blob: e2eee44e1545c3285a774276cfac5d7f399fcdd7 [file] [log] [blame]
// Copyright 2024 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <utility>
#include "src/tint/lang/core/ir/transform/helper_test.h"
#include "src/tint/lang/core/type/struct.h"
#include "src/tint/lang/msl/writer/raise/shader_io.h"
namespace tint::msl::writer::raise {
namespace {
using namespace tint::core::fluent_types; // NOLINT
using namespace tint::core::number_suffixes; // NOLINT
using MslWriter_ShaderIOTest = core::ir::transform::TransformTest;
TEST_F(MslWriter_ShaderIOTest, NoInputsOrOutputs) {
auto* ep = b.Function("foo", ty.void_());
ep->SetStage(core::ir::Function::PipelineStage::kCompute);
ep->SetWorkgroupSize(1, 1, 1);
b.Append(ep->Block(), [&] { //
b.Return(ep);
});
auto* src = R"(
%foo = @compute @workgroup_size(1, 1, 1) func():void {
$B1: {
ret
}
}
)";
EXPECT_EQ(src, str());
auto* expect = src;
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, Parameters_NonStruct) {
auto* ep = b.Function("foo", ty.void_());
auto* front_facing = b.FunctionParam("front_facing", ty.bool_());
front_facing->SetBuiltin(core::BuiltinValue::kFrontFacing);
auto* position = b.FunctionParam("position", ty.vec4<f32>());
position->SetBuiltin(core::BuiltinValue::kPosition);
position->SetInvariant(true);
auto* color1 = b.FunctionParam("color1", ty.f32());
color1->SetLocation(0);
auto* color2 = b.FunctionParam("color2", ty.f32());
color2->SetLocation(1);
color2->SetInterpolation(core::Interpolation{core::InterpolationType::kLinear,
core::InterpolationSampling::kSample});
ep->SetParams({front_facing, position, color1, color2});
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
b.Append(ep->Block(), [&] {
auto* ifelse = b.If(front_facing);
b.Append(ifelse->True(), [&] {
b.Multiply(ty.vec4<f32>(), position, b.Add(ty.f32(), color1, color2));
b.ExitIf(ifelse);
});
b.Return(ep);
});
auto* src = R"(
%foo = @fragment func(%front_facing:bool [@front_facing], %position:vec4<f32> [@invariant, @position], %color1:f32 [@location(0)], %color2:f32 [@location(1), @interpolate(linear, sample)]):void {
$B1: {
if %front_facing [t: $B2] { # if_1
$B2: { # true
%6:f32 = add %color1, %color2
%7:vec4<f32> = mul %position, %6
exit_if # if_1
}
}
ret
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
foo_inputs = struct @align(4) {
color1:f32 @offset(0), @location(0)
color2:f32 @offset(4), @location(1), @interpolate(linear, sample)
}
%foo_inner = func(%front_facing:bool, %position:vec4<f32>, %color1:f32, %color2:f32):void {
$B1: {
if %front_facing [t: $B2] { # if_1
$B2: { # true
%6:f32 = add %color1, %color2
%7:vec4<f32> = mul %position, %6
exit_if # if_1
}
}
ret
}
}
%foo = @fragment func(%front_facing_1:bool [@front_facing], %position_1:vec4<f32> [@invariant, @position], %inputs:foo_inputs):void { # %front_facing_1: 'front_facing', %position_1: 'position'
$B3: {
%12:f32 = access %inputs, 0u
%13:f32 = access %inputs, 1u
%14:void = call %foo_inner, %front_facing_1, %position_1, %12, %13
ret
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, Parameters_Struct) {
auto* str_ty = ty.Struct(mod.symbols.New("Inputs"),
{
{
mod.symbols.New("front_facing"),
ty.bool_(),
core::IOAttributes{
/* location */ std::nullopt,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ core::BuiltinValue::kFrontFacing,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
{
mod.symbols.New("position"),
ty.vec4<f32>(),
core::IOAttributes{
/* location */ std::nullopt,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ core::BuiltinValue::kPosition,
/* interpolation */ std::nullopt,
/* invariant */ true,
},
},
{
mod.symbols.New("color1"),
ty.f32(),
core::IOAttributes{
/* location */ 0u,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ std::nullopt,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
{
mod.symbols.New("color2"),
ty.f32(),
core::IOAttributes{
/* location */ 1u,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ std::nullopt,
/* interpolation */
core::Interpolation{
core::InterpolationType::kLinear,
core::InterpolationSampling::kSample,
},
/* invariant */ false,
},
},
});
auto* ep = b.Function("foo", ty.void_());
auto* str_param = b.FunctionParam("inputs", str_ty);
ep->SetParams({str_param});
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
b.Append(ep->Block(), [&] {
auto* ifelse = b.If(b.Access(ty.bool_(), str_param, 0_i));
b.Append(ifelse->True(), [&] {
auto* position = b.Access(ty.vec4<f32>(), str_param, 1_i);
auto* color1 = b.Access(ty.f32(), str_param, 2_i);
auto* color2 = b.Access(ty.f32(), str_param, 3_i);
b.Multiply(ty.vec4<f32>(), position, b.Add(ty.f32(), color1, color2));
b.ExitIf(ifelse);
});
b.Return(ep);
});
auto* src = R"(
Inputs = struct @align(16) {
front_facing:bool @offset(0), @builtin(front_facing)
position:vec4<f32> @offset(16), @invariant, @builtin(position)
color1:f32 @offset(32), @location(0)
color2:f32 @offset(36), @location(1), @interpolate(linear, sample)
}
%foo = @fragment func(%inputs:Inputs):void {
$B1: {
%3:bool = access %inputs, 0i
if %3 [t: $B2] { # if_1
$B2: { # true
%4:vec4<f32> = access %inputs, 1i
%5:f32 = access %inputs, 2i
%6:f32 = access %inputs, 3i
%7:f32 = add %5, %6
%8:vec4<f32> = mul %4, %7
exit_if # if_1
}
}
ret
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
Inputs = struct @align(16) {
front_facing:bool @offset(0)
position:vec4<f32> @offset(16)
color1:f32 @offset(32)
color2:f32 @offset(36)
}
foo_inputs = struct @align(4) {
Inputs_color1:f32 @offset(0), @location(0)
Inputs_color2:f32 @offset(4), @location(1), @interpolate(linear, sample)
}
%foo_inner = func(%inputs:Inputs):void {
$B1: {
%3:bool = access %inputs, 0i
if %3 [t: $B2] { # if_1
$B2: { # true
%4:vec4<f32> = access %inputs, 1i
%5:f32 = access %inputs, 2i
%6:f32 = access %inputs, 3i
%7:f32 = add %5, %6
%8:vec4<f32> = mul %4, %7
exit_if # if_1
}
}
ret
}
}
%foo = @fragment func(%Inputs_front_facing:bool [@front_facing], %Inputs_position:vec4<f32> [@invariant, @position], %inputs_1:foo_inputs):void { # %inputs_1: 'inputs'
$B3: {
%13:f32 = access %inputs_1, 0u
%14:f32 = access %inputs_1, 1u
%15:Inputs = construct %Inputs_front_facing, %Inputs_position, %13, %14
%16:void = call %foo_inner, %15
ret
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, Parameters_Mixed) {
auto* str_ty = ty.Struct(mod.symbols.New("Inputs"),
{
{
mod.symbols.New("position"),
ty.vec4<f32>(),
core::IOAttributes{
/* location */ std::nullopt,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ core::BuiltinValue::kPosition,
/* interpolation */ std::nullopt,
/* invariant */ true,
},
},
{
mod.symbols.New("color1"),
ty.f32(),
core::IOAttributes{
/* location */ 0u,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ std::nullopt,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
});
auto* ep = b.Function("foo", ty.void_());
auto* front_facing = b.FunctionParam("front_facing", ty.bool_());
front_facing->SetBuiltin(core::BuiltinValue::kFrontFacing);
auto* str_param = b.FunctionParam("inputs", str_ty);
auto* color2 = b.FunctionParam("color2", ty.f32());
color2->SetLocation(1);
color2->SetInterpolation(core::Interpolation{core::InterpolationType::kLinear,
core::InterpolationSampling::kSample});
ep->SetParams({front_facing, str_param, color2});
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
b.Append(ep->Block(), [&] {
auto* ifelse = b.If(front_facing);
b.Append(ifelse->True(), [&] {
auto* position = b.Access(ty.vec4<f32>(), str_param, 0_i);
auto* color1 = b.Access(ty.f32(), str_param, 1_i);
b.Multiply(ty.vec4<f32>(), position, b.Add(ty.f32(), color1, color2));
b.ExitIf(ifelse);
});
b.Return(ep);
});
auto* src = R"(
Inputs = struct @align(16) {
position:vec4<f32> @offset(0), @invariant, @builtin(position)
color1:f32 @offset(16), @location(0)
}
%foo = @fragment func(%front_facing:bool [@front_facing], %inputs:Inputs, %color2:f32 [@location(1), @interpolate(linear, sample)]):void {
$B1: {
if %front_facing [t: $B2] { # if_1
$B2: { # true
%5:vec4<f32> = access %inputs, 0i
%6:f32 = access %inputs, 1i
%7:f32 = add %6, %color2
%8:vec4<f32> = mul %5, %7
exit_if # if_1
}
}
ret
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
Inputs = struct @align(16) {
position:vec4<f32> @offset(0)
color1:f32 @offset(16)
}
foo_inputs = struct @align(4) {
Inputs_color1:f32 @offset(0), @location(0)
color2:f32 @offset(4), @location(1), @interpolate(linear, sample)
}
%foo_inner = func(%front_facing:bool, %inputs:Inputs, %color2:f32):void {
$B1: {
if %front_facing [t: $B2] { # if_1
$B2: { # true
%5:vec4<f32> = access %inputs, 0i
%6:f32 = access %inputs, 1i
%7:f32 = add %6, %color2
%8:vec4<f32> = mul %5, %7
exit_if # if_1
}
}
ret
}
}
%foo = @fragment func(%front_facing_1:bool [@front_facing], %Inputs_position:vec4<f32> [@invariant, @position], %inputs_1:foo_inputs):void { # %front_facing_1: 'front_facing', %inputs_1: 'inputs'
$B3: {
%13:f32 = access %inputs_1, 0u
%14:Inputs = construct %Inputs_position, %13
%15:f32 = access %inputs_1, 1u
%16:void = call %foo_inner, %front_facing_1, %14, %15
ret
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, ReturnValue_NonStructBuiltin) {
auto* ep = b.Function("foo", ty.vec4<f32>());
ep->SetReturnBuiltin(core::BuiltinValue::kPosition);
ep->SetReturnInvariant(true);
ep->SetStage(core::ir::Function::PipelineStage::kVertex);
b.Append(ep->Block(), [&] { //
b.Return(ep, b.Construct(ty.vec4<f32>(), 0.5_f));
});
auto* src = R"(
%foo = @vertex func():vec4<f32> [@invariant, @position] {
$B1: {
%2:vec4<f32> = construct 0.5f
ret %2
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
foo_outputs = struct @align(16) {
tint_symbol:vec4<f32> @offset(0), @invariant, @builtin(position)
}
%foo_inner = func():vec4<f32> {
$B1: {
%2:vec4<f32> = construct 0.5f
ret %2
}
}
%foo = @vertex func():foo_outputs {
$B2: {
%4:vec4<f32> = call %foo_inner
%tint_wrapper_result:ptr<function, foo_outputs, read_write> = var
%6:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result, 0u
store %6, %4
%7:foo_outputs = load %tint_wrapper_result
ret %7
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, ReturnValue_NonStructLocation) {
auto* ep = b.Function("foo", ty.vec4<f32>());
ep->SetReturnLocation(1u);
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
b.Append(ep->Block(), [&] { //
b.Return(ep, b.Construct(ty.vec4<f32>(), 0.5_f));
});
auto* src = R"(
%foo = @fragment func():vec4<f32> [@location(1)] {
$B1: {
%2:vec4<f32> = construct 0.5f
ret %2
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
foo_outputs = struct @align(16) {
tint_symbol:vec4<f32> @offset(0), @location(1)
}
%foo_inner = func():vec4<f32> {
$B1: {
%2:vec4<f32> = construct 0.5f
ret %2
}
}
%foo = @fragment func():foo_outputs {
$B2: {
%4:vec4<f32> = call %foo_inner
%tint_wrapper_result:ptr<function, foo_outputs, read_write> = var
%6:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result, 0u
store %6, %4
%7:foo_outputs = load %tint_wrapper_result
ret %7
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, ReturnValue_Struct) {
auto* str_ty = ty.Struct(mod.symbols.New("Outputs"),
{
{
mod.symbols.New("position"),
ty.vec4<f32>(),
core::IOAttributes{
/* location */ std::nullopt,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ core::BuiltinValue::kPosition,
/* interpolation */ std::nullopt,
/* invariant */ true,
},
},
{
mod.symbols.New("color1"),
ty.f32(),
core::IOAttributes{
/* location */ 0u,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ std::nullopt,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
{
mod.symbols.New("color2"),
ty.f32(),
core::IOAttributes{
/* location */ 1u,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ std::nullopt,
/* interpolation */
core::Interpolation{
core::InterpolationType::kLinear,
core::InterpolationSampling::kSample,
},
/* invariant */ false,
},
},
});
auto* ep = b.Function("foo", str_ty);
ep->SetStage(core::ir::Function::PipelineStage::kVertex);
b.Append(ep->Block(), [&] { //
b.Return(ep, b.Construct(str_ty, b.Construct(ty.vec4<f32>(), 0_f), 0.25_f, 0.75_f));
});
auto* src = R"(
Outputs = struct @align(16) {
position:vec4<f32> @offset(0), @invariant, @builtin(position)
color1:f32 @offset(16), @location(0)
color2:f32 @offset(20), @location(1), @interpolate(linear, sample)
}
%foo = @vertex func():Outputs {
$B1: {
%2:vec4<f32> = construct 0.0f
%3:Outputs = construct %2, 0.25f, 0.75f
ret %3
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
Outputs = struct @align(16) {
position:vec4<f32> @offset(0)
color1:f32 @offset(16)
color2:f32 @offset(20)
}
foo_outputs = struct @align(16) {
Outputs_position:vec4<f32> @offset(0), @invariant, @builtin(position)
Outputs_color1:f32 @offset(16), @location(0)
Outputs_color2:f32 @offset(20), @location(1), @interpolate(linear, sample)
}
%foo_inner = func():Outputs {
$B1: {
%2:vec4<f32> = construct 0.0f
%3:Outputs = construct %2, 0.25f, 0.75f
ret %3
}
}
%foo = @vertex func():foo_outputs {
$B2: {
%5:Outputs = call %foo_inner
%6:vec4<f32> = access %5, 0u
%7:f32 = access %5, 1u
%8:f32 = access %5, 2u
%tint_wrapper_result:ptr<function, foo_outputs, read_write> = var
%10:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result, 0u
store %10, %6
%11:ptr<function, f32, read_write> = access %tint_wrapper_result, 1u
store %11, %7
%12:ptr<function, f32, read_write> = access %tint_wrapper_result, 2u
store %12, %8
%13:foo_outputs = load %tint_wrapper_result
ret %13
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, ReturnValue_DualSourceBlending) {
auto* str_ty =
ty.Struct(mod.symbols.New("Output"), {
{
mod.symbols.New("color1"),
ty.f32(),
core::IOAttributes{
/* location */ 0u,
/* blend_src */ 0u,
/* color */ std::nullopt,
/* builtin */ std::nullopt,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
{
mod.symbols.New("color2"),
ty.f32(),
core::IOAttributes{
/* location */ 0u,
/* blend_src */ 1u,
/* color */ std::nullopt,
/* builtin */ std::nullopt,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
});
auto* ep = b.Function("foo", str_ty);
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
b.Append(ep->Block(), [&] { //
b.Return(ep, b.Construct(str_ty, 0.25_f, 0.75_f));
});
auto* src = R"(
Output = struct @align(4) {
color1:f32 @offset(0), @location(0), @blend_src(0)
color2:f32 @offset(4), @location(0), @blend_src(1)
}
%foo = @fragment func():Output {
$B1: {
%2:Output = construct 0.25f, 0.75f
ret %2
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
Output = struct @align(4) {
color1:f32 @offset(0)
color2:f32 @offset(4)
}
foo_outputs = struct @align(4) {
Output_color1:f32 @offset(0), @location(0), @blend_src(0)
Output_color2:f32 @offset(4), @location(0), @blend_src(1)
}
%foo_inner = func():Output {
$B1: {
%2:Output = construct 0.25f, 0.75f
ret %2
}
}
%foo = @fragment func():foo_outputs {
$B2: {
%4:Output = call %foo_inner
%5:f32 = access %4, 0u
%6:f32 = access %4, 1u
%tint_wrapper_result:ptr<function, foo_outputs, read_write> = var
%8:ptr<function, f32, read_write> = access %tint_wrapper_result, 0u
store %8, %5
%9:ptr<function, f32, read_write> = access %tint_wrapper_result, 1u
store %9, %6
%10:foo_outputs = load %tint_wrapper_result
ret %10
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, Struct_SharedByVertexAndFragment) {
auto* vec4f = ty.vec4<f32>();
auto* str_ty = ty.Struct(mod.symbols.New("Interface"),
{
{
mod.symbols.New("position"),
vec4f,
core::IOAttributes{
/* location */ std::nullopt,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ core::BuiltinValue::kPosition,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
{
mod.symbols.New("color"),
vec4f,
core::IOAttributes{
/* location */ 0u,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ std::nullopt,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
});
// Vertex shader.
{
auto* ep = b.Function("vert", str_ty);
ep->SetStage(core::ir::Function::PipelineStage::kVertex);
b.Append(ep->Block(), [&] { //
auto* position = b.Construct(vec4f, 0_f);
auto* color = b.Construct(vec4f, 1_f);
b.Return(ep, b.Construct(str_ty, position, color));
});
}
// Fragment shader.
{
auto* ep = b.Function("frag", vec4f);
auto* inputs = b.FunctionParam("inputs", str_ty);
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
ep->SetParams({inputs});
ep->SetReturnLocation(0u);
b.Append(ep->Block(), [&] { //
auto* position = b.Access(vec4f, inputs, 0_u);
auto* color = b.Access(vec4f, inputs, 1_u);
b.Return(ep, b.Add(vec4f, position, color));
});
}
auto* src = R"(
Interface = struct @align(16) {
position:vec4<f32> @offset(0), @builtin(position)
color:vec4<f32> @offset(16), @location(0)
}
%vert = @vertex func():Interface {
$B1: {
%2:vec4<f32> = construct 0.0f
%3:vec4<f32> = construct 1.0f
%4:Interface = construct %2, %3
ret %4
}
}
%frag = @fragment func(%inputs:Interface):vec4<f32> [@location(0)] {
$B2: {
%7:vec4<f32> = access %inputs, 0u
%8:vec4<f32> = access %inputs, 1u
%9:vec4<f32> = add %7, %8
ret %9
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
Interface = struct @align(16) {
position:vec4<f32> @offset(0)
color:vec4<f32> @offset(16)
}
vert_outputs = struct @align(16) {
Interface_position:vec4<f32> @offset(0), @builtin(position)
Interface_color:vec4<f32> @offset(16), @location(0)
}
frag_inputs = struct @align(16) {
Interface_color:vec4<f32> @offset(0), @location(0)
}
frag_outputs = struct @align(16) {
tint_symbol:vec4<f32> @offset(0), @location(0)
}
%vert_inner = func():Interface {
$B1: {
%2:vec4<f32> = construct 0.0f
%3:vec4<f32> = construct 1.0f
%4:Interface = construct %2, %3
ret %4
}
}
%frag_inner = func(%inputs:Interface):vec4<f32> {
$B2: {
%7:vec4<f32> = access %inputs, 0u
%8:vec4<f32> = access %inputs, 1u
%9:vec4<f32> = add %7, %8
ret %9
}
}
%vert = @vertex func():vert_outputs {
$B3: {
%11:Interface = call %vert_inner
%12:vec4<f32> = access %11, 0u
%13:vec4<f32> = access %11, 1u
%tint_wrapper_result:ptr<function, vert_outputs, read_write> = var
%15:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result, 0u
store %15, %12
%16:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result, 1u
store %16, %13
%17:vert_outputs = load %tint_wrapper_result
ret %17
}
}
%frag = @fragment func(%Interface_position:vec4<f32> [@position], %inputs_1:frag_inputs):frag_outputs { # %inputs_1: 'inputs'
$B4: {
%21:vec4<f32> = access %inputs_1, 0u
%22:Interface = construct %Interface_position, %21
%23:vec4<f32> = call %frag_inner, %22
%tint_wrapper_result_1:ptr<function, frag_outputs, read_write> = var # %tint_wrapper_result_1: 'tint_wrapper_result'
%25:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result_1, 0u
store %25, %23
%26:frag_outputs = load %tint_wrapper_result_1
ret %26
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, Struct_SharedWithBuffer) {
auto* vec4f = ty.vec4<f32>();
auto* str_ty = ty.Struct(mod.symbols.New("Outputs"),
{
{
mod.symbols.New("position"),
vec4f,
core::IOAttributes{
/* location */ std::nullopt,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ core::BuiltinValue::kPosition,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
{
mod.symbols.New("color"),
vec4f,
core::IOAttributes{
/* location */ 0u,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ std::nullopt,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
});
auto* var = b.Var(ty.ptr(storage, str_ty, read));
var->SetBindingPoint(0, 0);
auto* buffer = mod.root_block->Append(var);
auto* ep = b.Function("vert", str_ty);
ep->SetStage(core::ir::Function::PipelineStage::kVertex);
b.Append(ep->Block(), [&] { //
b.Return(ep, b.Load(buffer));
});
auto* src = R"(
Outputs = struct @align(16) {
position:vec4<f32> @offset(0), @builtin(position)
color:vec4<f32> @offset(16), @location(0)
}
$B1: { # root
%1:ptr<storage, Outputs, read> = var @binding_point(0, 0)
}
%vert = @vertex func():Outputs {
$B2: {
%3:Outputs = load %1
ret %3
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
Outputs = struct @align(16) {
position:vec4<f32> @offset(0)
color:vec4<f32> @offset(16)
}
vert_outputs = struct @align(16) {
Outputs_position:vec4<f32> @offset(0), @builtin(position)
Outputs_color:vec4<f32> @offset(16), @location(0)
}
$B1: { # root
%1:ptr<storage, Outputs, read> = var @binding_point(0, 0)
}
%vert_inner = func():Outputs {
$B2: {
%3:Outputs = load %1
ret %3
}
}
%vert = @vertex func():vert_outputs {
$B3: {
%5:Outputs = call %vert_inner
%6:vec4<f32> = access %5, 0u
%7:vec4<f32> = access %5, 1u
%tint_wrapper_result:ptr<function, vert_outputs, read_write> = var
%9:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result, 0u
store %9, %6
%10:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result, 1u
store %10, %7
%11:vert_outputs = load %tint_wrapper_result
ret %11
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
// Test that IO attributes are stripped from structures that are not used for the shader interface.
TEST_F(MslWriter_ShaderIOTest, StructWithAttributes_NotUsedForInterface) {
auto* vec4f = ty.vec4<f32>();
auto* str_ty = ty.Struct(mod.symbols.New("Outputs"),
{
{
mod.symbols.New("position"),
vec4f,
core::IOAttributes{
/* location */ std::nullopt,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ core::BuiltinValue::kPosition,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
{
mod.symbols.New("color"),
vec4f,
core::IOAttributes{
/* location */ 0u,
/* blend_src */ std::nullopt,
/* color */ std::nullopt,
/* builtin */ std::nullopt,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
});
auto* var = b.Var(ty.ptr(storage, str_ty, read));
var->SetBindingPoint(0, 0);
auto* buffer = mod.root_block->Append(var);
auto* ep = b.Function("frag", ty.void_());
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
b.Append(ep->Block(), [&] { //
b.Store(buffer, b.Construct(str_ty));
b.Return(ep);
});
auto* src = R"(
Outputs = struct @align(16) {
position:vec4<f32> @offset(0), @builtin(position)
color:vec4<f32> @offset(16), @location(0)
}
$B1: { # root
%1:ptr<storage, Outputs, read> = var @binding_point(0, 0)
}
%frag = @fragment func():void {
$B2: {
%3:Outputs = construct
store %1, %3
ret
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
Outputs = struct @align(16) {
position:vec4<f32> @offset(0)
color:vec4<f32> @offset(16)
}
$B1: { # root
%1:ptr<storage, Outputs, read> = var @binding_point(0, 0)
}
%frag = @fragment func():void {
$B2: {
%3:Outputs = construct
store %1, %3
ret
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, EmitVertexPointSize) {
auto* ep = b.Function("foo", ty.vec4<f32>());
ep->SetStage(core::ir::Function::PipelineStage::kVertex);
ep->SetReturnBuiltin(core::BuiltinValue::kPosition);
b.Append(ep->Block(), [&] { //
b.Return(ep, b.Construct(ty.vec4<f32>(), 0.5_f));
});
auto* src = R"(
%foo = @vertex func():vec4<f32> [@position] {
$B1: {
%2:vec4<f32> = construct 0.5f
ret %2
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
foo_outputs = struct @align(16) {
tint_symbol:vec4<f32> @offset(0), @builtin(position)
vertex_point_size:f32 @offset(16), @builtin(__point_size)
}
%foo_inner = func():vec4<f32> {
$B1: {
%2:vec4<f32> = construct 0.5f
ret %2
}
}
%foo = @vertex func():foo_outputs {
$B2: {
%4:vec4<f32> = call %foo_inner
%tint_wrapper_result:ptr<function, foo_outputs, read_write> = var
%6:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result, 0u
store %6, %4
%7:ptr<function, f32, read_write> = access %tint_wrapper_result, 1u
store %7, 1.0f
%8:foo_outputs = load %tint_wrapper_result
ret %8
}
}
)";
ShaderIOConfig config;
config.emit_vertex_point_size = true;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, Color_NonStruct) {
auto* ep = b.Function("foo", ty.void_());
auto* color1 = b.FunctionParam("color1", ty.f32());
color1->SetColor(1);
auto* color2 = b.FunctionParam("color2", ty.f32());
color2->SetColor(2);
ep->SetParams({color1, color2});
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
b.Append(ep->Block(), [&] {
b.Add<f32>(color1, color2);
b.Return(ep);
});
auto* src = R"(
%foo = @fragment func(%color1:f32 [@color(1)], %color2:f32 [@color(2)]):void {
$B1: {
%4:f32 = add %color1, %color2
ret
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
foo_inputs = struct @align(4) {
color1:f32 @offset(0), @color(1)
color2:f32 @offset(4), @color(2)
}
%foo_inner = func(%color1:f32, %color2:f32):void {
$B1: {
%4:f32 = add %color1, %color2
ret
}
}
%foo = @fragment func(%inputs:foo_inputs):void {
$B2: {
%7:f32 = access %inputs, 0u
%8:f32 = access %inputs, 1u
%9:void = call %foo_inner, %7, %8
ret
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, UserSuppliedMask_WithoutFixedSampleMask) {
core::IOAttributes loc;
loc.location = 1u;
core::IOAttributes mask;
mask.builtin = core::BuiltinValue::kSampleMask;
auto* outputs =
ty.Struct(mod.symbols.New("Outputs"), {
{mod.symbols.New("color"), ty.vec4<f32>(), loc},
{mod.symbols.New("mask"), ty.u32(), mask},
});
auto* ep = b.Function("foo", outputs);
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
b.Append(ep->Block(), [&] { //
b.Return(ep,
b.Construct(outputs, b.Splat(ty.vec4<f32>(), 0.5_f), b.Constant(u32(0x10203040))));
});
auto* src = R"(
Outputs = struct @align(16) {
color:vec4<f32> @offset(0), @location(1)
mask:u32 @offset(16), @builtin(sample_mask)
}
%foo = @fragment func():Outputs {
$B1: {
%2:Outputs = construct vec4<f32>(0.5f), 270544960u
ret %2
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
Outputs = struct @align(16) {
color:vec4<f32> @offset(0)
mask:u32 @offset(16)
}
foo_outputs = struct @align(16) {
Outputs_color:vec4<f32> @offset(0), @location(1)
Outputs_mask:u32 @offset(16), @builtin(sample_mask)
}
%foo_inner = func():Outputs {
$B1: {
%2:Outputs = construct vec4<f32>(0.5f), 270544960u
ret %2
}
}
%foo = @fragment func():foo_outputs {
$B2: {
%4:Outputs = call %foo_inner
%5:vec4<f32> = access %4, 0u
%6:u32 = access %4, 1u
%tint_wrapper_result:ptr<function, foo_outputs, read_write> = var
%8:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result, 0u
store %8, %5
%9:ptr<function, u32, read_write> = access %tint_wrapper_result, 1u
store %9, %6
%10:foo_outputs = load %tint_wrapper_result
ret %10
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, FixedSampleMask) {
auto* ep = b.Function("foo", ty.vec4<f32>());
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
ep->SetReturnLocation(0u);
b.Append(ep->Block(), [&] { //
b.Return(ep, b.Splat(ty.vec4<f32>(), 0.5_f));
});
auto* src = R"(
%foo = @fragment func():vec4<f32> [@location(0)] {
$B1: {
ret vec4<f32>(0.5f)
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
foo_outputs = struct @align(16) {
tint_symbol:vec4<f32> @offset(0), @location(0)
tint_sample_mask:u32 @offset(16), @builtin(sample_mask)
}
%foo_inner = func():vec4<f32> {
$B1: {
ret vec4<f32>(0.5f)
}
}
%foo = @fragment func():foo_outputs {
$B2: {
%3:vec4<f32> = call %foo_inner
%tint_wrapper_result:ptr<function, foo_outputs, read_write> = var
%5:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result, 0u
store %5, %3
%6:ptr<function, u32, read_write> = access %tint_wrapper_result, 1u
store %6, 12345678u
%7:foo_outputs = load %tint_wrapper_result
ret %7
}
}
)";
ShaderIOConfig config;
config.fixed_sample_mask = 12345678u;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, FixedSampleMask_WithUserSuppliedMask) {
core::IOAttributes loc;
loc.location = 1u;
core::IOAttributes mask;
mask.builtin = core::BuiltinValue::kSampleMask;
auto* outputs =
ty.Struct(mod.symbols.New("Outputs"), {
{mod.symbols.New("color"), ty.vec4<f32>(), loc},
{mod.symbols.New("mask"), ty.u32(), mask},
});
auto* ep = b.Function("foo", outputs);
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
b.Append(ep->Block(), [&] { //
b.Return(ep,
b.Construct(outputs, b.Splat(ty.vec4<f32>(), 0.5_f), b.Constant(u32(0x10203040))));
});
auto* src = R"(
Outputs = struct @align(16) {
color:vec4<f32> @offset(0), @location(1)
mask:u32 @offset(16), @builtin(sample_mask)
}
%foo = @fragment func():Outputs {
$B1: {
%2:Outputs = construct vec4<f32>(0.5f), 270544960u
ret %2
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
Outputs = struct @align(16) {
color:vec4<f32> @offset(0)
mask:u32 @offset(16)
}
foo_outputs = struct @align(16) {
Outputs_color:vec4<f32> @offset(0), @location(1)
Outputs_mask:u32 @offset(16), @builtin(sample_mask)
}
%foo_inner = func():Outputs {
$B1: {
%2:Outputs = construct vec4<f32>(0.5f), 270544960u
ret %2
}
}
%foo = @fragment func():foo_outputs {
$B2: {
%4:Outputs = call %foo_inner
%5:vec4<f32> = access %4, 0u
%6:u32 = access %4, 1u
%7:u32 = and %6, 12345678u
%tint_wrapper_result:ptr<function, foo_outputs, read_write> = var
%9:ptr<function, vec4<f32>, read_write> = access %tint_wrapper_result, 0u
store %9, %5
%10:ptr<function, u32, read_write> = access %tint_wrapper_result, 1u
store %10, %7
%11:foo_outputs = load %tint_wrapper_result
ret %11
}
}
)";
ShaderIOConfig config;
config.fixed_sample_mask = 12345678u;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
TEST_F(MslWriter_ShaderIOTest, Color_Struct) {
auto* str_ty =
ty.Struct(mod.symbols.New("Inputs"), {
{
mod.symbols.New("color1"),
ty.f32(),
core::IOAttributes{
/* location */ std::nullopt,
/* blend_src */ std::nullopt,
/* color */ 1u,
/* builtin */ std::nullopt,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
{
mod.symbols.New("color2"),
ty.f32(),
core::IOAttributes{
/* location */ std::nullopt,
/* blend_src */ std::nullopt,
/* color */ 2u,
/* builtin */ std::nullopt,
/* interpolation */ std::nullopt,
/* invariant */ false,
},
},
});
auto* ep = b.Function("foo", ty.void_());
auto* str_param = b.FunctionParam("inputs", str_ty);
ep->SetParams({str_param});
ep->SetStage(core::ir::Function::PipelineStage::kFragment);
b.Append(ep->Block(), [&] {
auto* color1 = b.Access<f32>(str_param, 0_i);
auto* color2 = b.Access<f32>(str_param, 1_i);
b.Add<f32>(color1, color2);
b.Return(ep);
});
auto* src = R"(
Inputs = struct @align(4) {
color1:f32 @offset(0), @color(1)
color2:f32 @offset(4), @color(2)
}
%foo = @fragment func(%inputs:Inputs):void {
$B1: {
%3:f32 = access %inputs, 0i
%4:f32 = access %inputs, 1i
%5:f32 = add %3, %4
ret
}
}
)";
EXPECT_EQ(src, str());
auto* expect = R"(
Inputs = struct @align(4) {
color1:f32 @offset(0)
color2:f32 @offset(4)
}
foo_inputs = struct @align(4) {
Inputs_color1:f32 @offset(0), @color(1)
Inputs_color2:f32 @offset(4), @color(2)
}
%foo_inner = func(%inputs:Inputs):void {
$B1: {
%3:f32 = access %inputs, 0i
%4:f32 = access %inputs, 1i
%5:f32 = add %3, %4
ret
}
}
%foo = @fragment func(%inputs_1:foo_inputs):void { # %inputs_1: 'inputs'
$B2: {
%8:f32 = access %inputs_1, 0u
%9:f32 = access %inputs_1, 1u
%10:Inputs = construct %8, %9
%11:void = call %foo_inner, %10
ret
}
}
)";
ShaderIOConfig config;
Run(ShaderIO, config);
EXPECT_EQ(expect, str());
}
} // namespace
} // namespace tint::msl::writer::raise