blob: e232c3b11d1f44c41bfd3ce9a4886f092e654106 [file] [log] [blame]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_PROGRAM_H_
#define SRC_PROGRAM_H_
#include <functional>
#include <memory>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
#include "src/ast/function.h"
#include "src/ast/variable.h"
#include "src/block_allocator.h"
#include "src/symbol_table.h"
#include "src/traits.h"
#include "src/type/alias_type.h"
#include "src/type/type_manager.h"
namespace tint {
/// Represents all the source in a given program.
class Program {
public:
/// Constructor
Program();
/// Move constructor
Program(Program&&);
/// Move assignment operator
/// @param rhs the Program to move
/// @return this Program
Program& operator=(Program&& rhs);
/// Destructor
~Program();
/// @return a deep copy of this program
Program Clone() const;
/// Clone this program into `ctx->mod` using the provided CloneContext
/// The program will be cloned in this order:
/// * Constructed types
/// * Global variables
/// * Functions
/// @param ctx the clone context
void Clone(CloneContext* ctx) const;
/// Add a global variable to the program
/// @param var the variable to add
void AddGlobalVariable(ast::Variable* var) {
global_variables_.push_back(var);
}
/// @returns the global variables for the program
const ast::VariableList& global_variables() const {
return global_variables_;
}
/// @returns the global variables for the program
ast::VariableList& global_variables() { return global_variables_; }
/// Adds a constructed type to the program.
/// The type must be an alias or a struct.
/// @param type the constructed type to add
void AddConstructedType(type::Type* type) {
constructed_types_.push_back(type);
}
/// @returns the constructed types in the program
const std::vector<type::Type*>& constructed_types() const {
return constructed_types_;
}
/// @returns the functions declared in the translation unit
const ast::FunctionList& Functions() const { return functions_; }
/// @returns the functions declared in the translation unit
ast::FunctionList& Functions() { return functions_; }
/// @returns true if all required fields in the AST are present.
bool IsValid() const;
/// @returns a string representation of the program
std::string to_str() const;
/// Creates a new Node owned by the Program. When the Program is
/// destructed, the Node will also be destructed.
/// @param args the arguments to pass to the type constructor
/// @returns the node pointer
template <typename T, typename... ARGS>
traits::EnableIfIsType<T, ast::Node>* create(ARGS&&... args) {
return ast_nodes_.Create<T>(std::forward<ARGS>(args)...);
}
/// Creates a new type::Type owned by the Program.
/// When the Program is destructed, owned Program and the returned
/// `Type` will also be destructed.
/// Types are unique (de-aliased), and so calling create() for the same `T`
/// and arguments will return the same pointer.
/// @warning Use this method to acquire a type only if all of its type
/// information is provided in the constructor arguments `args`.<br>
/// If the type requires additional configuration after construction that
/// affect its fundamental type, build the type with `std::make_unique`, make
/// any necessary alterations and then call unique_type() instead.
/// @param args the arguments to pass to the type constructor
/// @returns the de-aliased type pointer
template <typename T, typename... ARGS>
traits::EnableIfIsType<T, type::Type>* create(ARGS&&... args) {
static_assert(std::is_base_of<type::Type, T>::value,
"T does not derive from type::Type");
return type_mgr_.Get<T>(std::forward<ARGS>(args)...);
}
/// Returns all the declared types in the program
/// @returns the mapping from name string to type.
const std::unordered_map<std::string, type::Type*>& types() {
return type_mgr_.types();
}
/// @returns all the declared nodes in the program
BlockAllocator<ast::Node>::View nodes() { return ast_nodes_.Objects(); }
/// Registers `name` as a symbol
/// @param name the name to register
/// @returns the symbol for the `name`. If `name` is already registered the
/// previously generated symbol will be returned.
Symbol RegisterSymbol(const std::string& name);
/// Returns the symbol for `name`
/// @param name the name to lookup
/// @returns the symbol for name or symbol::kInvalid
Symbol GetSymbol(const std::string& name) const;
/// Returns the `name` for `sym`
/// @param sym the symbol to retrieve the name for
/// @returns the use provided `name` for the symbol or "" if not found
std::string SymbolToName(const Symbol sym) const;
private:
Program(const Program&) = delete;
SymbolTable symbol_table_;
ast::VariableList global_variables_;
// The constructed types are owned by the type manager
std::vector<type::Type*> constructed_types_;
ast::FunctionList functions_;
BlockAllocator<ast::Node> ast_nodes_;
type::Manager type_mgr_;
};
} // namespace tint
#endif // SRC_PROGRAM_H_