for matching a single overload is less general than the // |
| // algorithm described in the WGSL spec. But it makes the same decisions // |
| // because the overloads defined by WGSL are monotonic in the sense that once // |
| // a template parameter has been refined, there is never a need to backtrack // |
| // and un-refine it to match a later argument. // |
| // // |
| // The algorithm for matching template numbers is similar to matching // |
| // template types, except numbers need to exactly match across all uses - // |
| // there is no implicit conversion. Template numbers may match integer // |
| // numbers or enumerators. // |
| // // |
| // // |
| // Overload resolution for candidate overloads // |
| // ------------------------------------------- // |
| // // |
| // If multiple candidate overloads match a given set of arguments, then a // |
| // final overload resolution pass needs to be performed. The arguments and // |
| // overload parameter types for each candidate overload are compared, // |
| // following the algorithm described at: // |
| // https://www.w3.org/TR/WGSL/#overload-resolution-section // |
| // // |
| // If the candidate list contains a single entry, then that single candidate // |
| // is picked, and no overload resolution needs to be performed. // |
| // // |
| // If the candidate list is empty, then the call fails to resolve and an // |
| // error diagnostic is raised. // |
| // // |
| // // |
| // More examples // |
| // ------------- // |
| // // |
| // fn F() // |
| // - Function called F. // |
| // No template types or numbers, no parameters, no return value // |
| // // |
| // fn F() -> RETURN_TYPE // |
| // - Function with RETURN_TYPE as the return type value // |
| // // |
| // fn F(f32, i32) // |
| // - Two fixed-type, anonymous parameters // |
| // // |
| // fn F(USAGE : f32) // |
| // - Single parameter with name USAGE. // |
| // Note: Parameter names are used by Tint to infer parameter order for // |
| // some builtin functions // |
| // // |
| // fn F<T>(T) // |
| // - Single parameter of unconstrained template type T (any type) // |
| // // |
| // fn F<T: scalar>(T) // |
| // - Single parameter of constrained template type T (must be a scalar) // |
| // // |
| // fn F<T: fiu32>(T) -> T // |
| // - Single parameter of constrained template type T (must be a one of // |
| // fiu32) Return type matches parameter type // |
| // // |
| // fn F<T, N: num>(vec<N, T>) // |
| // - Single parameter of vector type with template number size N and // |
| // element template type T // |
| // // |
| // fn F<A: access>(texture_storage_1d<f32_texel_format, A>) // |
| // - Single parameter of texture_storage_1d type with template number // |
| // access-control C, and of a texel format that is listed in // |
| // f32_texel_format // |
| // // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // https://gpuweb.github.io/gpuweb/wgsl/#builtin-functions |
| fn abs<T: fiu32>(T) -> T |
| fn abs<N: num, T: fiu32>(vec<N, T>) -> vec<N, T> |
| fn acos(f32) -> f32 |
| fn acos<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn all(bool) -> bool |
| fn all<N: num>(vec<N, bool>) -> bool |
| fn any(bool) -> bool |
| fn any<N: num>(vec<N, bool>) -> bool |
| fn arrayLength<T, A: access>(ptr<storage, array<T>, A>) -> u32 |
| fn asin(f32) -> f32 |
| fn asin<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn atan(f32) -> f32 |
| fn atan<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn atan2(f32, f32) -> f32 |
| fn atan2<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32> |
| fn ceil(f32) -> f32 |
| fn ceil<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn clamp<T: fiu32>(T, T, T) -> T |
| fn clamp<N: num, T: fiu32>(vec<N, T>, vec<N, T>, vec<N, T>) -> vec<N, T> |
| fn cos(f32) -> f32 |
| fn cos<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn cosh(f32) -> f32 |
| fn cosh<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn countLeadingZeros<T: iu32>(T) -> T |
| fn countLeadingZeros<N: num, T: iu32>(vec<N, T>) -> vec<N, T> |
| fn countOneBits<T: iu32>(T) -> T |
| fn countOneBits<N: num, T: iu32>(vec<N, T>) -> vec<N, T> |
| fn countTrailingZeros<T: iu32>(T) -> T |
| fn countTrailingZeros<N: num, T: iu32>(vec<N, T>) -> vec<N, T> |
| fn cross(vec3<f32>, vec3<f32>) -> vec3<f32> |
| fn degrees(f32) -> f32 |
| fn degrees<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn determinant<N: num>(mat<N, N, f32>) -> f32 |
| fn distance(f32, f32) -> f32 |
| fn distance<N: num>(vec<N, f32>, vec<N, f32>) -> f32 |
| fn dot<N: num, T: fiu32>(vec<N, T>, vec<N, T>) -> T |
| fn dot4I8Packed(u32, u32) -> i32 |
| fn dot4U8Packed(u32, u32) -> u32 |
| @stage("fragment") fn dpdx(f32) -> f32 |
| @stage("fragment") fn dpdx<N: num>(vec<N, f32>) -> vec<N, f32> |
| @stage("fragment") fn dpdxCoarse(f32) -> f32 |
| @stage("fragment") fn dpdxCoarse<N: num>(vec<N, f32>) -> vec<N, f32> |
| @stage("fragment") fn dpdxFine(f32) -> f32 |
| @stage("fragment") fn dpdxFine<N: num>(vec<N, f32>) -> vec<N, f32> |
| @stage("fragment") fn dpdy(f32) -> f32 |
| @stage("fragment") fn dpdy<N: num>(vec<N, f32>) -> vec<N, f32> |
| @stage("fragment") fn dpdyCoarse(f32) -> f32 |
| @stage("fragment") fn dpdyCoarse<N: num>(vec<N, f32>) -> vec<N, f32> |
| @stage("fragment") fn dpdyFine(f32) -> f32 |
| @stage("fragment") fn dpdyFine<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn exp(f32) -> f32 |
| fn exp<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn exp2(f32) -> f32 |
| fn exp2<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn extractBits<T: iu32>(T, u32, u32) -> T |
| fn extractBits<N: num, T: iu32>(vec<N, T>, u32, u32) -> vec<N, T> |
| fn faceForward<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32> |
| fn firstLeadingBit<T: iu32>(T) -> T |
| fn firstLeadingBit<N: num, T: iu32>(vec<N, T>) -> vec<N, T> |
| fn firstTrailingBit<T: iu32>(T) -> T |
| fn firstTrailingBit<N: num, T: iu32>(vec<N, T>) -> vec<N, T> |
| fn floor(f32) -> f32 |
| fn floor<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn fma(f32, f32, f32) -> f32 |
| fn fma<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32> |
| fn fract(f32) -> f32 |
| fn fract<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn frexp(f32) -> __frexp_result |
| fn frexp<N: num>(vec<N, f32>) -> __frexp_result_vec<N> |
| @stage("fragment") fn fwidth(f32) -> f32 |
| @stage("fragment") fn fwidth<N: num>(vec<N, f32>) -> vec<N, f32> |
| @stage("fragment") fn fwidthCoarse(f32) -> f32 |
| @stage("fragment") fn fwidthCoarse<N: num>(vec<N, f32>) -> vec<N, f32> |
| @stage("fragment") fn fwidthFine(f32) -> f32 |
| @stage("fragment") fn fwidthFine<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn insertBits<T: iu32>(T, T, u32, u32) -> T |
| fn insertBits<N: num, T: iu32>(vec<N, T>, vec<N, T>, u32, u32) -> vec<N, T> |
| fn inverseSqrt(f32) -> f32 |
| fn inverseSqrt<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn ldexp(f32, i32) -> f32 |
| fn ldexp<N: num>(vec<N, f32>, vec<N, i32>) -> vec<N, f32> |
| fn length(f32) -> f32 |
| fn length<N: num>(vec<N, f32>) -> f32 |
| fn log(f32) -> f32 |
| fn log<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn log2(f32) -> f32 |
| fn log2<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn max<T: fiu32>(T, T) -> T |
| fn max<N: num, T: fiu32>(vec<N, T>, vec<N, T>) -> vec<N, T> |
| fn min<T: fiu32>(T, T) -> T |
| fn min<N: num, T: fiu32>(vec<N, T>, vec<N, T>) -> vec<N, T> |
| fn mix(f32, f32, f32) -> f32 |
| fn mix<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32> |
| fn mix<N: num>(vec<N, f32>, vec<N, f32>, f32) -> vec<N, f32> |
| fn modf(f32) -> __modf_result |
| fn modf<N: num>(vec<N, f32>) -> __modf_result_vec<N> |
| fn normalize<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn pack2x16float(vec2<f32>) -> u32 |
| fn pack2x16snorm(vec2<f32>) -> u32 |
| fn pack2x16unorm(vec2<f32>) -> u32 |
| fn pack4x8snorm(vec4<f32>) -> u32 |
| fn pack4x8unorm(vec4<f32>) -> u32 |
| fn pow(f32, f32) -> f32 |
| fn pow<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32> |
| fn radians(f32) -> f32 |
| fn radians<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn reflect<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32> |
| fn refract<N: num>(vec<N, f32>, vec<N, f32>, f32) -> vec<N, f32> |
| fn reverseBits<T: iu32>(T) -> T |
| fn reverseBits<N: num, T: iu32>(vec<N, T>) -> vec<N, T> |
| fn round(f32) -> f32 |
| fn round<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn select<T: scalar>(T, T, bool) -> T |
| fn select<T: scalar, N: num>(vec<N, T>, vec<N, T>, bool) -> vec<N, T> |
| fn select<N: num, T: scalar>(vec<N, T>, vec<N, T>, vec<N, bool>) -> vec<N, T> |
| fn sign(f32) -> f32 |
| fn sign<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn sin(f32) -> f32 |
| fn sin<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn sinh(f32) -> f32 |
| fn sinh<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn smoothstep(f32, f32, f32) -> f32 |
| fn smoothstep<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32> |
| @deprecated fn smoothStep(f32, f32, f32) -> f32 |
| @deprecated fn smoothStep<N: num>(vec<N, f32>, vec<N, f32>, vec<N, f32>) -> vec<N, f32> |
| fn sqrt(f32) -> f32 |
| fn sqrt<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn step(f32, f32) -> f32 |
| fn step<N: num>(vec<N, f32>, vec<N, f32>) -> vec<N, f32> |
| @stage("compute") fn storageBarrier() |
| fn tan(f32) -> f32 |
| fn tan<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn tanh(f32) -> f32 |
| fn tanh<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn transpose<M: num, N: num>(mat<M, N, f32>) -> mat<N, M, f32> |
| fn trunc(f32) -> f32 |
| fn trunc<N: num>(vec<N, f32>) -> vec<N, f32> |
| fn unpack2x16float(u32) -> vec2<f32> |
| fn unpack2x16snorm(u32) -> vec2<f32> |
| fn unpack2x16unorm(u32) -> vec2<f32> |
| fn unpack4x8snorm(u32) -> vec4<f32> |
| fn unpack4x8unorm(u32) -> vec4<f32> |
| @stage("compute") fn workgroupBarrier() |
| |
| fn textureDimensions<T: fiu32>(texture: texture_1d<T>) -> i32 |
| fn textureDimensions<T: fiu32>(texture: texture_1d<T>, level: i32) -> i32 |
| fn textureDimensions<T: fiu32>(texture: texture_2d<T>) -> vec2<i32> |
| fn textureDimensions<T: fiu32>(texture: texture_2d<T>, level: i32) -> vec2<i32> |
| fn textureDimensions<T: fiu32>(texture: texture_2d_array<T>) -> vec2<i32> |
| fn textureDimensions<T: fiu32>(texture: texture_2d_array<T>, level: i32) -> vec2<i32> |
| fn textureDimensions<T: fiu32>(texture: texture_3d<T>) -> vec3<i32> |
| fn textureDimensions<T: fiu32>(texture: texture_3d<T>, level: i32) -> vec3<i32> |
| fn textureDimensions<T: fiu32>(texture: texture_cube<T>) -> vec2<i32> |
| fn textureDimensions<T: fiu32>(texture: texture_cube<T>, level: i32) -> vec2<i32> |
| fn textureDimensions<T: fiu32>(texture: texture_cube_array<T>) -> vec2<i32> |
| fn textureDimensions<T: fiu32>(texture: texture_cube_array<T>, level: i32) -> vec2<i32> |
| fn textureDimensions<T: fiu32>(texture: texture_multisampled_2d<T>) -> vec2<i32> |
| fn textureDimensions(texture: texture_depth_2d) -> vec2<i32> |
| fn textureDimensions(texture: texture_depth_2d, level: i32) -> vec2<i32> |
| fn textureDimensions(texture: texture_depth_2d_array) -> vec2<i32> |
| fn textureDimensions(texture: texture_depth_2d_array, level: i32) -> vec2<i32> |
| fn textureDimensions(texture: texture_depth_cube) -> vec2<i32> |
| fn textureDimensions(texture: texture_depth_cube, level: i32) -> vec2<i32> |
| fn textureDimensions(texture: texture_depth_cube_array) -> vec2<i32> |
| fn textureDimensions(texture: texture_depth_cube_array, level: i32) -> vec2<i32> |
| fn textureDimensions(texture: texture_depth_multisampled_2d) -> vec2<i32> |
| fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_1d<F, A>) -> i32 |
| fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_2d<F, A>) -> vec2<i32> |
| fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_2d_array<F, A>) -> vec2<i32> |
| fn textureDimensions<F: texel_format, A: write_only>(texture: texture_storage_3d<F, A>) -> vec3<i32> |
| fn textureDimensions(texture: texture_external) -> vec2<i32> |
| fn textureGather<T: fiu32>(@const component: i32, texture: texture_2d<T>, sampler: sampler, coords: vec2<f32>) -> vec4<T> |
| fn textureGather<T: fiu32>(@const component: i32, texture: texture_2d<T>, sampler: sampler, coords: vec2<f32>, @const offset: vec2<i32>) -> vec4<T> |
| fn textureGather<T: fiu32>(@const component: i32, texture: texture_2d_array<T>, sampler: sampler, coords: vec2<f32>, array_index: i32) -> vec4<T> |
| fn textureGather<T: fiu32>(@const component: i32, texture: texture_2d_array<T>, sampler: sampler, coords: vec2<f32>, array_index: i32, @const offset: vec2<i32>) -> vec4<T> |
| fn textureGather<T: fiu32>(@const component: i32, texture: texture_cube<T>, sampler: sampler, coords: vec3<f32>) -> vec4<T> |
| fn textureGather<T: fiu32>(@const component: i32, texture: texture_cube_array<T>, sampler: sampler, coords: vec3<f32>, array_index: i32) -> vec4<T> |
| fn textureGather(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>) -> vec4<f32> |
| fn textureGather(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, @const offset: vec2<i32>) -> vec4<f32> |
| fn textureGather(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32) -> vec4<f32> |
| fn textureGather(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, @const offset: vec2<i32>) -> vec4<f32> |
| fn textureGather(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>) -> vec4<f32> |
| fn textureGather(texture: texture_depth_cube_array, sampler: sampler, coords: vec3<f32>, array_index: i32) -> vec4<f32> |
| fn textureGatherCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> vec4<f32> |
| fn textureGatherCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, @const offset: vec2<i32>) -> vec4<f32> |
| fn textureGatherCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32) -> vec4<f32> |
| fn textureGatherCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32, @const offset: vec2<i32>) -> vec4<f32> |
| fn textureGatherCompare(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> vec4<f32> |
| fn textureGatherCompare(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: i32, depth_ref: f32) -> vec4<f32> |
| fn textureNumLayers<T: fiu32>(texture: texture_2d_array<T>) -> i32 |
| fn textureNumLayers<T: fiu32>(texture: texture_cube_array<T>) -> i32 |
| fn textureNumLayers(texture: texture_depth_2d_array) -> i32 |
| fn textureNumLayers(texture: texture_depth_cube_array) -> i32 |
| fn textureNumLayers<F: texel_format, A: write_only>(texture: texture_storage_2d_array<F, A>) -> i32 |
| fn textureNumLevels<T: fiu32>(texture: texture_1d<T>) -> i32 |
| fn textureNumLevels<T: fiu32>(texture: texture_2d<T>) -> i32 |
| fn textureNumLevels<T: fiu32>(texture: texture_2d_array<T>) -> i32 |
| fn textureNumLevels<T: fiu32>(texture: texture_3d<T>) -> i32 |
| fn textureNumLevels<T: fiu32>(texture: texture_cube<T>) -> i32 |
| fn textureNumLevels<T: fiu32>(texture: texture_cube_array<T>) -> i32 |
| fn textureNumLevels(texture: texture_depth_2d) -> i32 |
| fn textureNumLevels(texture: texture_depth_2d_array) -> i32 |
| fn textureNumLevels(texture: texture_depth_cube) -> i32 |
| fn textureNumLevels(texture: texture_depth_cube_array) -> i32 |
| fn textureNumSamples<T: fiu32>(texture: texture_multisampled_2d<T>) -> i32 |
| fn textureNumSamples(texture: texture_depth_multisampled_2d) -> i32 |
| @stage("fragment") fn textureSample(texture: texture_1d<f32>, sampler: sampler, coords: f32) -> vec4<f32> |
| @stage("fragment") fn textureSample(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>) -> vec4<f32> |
| @stage("fragment") fn textureSample(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, @const offset: vec2<i32>) -> vec4<f32> |
| @stage("fragment") fn textureSample(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32) -> vec4<f32> |
| @stage("fragment") fn textureSample(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, @const offset: vec2<i32>) -> vec4<f32> |
| @stage("fragment") fn textureSample(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>) -> vec4<f32> |
| @stage("fragment") fn textureSample(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, @const offset: vec3<i32>) -> vec4<f32> |
| @stage("fragment") fn textureSample(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>) -> vec4<f32> |
| @stage("fragment") fn textureSample(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32) -> vec4<f32> |
| @stage("fragment") fn textureSample(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>) -> f32 |
| @stage("fragment") fn textureSample(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, @const offset: vec2<i32>) -> f32 |
| @stage("fragment") fn textureSample(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32) -> f32 |
| @stage("fragment") fn textureSample(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, @const offset: vec2<i32>) -> f32 |
| @stage("fragment") fn textureSample(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>) -> f32 |
| @stage("fragment") fn textureSample(texture: texture_depth_cube_array, sampler: sampler, coords: vec3<f32>, array_index: i32) -> f32 |
| @stage("fragment") fn textureSampleBias(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, bias: f32) -> vec4<f32> |
| @stage("fragment") fn textureSampleBias(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, bias: f32, @const offset: vec2<i32>) -> vec4<f32> |
| @stage("fragment") fn textureSampleBias(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, bias: f32) -> vec4<f32> |
| @stage("fragment") fn textureSampleBias(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, bias: f32, @const offset: vec2<i32>) -> vec4<f32> |
| @stage("fragment") fn textureSampleBias(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, bias: f32) -> vec4<f32> |
| @stage("fragment") fn textureSampleBias(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, bias: f32, @const offset: vec3<i32>) -> vec4<f32> |
| @stage("fragment") fn textureSampleBias(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, bias: f32) -> vec4<f32> |
| @stage("fragment") fn textureSampleBias(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, bias: f32) -> vec4<f32> |
| @stage("fragment") fn textureSampleCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> f32 |
| @stage("fragment") fn textureSampleCompare(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, @const offset: vec2<i32>) -> f32 |
| @stage("fragment") fn textureSampleCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32) -> f32 |
| @stage("fragment") fn textureSampleCompare(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32, @const offset: vec2<i32>) -> f32 |
| @stage("fragment") fn textureSampleCompare(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> f32 |
| @stage("fragment") fn textureSampleCompare(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: i32, depth_ref: f32) -> f32 |
| fn textureSampleCompareLevel(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32) -> f32 |
| fn textureSampleCompareLevel(texture: texture_depth_2d, sampler: sampler_comparison, coords: vec2<f32>, depth_ref: f32, @const offset: vec2<i32>) -> f32 |
| fn textureSampleCompareLevel(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32) -> f32 |
| fn textureSampleCompareLevel(texture: texture_depth_2d_array, sampler: sampler_comparison, coords: vec2<f32>, array_index: i32, depth_ref: f32, @const offset: vec2<i32>) -> f32 |
| fn textureSampleCompareLevel(texture: texture_depth_cube, sampler: sampler_comparison, coords: vec3<f32>, depth_ref: f32) -> f32 |
| fn textureSampleCompareLevel(texture: texture_depth_cube_array, sampler: sampler_comparison, coords: vec3<f32>, array_index: i32, depth_ref: f32) -> f32 |
| fn textureSampleGrad(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, ddx: vec2<f32>, ddy: vec2<f32>) -> vec4<f32> |
| fn textureSampleGrad(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, ddx: vec2<f32>, ddy: vec2<f32>, @const offset: vec2<i32>) -> vec4<f32> |
| fn textureSampleGrad(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, ddx: vec2<f32>, ddy: vec2<f32>) -> vec4<f32> |
| fn textureSampleGrad(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, ddx: vec2<f32>, ddy: vec2<f32>, @const offset: vec2<i32>) -> vec4<f32> |
| fn textureSampleGrad(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32> |
| fn textureSampleGrad(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>, @const offset: vec3<i32>) -> vec4<f32> |
| fn textureSampleGrad(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32> |
| fn textureSampleGrad(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, ddx: vec3<f32>, ddy: vec3<f32>) -> vec4<f32> |
| fn textureSampleLevel(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, level: f32) -> vec4<f32> |
| fn textureSampleLevel(texture: texture_2d<f32>, sampler: sampler, coords: vec2<f32>, level: f32, @const offset: vec2<i32>) -> vec4<f32> |
| fn textureSampleLevel(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, level: f32) -> vec4<f32> |
| fn textureSampleLevel(texture: texture_2d_array<f32>, sampler: sampler, coords: vec2<f32>, array_index: i32, level: f32, @const offset: vec2<i32>) -> vec4<f32> |
| fn textureSampleLevel(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, level: f32) -> vec4<f32> |
| fn textureSampleLevel(texture: texture_3d<f32>, sampler: sampler, coords: vec3<f32>, level: f32, @const offset: vec3<i32>) -> vec4<f32> |
| fn textureSampleLevel(texture: texture_cube<f32>, sampler: sampler, coords: vec3<f32>, level: f32) -> vec4<f32> |
| fn textureSampleLevel(texture: texture_cube_array<f32>, sampler: sampler, coords: vec3<f32>, array_index: i32, level: f32) -> vec4<f32> |
| fn textureSampleLevel(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, level: i32) -> f32 |
| fn textureSampleLevel(texture: texture_depth_2d, sampler: sampler, coords: vec2<f32>, level: i32, @const offset: vec2<i32>) -> f32 |
| fn textureSampleLevel(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, level: i32) -> f32 |
| fn textureSampleLevel(texture: texture_depth_2d_array, sampler: sampler, coords: vec2<f32>, array_index: i32, level: i32, @const offset: vec2<i32>) -> f32 |
| fn textureSampleLevel(texture: texture_depth_cube, sampler: sampler, coords: vec3<f32>, level: i32) -> f32 |
| fn textureSampleLevel(texture: texture_depth_cube_array,sampler: sampler, coords: vec3<f32>, array_index: i32, level: i32) -> f32 |
| fn textureSampleLevel(texture: texture_external, sampler: sampler, coords: vec2<f32>) -> vec4<f32> |
| fn textureStore(texture: texture_storage_1d<f32_texel_format, write>, coords: i32, value: vec4<f32>) |
| fn textureStore(texture: texture_storage_2d<f32_texel_format, write>, coords: vec2<i32>, value: vec4<f32>) |
| fn textureStore(texture: texture_storage_2d_array<f32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<f32>) |
| fn textureStore(texture: texture_storage_3d<f32_texel_format, write>, coords: vec3<i32>, value: vec4<f32>) |
| fn textureStore(texture: texture_storage_1d<i32_texel_format, write>, coords: i32, value: vec4<i32>) |
| fn textureStore(texture: texture_storage_2d<i32_texel_format, write>, coords: vec2<i32>, value: vec4<i32>) |
| fn textureStore(texture: texture_storage_2d_array<i32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<i32>) |
| fn textureStore(texture: texture_storage_3d<i32_texel_format, write>, coords: vec3<i32>, value: vec4<i32>) |
| fn textureStore(texture: texture_storage_1d<u32_texel_format, write>, coords: i32, value: vec4<u32>) |
| fn textureStore(texture: texture_storage_2d<u32_texel_format, write>, coords: vec2<i32>, value: vec4<u32>) |
| fn textureStore(texture: texture_storage_2d_array<u32_texel_format, write>, coords: vec2<i32>, array_index: i32, value: vec4<u32>) |
| fn textureStore(texture: texture_storage_3d<u32_texel_format, write>, coords: vec3<i32>, value: vec4<u32>) |
| fn textureLoad<T: fiu32>(texture: texture_1d<T>, coords: i32, level: i32) -> vec4<T> |
| fn textureLoad<T: fiu32>(texture: texture_2d<T>, coords: vec2<i32>, level: i32) -> vec4<T> |
| fn textureLoad<T: fiu32>(texture: texture_2d_array<T>, coords: vec2<i32>, array_index: i32, level: i32) -> vec4<T> |
| fn textureLoad<T: fiu32>(texture: texture_3d<T>, coords: vec3<i32>, level: i32) -> vec4<T> |
| fn textureLoad<T: fiu32>(texture: texture_multisampled_2d<T>, coords: vec2<i32>, sample_index: i32) -> vec4<T> |
| fn textureLoad(texture: texture_depth_2d, coords: vec2<i32>, level: i32) -> f32 |
| fn textureLoad(texture: texture_depth_2d_array, coords: vec2<i32>, array_index: i32, level: i32) -> f32 |
| fn textureLoad(texture: texture_depth_multisampled_2d, coords: vec2<i32>, sample_index: i32) -> f32 |
| fn textureLoad(texture: texture_external, coords: vec2<i32>) -> vec4<f32> |
| |
| @stage("fragment", "compute") fn atomicLoad<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>) -> T |
| @stage("fragment", "compute") fn atomicStore<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) |
| @stage("fragment", "compute") fn atomicAdd<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T |
| @stage("fragment", "compute") fn atomicSub<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T |
| @stage("fragment", "compute") fn atomicMax<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T |
| @stage("fragment", "compute") fn atomicMin<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T |
| @stage("fragment", "compute") fn atomicAnd<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T |
| @stage("fragment", "compute") fn atomicOr<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T |
| @stage("fragment", "compute") fn atomicXor<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T |
| @stage("fragment", "compute") fn atomicExchange<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T) -> T |
| @stage("fragment", "compute") fn atomicCompareExchangeWeak<T: iu32, S: workgroup_or_storage>(ptr<S, atomic<T>, read_write>, T, T) -> __atomic_compare_exchange_result<T> |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Type constructors // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // Zero value constructors |
| ctor i32() -> i32 |
| ctor u32() -> u32 |
| ctor f32() -> f32 |
| ctor bool() -> bool |
| ctor vec2<T: scalar>() -> vec2<T> |
| ctor vec3<T: scalar>() -> vec3<T> |
| ctor vec4<T: scalar>() -> vec4<T> |
| ctor mat2x2() -> mat2x2<f32> |
| ctor mat2x3() -> mat2x3<f32> |
| ctor mat2x4() -> mat2x4<f32> |
| ctor mat3x2() -> mat3x2<f32> |
| ctor mat3x3() -> mat3x3<f32> |
| ctor mat3x4() -> mat3x4<f32> |
| ctor mat4x2() -> mat4x2<f32> |
| ctor mat4x3() -> mat4x3<f32> |
| ctor mat4x4() -> mat4x4<f32> |
| |
| // Identity constructors |
| ctor i32(i32) -> i32 |
| ctor u32(u32) -> u32 |
| ctor f32(f32) -> f32 |
| ctor bool(bool) -> bool |
| ctor vec2<T: scalar>(vec2<T>) -> vec2<T> |
| ctor vec3<T: scalar>(vec3<T>) -> vec3<T> |
| ctor vec4<T: scalar>(vec4<T>) -> vec4<T> |
| ctor mat2x2<f32>(mat2x2<f32>) -> mat2x2<f32> |
| ctor mat2x3<f32>(mat2x3<f32>) -> mat2x3<f32> |
| ctor mat2x4<f32>(mat2x4<f32>) -> mat2x4<f32> |
| ctor mat3x2<f32>(mat3x2<f32>) -> mat3x2<f32> |
| ctor mat3x3<f32>(mat3x3<f32>) -> mat3x3<f32> |
| ctor mat3x4<f32>(mat3x4<f32>) -> mat3x4<f32> |
| ctor mat4x2<f32>(mat4x2<f32>) -> mat4x2<f32> |
| ctor mat4x3<f32>(mat4x3<f32>) -> mat4x3<f32> |
| ctor mat4x4<f32>(mat4x4<f32>) -> mat4x4<f32> |
| |
| // Vector constructors |
| ctor vec2<T: abstract_or_scalar>(T) -> vec2<T> |
| ctor vec2<T: abstract_or_scalar>(x: T, y: T) -> vec2<T> |
| ctor vec3<T: abstract_or_scalar>(T) -> vec3<T> |
| ctor vec3<T: abstract_or_scalar>(x: T, y: T, z: T) -> vec3<T> |
| ctor vec3<T: abstract_or_scalar>(xy: vec2<T>, z: T) -> vec3<T> |
| ctor vec3<T: abstract_or_scalar>(x: T, yz: vec2<T>) -> vec3<T> |
| ctor vec4<T: abstract_or_scalar>(T) -> vec4<T> |
| ctor vec4<T: abstract_or_scalar>(x: T, y: T, z: T, w: T) -> vec4<T> |
| ctor vec4<T: abstract_or_scalar>(xy: vec2<T>, z: T, w: T) -> vec4<T> |
| ctor vec4<T: abstract_or_scalar>(x: T, yz: vec2<T>, w: T) -> vec4<T> |
| ctor vec4<T: abstract_or_scalar>(x: T, y: T, zw: vec2<T>) -> vec4<T> |
| ctor vec4<T: abstract_or_scalar>(xy: vec2<T>, zw: vec2<T>) -> vec4<T> |
| ctor vec4<T: abstract_or_scalar>(xyz: vec3<T>, w: T) -> vec4<T> |
| ctor vec4<T: abstract_or_scalar>(x: T, zyw: vec3<T>) -> vec4<T> |
| |
| // Matrix constructors |
| ctor mat2x2<T: af_f32>(T) -> mat2x2<T> |
| ctor mat2x2<T: af_f32>(T, T, |
| T, T) -> mat2x2<T> |
| ctor mat2x2<T: af_f32>(vec2<T>, vec2<T>) -> mat2x2<T> |
| |
| ctor mat2x3<T: af_f32>(T) -> mat2x3<T> |
| ctor mat2x3<T: af_f32>(T, T, T, |
| T, T, T) -> mat2x3<T> |
| ctor mat2x3<T: af_f32>(vec3<T>, vec3<T>) -> mat2x3<T> |
| |
| ctor mat2x4<T: af_f32>(T) -> mat2x4<T> |
| ctor mat2x4<T: af_f32>(T, T, T, T, |
| T, T, T, T) -> mat2x4<T> |
| ctor mat2x4<T: af_f32>(vec4<T>, vec4<T>) -> mat2x4<T> |
| |
| ctor mat3x2<T: af_f32>(T) -> mat3x2<T> |
| ctor mat3x2<T: af_f32>(T, T, |
| T, T, |
| T, T) -> mat3x2<T> |
| ctor mat3x2<T: af_f32>(vec2<T>, vec2<T>, vec2<T>) -> mat3x2<T> |
| |
| ctor mat3x3<T: af_f32>(T) -> mat3x3<T> |
| ctor mat3x3<T: af_f32>(T, T, T, |
| T, T, T, |
| T, T, T) -> mat3x3<T> |
| ctor mat3x3<T: af_f32>(vec3<T>, vec3<T>, vec3<T>) -> mat3x3<T> |
| |
| ctor mat3x4<T: af_f32>(T) -> mat3x4<T> |
| ctor mat3x4<T: af_f32>(T, T, T, T, |
| T, T, T, T, |
| T, T, T, T) -> mat3x4<T> |
| ctor mat3x4<T: af_f32>(vec4<T>, vec4<T>, vec4<T>) -> mat3x4<T> |
| |
| ctor mat4x2<T: af_f32>(T) -> mat4x2<T> |
| ctor mat4x2<T: af_f32>(T, T, |
| T, T, |
| T, T, |
| T, T) -> mat4x2<T> |
| ctor mat4x2<T: af_f32>(vec2<T>, vec2<T>, vec2<T>, vec2<T>) -> mat4x2<T> |
| |
| ctor mat4x3<T: af_f32>(T) -> mat4x3<T> |
| ctor mat4x3<T: af_f32>(T, T, T, |
| T, T, T, |
| T, T, T, |
| T, T, T) -> mat4x3<T> |
| ctor mat4x3<T: af_f32>(vec3<T>, vec3<T>, vec3<T>, vec3<T>) -> mat4x3<T> |
| |
| ctor mat4x4<T: af_f32>(T) -> mat4x4<T> |
| ctor mat4x4<T: af_f32>(T, T, T, T, |
| T, T, T, T, |
| T, T, T, T, |
| T, T, T, T) -> mat4x4<T> |
| ctor mat4x4<T: af_f32>(vec4<T>, vec4<T>, vec4<T>, vec4<T>) -> mat4x4<T> |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Type conversions // |
| //////////////////////////////////////////////////////////////////////////////// |
| conv f32<T: scalar_no_f32>(T) -> f32 |
| conv i32<T: scalar_no_i32>(T) -> i32 |
| conv u32<T: scalar_no_u32>(T) -> u32 |
| conv bool<T: scalar_no_bool>(T) -> bool |
| |
| conv vec2<T: f32, U: scalar_no_f32>(vec2<U>) -> vec2<f32> |
| conv vec2<T: i32, U: scalar_no_i32>(vec2<U>) -> vec2<i32> |
| conv vec2<T: u32, U: scalar_no_u32>(vec2<U>) -> vec2<u32> |
| conv vec2<T: bool, U: scalar_no_bool>(vec2<U>) -> vec2<bool> |
| |
| conv vec3<T: f32, U: scalar_no_f32>(vec3<U>) -> vec3<f32> |
| conv vec3<T: i32, U: scalar_no_i32>(vec3<U>) -> vec3<i32> |
| conv vec3<T: u32, U: scalar_no_u32>(vec3<U>) -> vec3<u32> |
| conv vec3<T: bool, U: scalar_no_bool>(vec3<U>) -> vec3<bool> |
| |
| conv vec4<T: f32, U: scalar_no_f32>(vec4<U>) -> vec4<f32> |
| conv vec4<T: i32, U: scalar_no_i32>(vec4<U>) -> vec4<i32> |
| conv vec4<T: u32, U: scalar_no_u32>(vec4<U>) -> vec4<u32> |
| conv vec4<T: bool, U: scalar_no_bool>(vec4<U>) -> vec4<bool> |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Operators // |
| // // |
| // The operator declarations below declare all the unary and binary operators // |
| // supported by the WGSL language (with exception for address-of and // |
| // dereference unary operators). // |
| // // |
| // The syntax is almost identical to builtin functions, except we use 'op' // |
| // instead of 'fn'. The resolving rules are identical to builtins, which is // |
| // described in detail above. // |
| // // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Unary Operators // |
| //////////////////////////////////////////////////////////////////////////////// |
| op ! (bool) -> bool |
| op ! <N: num> (vec<N, bool>) -> vec<N, bool> |
| |
| op ~ <T: iu32>(T) -> T |
| op ~ <T: iu32, N: num> (vec<N, T>) -> vec<N, T> |
| |
| op - <T: fi32>(T) -> T |
| op - <T: fi32, N: num> (vec<N, T>) -> vec<N, T> |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Binary Operators // |
| //////////////////////////////////////////////////////////////////////////////// |
| op + <T: fiu32>(T, T) -> T |
| op + <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T> |
| op + <T: fiu32, N: num> (vec<N, T>, T) -> vec<N, T> |
| op + <T: fiu32, N: num> (T, vec<N, T>) -> vec<N, T> |
| op + <N: num, M: num> (mat<N, M, f32>, mat<N, M, f32>) -> mat<N, M, f32> |
| |
| op - <T: fiu32>(T, T) -> T |
| op - <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T> |
| op - <T: fiu32, N: num> (vec<N, T>, T) -> vec<N, T> |
| op - <T: fiu32, N: num> (T, vec<N, T>) -> vec<N, T> |
| op - <N: num, M: num> (mat<N, M, f32>, mat<N, M, f32>) -> mat<N, M, f32> |
| |
| op * <T: fiu32>(T, T) -> T |
| op * <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T> |
| op * <T: fiu32, N: num> (vec<N, T>, T) -> vec<N, T> |
| op * <T: fiu32, N: num> (T, vec<N, T>) -> vec<N, T> |
| op * <N: num, M: num> (f32, mat<N, M, f32>) -> mat<N, M, f32> |
| op * <N: num, M: num> (mat<N, M, f32>, f32) -> mat<N, M, f32> |
| op * <C: num, R: num> (mat<C, R, f32>, vec<C, f32>) -> vec<R, f32> |
| op * <C: num, R: num> (vec<R, f32>, mat<C, R, f32>) -> vec<C, f32> |
| op * <K: num, C: num, R: num> (mat<K, R, f32>, mat<C, K, f32>) -> mat<C, R, f32> |
| |
| op / <T: fiu32>(T, T) -> T |
| op / <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T> |
| op / <T: fiu32, N: num> (vec<N, T>, T) -> vec<N, T> |
| op / <T: fiu32, N: num> (T, vec<N, T>) -> vec<N, T> |
| |
| op % <T: fiu32>(T, T) -> T |
| op % <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T> |
| op % <T: fiu32, N: num> (vec<N, T>, T) -> vec<N, T> |
| op % <T: fiu32, N: num> (T, vec<N, T>) -> vec<N, T> |
| |
| op ^ <T: iu32>(T, T) -> T |
| op ^ <T: iu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T> |
| |
| op & (bool, bool) -> bool |
| op & <N: num> (vec<N, bool>, vec<N, bool>) -> vec<N, bool> |
| op & <T: iu32>(T, T) -> T |
| op & <T: iu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T> |
| |
| op | (bool, bool) -> bool |
| op | <N: num> (vec<N, bool>, vec<N, bool>) -> vec<N, bool> |
| op | <T: iu32>(T, T) -> T |
| op | <T: iu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, T> |
| |
| op && (bool, bool) -> bool |
| op || (bool, bool) -> bool |
| |
| op == <T: scalar>(T, T) -> bool |
| op == <T: scalar, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool> |
| |
| op != <T: scalar>(T, T) -> bool |
| op != <T: scalar, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool> |
| |
| op < <T: fiu32>(T, T) -> bool |
| op < <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool> |
| |
| op > <T: fiu32>(T, T) -> bool |
| op > <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool> |
| |
| op <= <T: fiu32>(T, T) -> bool |
| op <= <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool> |
| |
| op >= <T: fiu32>(T, T) -> bool |
| op >= <T: fiu32, N: num> (vec<N, T>, vec<N, T>) -> vec<N, bool> |
| |
| op << <T: iu32>(T, u32) -> T |
| op << <T: iu32, N: num> (vec<N, T>, vec<N, u32>) -> vec<N, T> |
| |
| op >> <T: iu32>(T, u32) -> T |
| op >> <T: iu32, N: num> (vec<N, T>, vec<N, u32>) -> vec<N, T> |