blob: c113c1efe1001a80409d8bd6dacf787ed0ed056f [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/Queue.h"
#include "common/Constants.h"
#include "dawn_native/Buffer.h"
#include "dawn_native/CommandBuffer.h"
#include "dawn_native/CommandEncoder.h"
#include "dawn_native/CommandValidation.h"
#include "dawn_native/Commands.h"
#include "dawn_native/CopyTextureForBrowserHelper.h"
#include "dawn_native/Device.h"
#include "dawn_native/DynamicUploader.h"
#include "dawn_native/Fence.h"
#include "dawn_native/QuerySet.h"
#include "dawn_native/RenderPassEncoder.h"
#include "dawn_native/RenderPipeline.h"
#include "dawn_native/Texture.h"
#include "dawn_platform/DawnPlatform.h"
#include "dawn_platform/tracing/TraceEvent.h"
#include <cstring>
namespace dawn_native {
namespace {
void CopyTextureData(uint8_t* dstPointer,
const uint8_t* srcPointer,
uint32_t depth,
uint32_t rowsPerImage,
uint64_t imageAdditionalStride,
uint32_t actualBytesPerRow,
uint32_t dstBytesPerRow,
uint32_t srcBytesPerRow) {
bool copyWholeLayer =
actualBytesPerRow == dstBytesPerRow && dstBytesPerRow == srcBytesPerRow;
bool copyWholeData = copyWholeLayer && imageAdditionalStride == 0;
if (!copyWholeLayer) { // copy row by row
for (uint32_t d = 0; d < depth; ++d) {
for (uint32_t h = 0; h < rowsPerImage; ++h) {
memcpy(dstPointer, srcPointer, actualBytesPerRow);
dstPointer += dstBytesPerRow;
srcPointer += srcBytesPerRow;
}
srcPointer += imageAdditionalStride;
}
} else {
uint64_t layerSize = uint64_t(rowsPerImage) * actualBytesPerRow;
if (!copyWholeData) { // copy layer by layer
for (uint32_t d = 0; d < depth; ++d) {
memcpy(dstPointer, srcPointer, layerSize);
dstPointer += layerSize;
srcPointer += layerSize + imageAdditionalStride;
}
} else { // do a single copy
memcpy(dstPointer, srcPointer, layerSize * depth);
}
}
}
ResultOrError<UploadHandle> UploadTextureDataAligningBytesPerRowAndOffset(
DeviceBase* device,
const void* data,
uint32_t alignedBytesPerRow,
uint32_t optimallyAlignedBytesPerRow,
uint32_t alignedRowsPerImage,
const TextureDataLayout& dataLayout,
const TexelBlockInfo& blockInfo,
const Extent3D& writeSizePixel) {
uint64_t newDataSizeBytes;
DAWN_TRY_ASSIGN(
newDataSizeBytes,
ComputeRequiredBytesInCopy(blockInfo, writeSizePixel, optimallyAlignedBytesPerRow,
alignedRowsPerImage));
uint64_t optimalOffsetAlignment =
device->GetOptimalBufferToTextureCopyOffsetAlignment();
ASSERT(IsPowerOfTwo(optimalOffsetAlignment));
ASSERT(IsPowerOfTwo(blockInfo.byteSize));
// We need the offset to be aligned to both optimalOffsetAlignment and blockByteSize,
// since both of them are powers of two, we only need to align to the max value.
uint64_t offsetAlignment =
std::max(optimalOffsetAlignment, uint64_t(blockInfo.byteSize));
UploadHandle uploadHandle;
DAWN_TRY_ASSIGN(uploadHandle, device->GetDynamicUploader()->Allocate(
newDataSizeBytes, device->GetPendingCommandSerial(),
offsetAlignment));
ASSERT(uploadHandle.mappedBuffer != nullptr);
uint8_t* dstPointer = static_cast<uint8_t*>(uploadHandle.mappedBuffer);
const uint8_t* srcPointer = static_cast<const uint8_t*>(data);
srcPointer += dataLayout.offset;
uint32_t dataRowsPerImage = dataLayout.rowsPerImage;
if (dataRowsPerImage == 0) {
dataRowsPerImage = writeSizePixel.height / blockInfo.height;
}
ASSERT(dataRowsPerImage >= alignedRowsPerImage);
uint64_t imageAdditionalStride =
dataLayout.bytesPerRow * (dataRowsPerImage - alignedRowsPerImage);
CopyTextureData(dstPointer, srcPointer, writeSizePixel.depthOrArrayLayers,
alignedRowsPerImage, imageAdditionalStride, alignedBytesPerRow,
optimallyAlignedBytesPerRow, dataLayout.bytesPerRow);
return uploadHandle;
}
struct SubmittedWorkDone : QueueBase::TaskInFlight {
SubmittedWorkDone(WGPUQueueWorkDoneCallback callback, void* userdata)
: mCallback(callback), mUserdata(userdata) {
}
void Finish() override {
ASSERT(mCallback != nullptr);
mCallback(WGPUQueueWorkDoneStatus_Success, mUserdata);
mCallback = nullptr;
}
void HandleDeviceLoss() override {
ASSERT(mCallback != nullptr);
mCallback(WGPUQueueWorkDoneStatus_DeviceLost, mUserdata);
mCallback = nullptr;
}
~SubmittedWorkDone() override = default;
private:
WGPUQueueWorkDoneCallback mCallback = nullptr;
void* mUserdata;
};
class ErrorQueue : public QueueBase {
public:
ErrorQueue(DeviceBase* device) : QueueBase(device, ObjectBase::kError) {
}
private:
MaybeError SubmitImpl(uint32_t commandCount,
CommandBufferBase* const* commands) override {
UNREACHABLE();
}
};
} // namespace
// QueueBase
QueueBase::TaskInFlight::~TaskInFlight() {
}
QueueBase::QueueBase(DeviceBase* device) : ObjectBase(device) {
}
QueueBase::QueueBase(DeviceBase* device, ObjectBase::ErrorTag tag) : ObjectBase(device, tag) {
}
QueueBase::~QueueBase() {
ASSERT(mTasksInFlight.Empty());
}
// static
QueueBase* QueueBase::MakeError(DeviceBase* device) {
return new ErrorQueue(device);
}
void QueueBase::APISubmit(uint32_t commandCount, CommandBufferBase* const* commands) {
SubmitInternal(commandCount, commands);
for (uint32_t i = 0; i < commandCount; ++i) {
commands[i]->Destroy();
}
}
void QueueBase::APISignal(Fence* fence, uint64_t apiSignalValue) {
FenceAPISerial signalValue(apiSignalValue);
DeviceBase* device = GetDevice();
if (device->ConsumedError(ValidateSignal(fence, signalValue))) {
return;
}
ASSERT(!IsError());
fence->SetSignaledValue(signalValue);
fence->UpdateFenceOnComplete(fence, signalValue);
}
void QueueBase::APIOnSubmittedWorkDone(uint64_t signalValue,
WGPUQueueWorkDoneCallback callback,
void* userdata) {
// The error status depends on the type of error so we let the validation function choose it
WGPUQueueWorkDoneStatus status;
if (GetDevice()->ConsumedError(ValidateOnSubmittedWorkDone(signalValue, &status))) {
callback(status, userdata);
return;
}
std::unique_ptr<SubmittedWorkDone> task =
std::make_unique<SubmittedWorkDone>(callback, userdata);
// Technically we only need to wait for previously submitted work but OnSubmittedWorkDone is
// also used to make sure ALL queue work is finished in tests, so we also wait for pending
// commands (this is non-observable outside of tests so it's ok to do deviate a bit from the
// spec).
TrackTask(std::move(task), GetDevice()->GetPendingCommandSerial());
}
void QueueBase::TrackTask(std::unique_ptr<TaskInFlight> task, ExecutionSerial serial) {
mTasksInFlight.Enqueue(std::move(task), serial);
GetDevice()->AddFutureSerial(serial);
}
void QueueBase::Tick(ExecutionSerial finishedSerial) {
// If a user calls Queue::Submit inside a task, for example in a Buffer::MapAsync callback,
// then the device will be ticked, which in turns ticks the queue, causing reentrance here.
// To prevent the reentrant call from invalidating mTasksInFlight while in use by the first
// call, we remove the tasks to finish from the queue, update mTasksInFlight, then run the
// callbacks.
std::vector<std::unique_ptr<TaskInFlight>> tasks;
for (auto& task : mTasksInFlight.IterateUpTo(finishedSerial)) {
tasks.push_back(std::move(task));
}
mTasksInFlight.ClearUpTo(finishedSerial);
for (auto& task : tasks) {
task->Finish();
}
}
void QueueBase::HandleDeviceLoss() {
for (auto& task : mTasksInFlight.IterateAll()) {
task->HandleDeviceLoss();
}
mTasksInFlight.Clear();
}
Fence* QueueBase::APICreateFence(const FenceDescriptor* descriptor) {
// TODO(chromium:1177476): Remove once the deprecation period is finished.
GetDevice()->EmitDeprecationWarning(
"Fences are deprecated, use Queue::OnSubmittedWorkDone instead.");
if (GetDevice()->ConsumedError(ValidateCreateFence(descriptor))) {
return Fence::MakeError(GetDevice());
}
if (descriptor == nullptr) {
FenceDescriptor defaultDescriptor = {};
return new Fence(this, &defaultDescriptor);
}
return new Fence(this, descriptor);
}
void QueueBase::APIWriteBuffer(BufferBase* buffer,
uint64_t bufferOffset,
const void* data,
size_t size) {
GetDevice()->ConsumedError(WriteBuffer(buffer, bufferOffset, data, size));
}
MaybeError QueueBase::WriteBuffer(BufferBase* buffer,
uint64_t bufferOffset,
const void* data,
size_t size) {
DAWN_TRY(ValidateWriteBuffer(buffer, bufferOffset, size));
return WriteBufferImpl(buffer, bufferOffset, data, size);
}
MaybeError QueueBase::WriteBufferImpl(BufferBase* buffer,
uint64_t bufferOffset,
const void* data,
size_t size) {
if (size == 0) {
return {};
}
DeviceBase* device = GetDevice();
UploadHandle uploadHandle;
DAWN_TRY_ASSIGN(uploadHandle, device->GetDynamicUploader()->Allocate(
size, device->GetPendingCommandSerial(),
kCopyBufferToBufferOffsetAlignment));
ASSERT(uploadHandle.mappedBuffer != nullptr);
memcpy(uploadHandle.mappedBuffer, data, size);
device->AddFutureSerial(device->GetPendingCommandSerial());
return device->CopyFromStagingToBuffer(uploadHandle.stagingBuffer, uploadHandle.startOffset,
buffer, bufferOffset, size);
}
void QueueBase::APIWriteTexture(const ImageCopyTexture* destination,
const void* data,
size_t dataSize,
const TextureDataLayout* dataLayout,
const Extent3D* writeSize) {
GetDevice()->ConsumedError(
WriteTextureInternal(destination, data, dataSize, dataLayout, writeSize));
}
MaybeError QueueBase::WriteTextureInternal(const ImageCopyTexture* destination,
const void* data,
size_t dataSize,
const TextureDataLayout* dataLayout,
const Extent3D* writeSize) {
Extent3D fixedWriteSize = *writeSize;
DAWN_TRY(FixUpDeprecatedGPUExtent3DDepth(GetDevice(), &fixedWriteSize));
DAWN_TRY(ValidateWriteTexture(destination, dataSize, dataLayout, &fixedWriteSize));
if (fixedWriteSize.width == 0 || fixedWriteSize.height == 0 ||
fixedWriteSize.depthOrArrayLayers == 0) {
return {};
}
const TexelBlockInfo& blockInfo =
destination->texture->GetFormat().GetAspectInfo(destination->aspect).block;
TextureDataLayout layout = *dataLayout;
ApplyDefaultTextureDataLayoutOptions(&layout, blockInfo, fixedWriteSize);
return WriteTextureImpl(*destination, data, layout, fixedWriteSize);
}
MaybeError QueueBase::WriteTextureImpl(const ImageCopyTexture& destination,
const void* data,
const TextureDataLayout& dataLayout,
const Extent3D& writeSizePixel) {
const TexelBlockInfo& blockInfo =
destination.texture->GetFormat().GetAspectInfo(destination.aspect).block;
// We are only copying the part of the data that will appear in the texture.
// Note that validating texture copy range ensures that writeSizePixel->width and
// writeSizePixel->height are multiples of blockWidth and blockHeight respectively.
ASSERT(writeSizePixel.width % blockInfo.width == 0);
ASSERT(writeSizePixel.height % blockInfo.height == 0);
uint32_t alignedBytesPerRow = writeSizePixel.width / blockInfo.width * blockInfo.byteSize;
uint32_t alignedRowsPerImage = writeSizePixel.height / blockInfo.height;
uint32_t optimalBytesPerRowAlignment = GetDevice()->GetOptimalBytesPerRowAlignment();
uint32_t optimallyAlignedBytesPerRow =
Align(alignedBytesPerRow, optimalBytesPerRowAlignment);
UploadHandle uploadHandle;
DAWN_TRY_ASSIGN(uploadHandle,
UploadTextureDataAligningBytesPerRowAndOffset(
GetDevice(), data, alignedBytesPerRow, optimallyAlignedBytesPerRow,
alignedRowsPerImage, dataLayout, blockInfo, writeSizePixel));
TextureDataLayout passDataLayout = dataLayout;
passDataLayout.offset = uploadHandle.startOffset;
passDataLayout.bytesPerRow = optimallyAlignedBytesPerRow;
passDataLayout.rowsPerImage = alignedRowsPerImage;
TextureCopy textureCopy;
textureCopy.texture = destination.texture;
textureCopy.mipLevel = destination.mipLevel;
textureCopy.origin = destination.origin;
textureCopy.aspect = ConvertAspect(destination.texture->GetFormat(), destination.aspect);
DeviceBase* device = GetDevice();
device->AddFutureSerial(device->GetPendingCommandSerial());
return device->CopyFromStagingToTexture(uploadHandle.stagingBuffer, passDataLayout,
&textureCopy, writeSizePixel);
}
void QueueBase::APICopyTextureForBrowser(const ImageCopyTexture* source,
const ImageCopyTexture* destination,
const Extent3D* copySize,
const CopyTextureForBrowserOptions* options) {
GetDevice()->ConsumedError(
CopyTextureForBrowserInternal(source, destination, copySize, options));
}
MaybeError QueueBase::CopyTextureForBrowserInternal(
const ImageCopyTexture* source,
const ImageCopyTexture* destination,
const Extent3D* copySize,
const CopyTextureForBrowserOptions* options) {
Extent3D fixedCopySize = *copySize;
DAWN_TRY(FixUpDeprecatedGPUExtent3DDepth(GetDevice(), &fixedCopySize));
if (GetDevice()->IsValidationEnabled()) {
DAWN_TRY(ValidateCopyTextureForBrowser(GetDevice(), source, destination, &fixedCopySize,
options));
}
return DoCopyTextureForBrowser(GetDevice(), source, destination, &fixedCopySize, options);
}
MaybeError QueueBase::ValidateSubmit(uint32_t commandCount,
CommandBufferBase* const* commands) const {
TRACE_EVENT0(GetDevice()->GetPlatform(), Validation, "Queue::ValidateSubmit");
DAWN_TRY(GetDevice()->ValidateObject(this));
for (uint32_t i = 0; i < commandCount; ++i) {
DAWN_TRY(GetDevice()->ValidateObject(commands[i]));
DAWN_TRY(commands[i]->ValidateCanUseInSubmitNow());
const CommandBufferResourceUsage& usages = commands[i]->GetResourceUsages();
for (const PassResourceUsage& passUsages : usages.perPass) {
for (const BufferBase* buffer : passUsages.buffers) {
DAWN_TRY(buffer->ValidateCanUseOnQueueNow());
}
for (const TextureBase* texture : passUsages.textures) {
DAWN_TRY(texture->ValidateCanUseInSubmitNow());
}
}
for (const BufferBase* buffer : usages.topLevelBuffers) {
DAWN_TRY(buffer->ValidateCanUseOnQueueNow());
}
for (const TextureBase* texture : usages.topLevelTextures) {
DAWN_TRY(texture->ValidateCanUseInSubmitNow());
}
for (const QuerySetBase* querySet : usages.usedQuerySets) {
DAWN_TRY(querySet->ValidateCanUseInSubmitNow());
}
}
return {};
}
MaybeError QueueBase::ValidateSignal(const Fence* fence, FenceAPISerial signalValue) const {
DAWN_TRY(GetDevice()->ValidateIsAlive());
DAWN_TRY(GetDevice()->ValidateObject(this));
DAWN_TRY(GetDevice()->ValidateObject(fence));
if (fence->GetQueue() != this) {
return DAWN_VALIDATION_ERROR(
"Fence must be signaled on the queue on which it was created.");
}
if (signalValue <= fence->GetSignaledValue()) {
return DAWN_VALIDATION_ERROR("Signal value less than or equal to fence signaled value");
}
return {};
}
MaybeError QueueBase::ValidateOnSubmittedWorkDone(uint64_t signalValue,
WGPUQueueWorkDoneStatus* status) const {
*status = WGPUQueueWorkDoneStatus_DeviceLost;
DAWN_TRY(GetDevice()->ValidateIsAlive());
*status = WGPUQueueWorkDoneStatus_Error;
DAWN_TRY(GetDevice()->ValidateObject(this));
if (signalValue != 0) {
return DAWN_VALIDATION_ERROR("SignalValue must currently be 0.");
}
return {};
}
MaybeError QueueBase::ValidateCreateFence(const FenceDescriptor* descriptor) const {
DAWN_TRY(GetDevice()->ValidateIsAlive());
DAWN_TRY(GetDevice()->ValidateObject(this));
if (descriptor != nullptr) {
DAWN_TRY(ValidateFenceDescriptor(descriptor));
}
return {};
}
MaybeError QueueBase::ValidateWriteBuffer(const BufferBase* buffer,
uint64_t bufferOffset,
size_t size) const {
DAWN_TRY(GetDevice()->ValidateIsAlive());
DAWN_TRY(GetDevice()->ValidateObject(this));
DAWN_TRY(GetDevice()->ValidateObject(buffer));
if (bufferOffset % 4 != 0) {
return DAWN_VALIDATION_ERROR("Queue::WriteBuffer bufferOffset must be a multiple of 4");
}
if (size % 4 != 0) {
return DAWN_VALIDATION_ERROR("Queue::WriteBuffer size must be a multiple of 4");
}
uint64_t bufferSize = buffer->GetSize();
if (bufferOffset > bufferSize || size > (bufferSize - bufferOffset)) {
return DAWN_VALIDATION_ERROR("Queue::WriteBuffer out of range");
}
if (!(buffer->GetUsage() & wgpu::BufferUsage::CopyDst)) {
return DAWN_VALIDATION_ERROR("Buffer needs the CopyDst usage bit");
}
DAWN_TRY(buffer->ValidateCanUseOnQueueNow());
return {};
}
MaybeError QueueBase::ValidateWriteTexture(const ImageCopyTexture* destination,
size_t dataSize,
const TextureDataLayout* dataLayout,
const Extent3D* writeSize) const {
DAWN_TRY(GetDevice()->ValidateIsAlive());
DAWN_TRY(GetDevice()->ValidateObject(this));
DAWN_TRY(GetDevice()->ValidateObject(destination->texture));
DAWN_TRY(ValidateImageCopyTexture(GetDevice(), *destination, *writeSize));
if (dataLayout->offset > dataSize) {
return DAWN_VALIDATION_ERROR("Queue::WriteTexture out of range");
}
if (!(destination->texture->GetUsage() & wgpu::TextureUsage::CopyDst)) {
return DAWN_VALIDATION_ERROR("Texture needs the CopyDst usage bit");
}
if (destination->texture->GetSampleCount() > 1) {
return DAWN_VALIDATION_ERROR("The sample count of textures must be 1");
}
DAWN_TRY(ValidateLinearToDepthStencilCopyRestrictions(*destination));
// We validate texture copy range before validating linear texture data,
// because in the latter we divide copyExtent.width by blockWidth and
// copyExtent.height by blockHeight while the divisibility conditions are
// checked in validating texture copy range.
DAWN_TRY(ValidateTextureCopyRange(GetDevice(), *destination, *writeSize));
const TexelBlockInfo& blockInfo =
destination->texture->GetFormat().GetAspectInfo(destination->aspect).block;
TextureDataLayout layout = FixUpDeprecatedTextureDataLayoutOptions(GetDevice(), *dataLayout,
blockInfo, *writeSize);
DAWN_TRY(ValidateLinearTextureData(layout, dataSize, blockInfo, *writeSize));
DAWN_TRY(destination->texture->ValidateCanUseInSubmitNow());
return {};
}
void QueueBase::SubmitInternal(uint32_t commandCount, CommandBufferBase* const* commands) {
DeviceBase* device = GetDevice();
if (device->ConsumedError(device->ValidateIsAlive())) {
// If device is lost, don't let any commands be submitted
return;
}
TRACE_EVENT0(device->GetPlatform(), General, "Queue::Submit");
if (device->IsValidationEnabled() &&
device->ConsumedError(ValidateSubmit(commandCount, commands))) {
return;
}
ASSERT(!IsError());
if (device->ConsumedError(SubmitImpl(commandCount, commands))) {
return;
}
}
} // namespace dawn_native