blob: dcbbf0dd7e35ae330d019ac58ee2db51998ddea7 [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/vulkan/CommandBufferVk.h"
#include "dawn_native/BindGroupAndStorageBarrierTracker.h"
#include "dawn_native/CommandEncoder.h"
#include "dawn_native/CommandValidation.h"
#include "dawn_native/Commands.h"
#include "dawn_native/RenderBundle.h"
#include "dawn_native/vulkan/BindGroupVk.h"
#include "dawn_native/vulkan/BufferVk.h"
#include "dawn_native/vulkan/CommandRecordingContext.h"
#include "dawn_native/vulkan/ComputePipelineVk.h"
#include "dawn_native/vulkan/DeviceVk.h"
#include "dawn_native/vulkan/FencedDeleter.h"
#include "dawn_native/vulkan/PipelineLayoutVk.h"
#include "dawn_native/vulkan/RenderPassCache.h"
#include "dawn_native/vulkan/RenderPipelineVk.h"
#include "dawn_native/vulkan/TextureVk.h"
#include "dawn_native/vulkan/UtilsVulkan.h"
#include "dawn_native/vulkan/VulkanError.h"
namespace dawn_native { namespace vulkan {
namespace {
VkIndexType VulkanIndexType(wgpu::IndexFormat format) {
switch (format) {
case wgpu::IndexFormat::Uint16:
return VK_INDEX_TYPE_UINT16;
case wgpu::IndexFormat::Uint32:
return VK_INDEX_TYPE_UINT32;
default:
UNREACHABLE();
}
}
bool HasSameTextureCopyExtent(const TextureCopy& srcCopy,
const TextureCopy& dstCopy,
const Extent3D& copySize) {
Extent3D imageExtentSrc = ComputeTextureCopyExtent(srcCopy, copySize);
Extent3D imageExtentDst = ComputeTextureCopyExtent(dstCopy, copySize);
return imageExtentSrc.width == imageExtentDst.width &&
imageExtentSrc.height == imageExtentDst.height &&
imageExtentSrc.depth == imageExtentDst.depth;
}
VkImageCopy ComputeImageCopyRegion(const TextureCopy& srcCopy,
const TextureCopy& dstCopy,
const Extent3D& copySize) {
const Texture* srcTexture = ToBackend(srcCopy.texture.Get());
const Texture* dstTexture = ToBackend(dstCopy.texture.Get());
VkImageCopy region;
// TODO(jiawei.shao@intel.com): support 1D and 3D textures
ASSERT(srcTexture->GetDimension() == wgpu::TextureDimension::e2D &&
dstTexture->GetDimension() == wgpu::TextureDimension::e2D);
region.srcSubresource.aspectMask = srcTexture->GetVkAspectMask();
region.srcSubresource.mipLevel = srcCopy.mipLevel;
region.srcSubresource.baseArrayLayer = srcCopy.origin.z;
region.srcSubresource.layerCount = copySize.depth;
region.srcOffset.x = srcCopy.origin.x;
region.srcOffset.y = srcCopy.origin.y;
region.srcOffset.z = 0;
region.dstSubresource.aspectMask = dstTexture->GetVkAspectMask();
region.dstSubresource.mipLevel = dstCopy.mipLevel;
region.dstSubresource.baseArrayLayer = dstCopy.origin.z;
region.dstSubresource.layerCount = copySize.depth;
region.dstOffset.x = dstCopy.origin.x;
region.dstOffset.y = dstCopy.origin.y;
region.dstOffset.z = 0;
ASSERT(HasSameTextureCopyExtent(srcCopy, dstCopy, copySize));
Extent3D imageExtent = ComputeTextureCopyExtent(dstCopy, copySize);
region.extent.width = imageExtent.width;
region.extent.height = imageExtent.height;
region.extent.depth = 1;
return region;
}
void ApplyDescriptorSets(
Device* device,
VkCommandBuffer commands,
VkPipelineBindPoint bindPoint,
VkPipelineLayout pipelineLayout,
const BindGroupLayoutMask& bindGroupsToApply,
const ityp::array<BindGroupIndex, BindGroupBase*, kMaxBindGroups>& bindGroups,
const ityp::array<BindGroupIndex, uint32_t, kMaxBindGroups>& dynamicOffsetCounts,
const ityp::array<BindGroupIndex,
std::array<uint32_t, kMaxBindingsPerGroup>,
kMaxBindGroups>& dynamicOffsets) {
for (BindGroupIndex dirtyIndex : IterateBitSet(bindGroupsToApply)) {
VkDescriptorSet set = ToBackend(bindGroups[dirtyIndex])->GetHandle();
const uint32_t* dynamicOffset = dynamicOffsetCounts[dirtyIndex] > 0
? dynamicOffsets[dirtyIndex].data()
: nullptr;
device->fn.CmdBindDescriptorSets(commands, bindPoint, pipelineLayout,
static_cast<uint32_t>(dirtyIndex), 1, &*set,
dynamicOffsetCounts[dirtyIndex], dynamicOffset);
}
}
class RenderDescriptorSetTracker : public BindGroupTrackerBase<true, uint32_t> {
public:
RenderDescriptorSetTracker() = default;
void Apply(Device* device,
CommandRecordingContext* recordingContext,
VkPipelineBindPoint bindPoint) {
ApplyDescriptorSets(device, recordingContext->commandBuffer, bindPoint,
ToBackend(mPipelineLayout)->GetHandle(),
mDirtyBindGroupsObjectChangedOrIsDynamic, mBindGroups,
mDynamicOffsetCounts, mDynamicOffsets);
DidApply();
}
};
class ComputeDescriptorSetTracker
: public BindGroupAndStorageBarrierTrackerBase<true, uint32_t> {
public:
ComputeDescriptorSetTracker() = default;
void Apply(Device* device,
CommandRecordingContext* recordingContext,
VkPipelineBindPoint bindPoint) {
ApplyDescriptorSets(device, recordingContext->commandBuffer, bindPoint,
ToBackend(mPipelineLayout)->GetHandle(),
mDirtyBindGroupsObjectChangedOrIsDynamic, mBindGroups,
mDynamicOffsetCounts, mDynamicOffsets);
for (BindGroupIndex index : IterateBitSet(mBindGroupLayoutsMask)) {
for (BindingIndex bindingIndex :
IterateBitSet(mBindingsNeedingBarrier[index])) {
switch (mBindingTypes[index][bindingIndex]) {
case wgpu::BindingType::StorageBuffer:
static_cast<Buffer*>(mBindings[index][bindingIndex])
->TransitionUsageNow(recordingContext,
wgpu::BufferUsage::Storage);
break;
case wgpu::BindingType::ReadonlyStorageTexture:
case wgpu::BindingType::WriteonlyStorageTexture: {
TextureViewBase* view =
static_cast<TextureViewBase*>(mBindings[index][bindingIndex]);
ToBackend(view->GetTexture())
->TransitionUsageNow(recordingContext,
wgpu::TextureUsage::Storage,
view->GetSubresourceRange());
break;
}
case wgpu::BindingType::StorageTexture:
// Not implemented.
case wgpu::BindingType::UniformBuffer:
case wgpu::BindingType::ReadonlyStorageBuffer:
case wgpu::BindingType::Sampler:
case wgpu::BindingType::ComparisonSampler:
case wgpu::BindingType::SampledTexture:
// Don't require barriers.
default:
UNREACHABLE();
break;
}
}
}
DidApply();
}
};
MaybeError RecordBeginRenderPass(CommandRecordingContext* recordingContext,
Device* device,
BeginRenderPassCmd* renderPass) {
VkCommandBuffer commands = recordingContext->commandBuffer;
// Query a VkRenderPass from the cache
VkRenderPass renderPassVK = VK_NULL_HANDLE;
{
RenderPassCacheQuery query;
for (uint32_t i :
IterateBitSet(renderPass->attachmentState->GetColorAttachmentsMask())) {
const auto& attachmentInfo = renderPass->colorAttachments[i];
bool hasResolveTarget = attachmentInfo.resolveTarget.Get() != nullptr;
wgpu::LoadOp loadOp = attachmentInfo.loadOp;
query.SetColor(i, attachmentInfo.view->GetFormat().format, loadOp,
hasResolveTarget);
}
if (renderPass->attachmentState->HasDepthStencilAttachment()) {
const auto& attachmentInfo = renderPass->depthStencilAttachment;
query.SetDepthStencil(attachmentInfo.view->GetTexture()->GetFormat().format,
attachmentInfo.depthLoadOp, attachmentInfo.stencilLoadOp);
}
query.SetSampleCount(renderPass->attachmentState->GetSampleCount());
DAWN_TRY_ASSIGN(renderPassVK, device->GetRenderPassCache()->GetRenderPass(query));
}
// Create a framebuffer that will be used once for the render pass and gather the clear
// values for the attachments at the same time.
std::array<VkClearValue, kMaxColorAttachments + 1> clearValues;
VkFramebuffer framebuffer = VK_NULL_HANDLE;
uint32_t attachmentCount = 0;
{
// Fill in the attachment info that will be chained in the framebuffer create info.
std::array<VkImageView, kMaxColorAttachments * 2 + 1> attachments;
for (uint32_t i :
IterateBitSet(renderPass->attachmentState->GetColorAttachmentsMask())) {
auto& attachmentInfo = renderPass->colorAttachments[i];
TextureView* view = ToBackend(attachmentInfo.view.Get());
attachments[attachmentCount] = view->GetHandle();
clearValues[attachmentCount].color.float32[0] = attachmentInfo.clearColor.r;
clearValues[attachmentCount].color.float32[1] = attachmentInfo.clearColor.g;
clearValues[attachmentCount].color.float32[2] = attachmentInfo.clearColor.b;
clearValues[attachmentCount].color.float32[3] = attachmentInfo.clearColor.a;
attachmentCount++;
}
if (renderPass->attachmentState->HasDepthStencilAttachment()) {
auto& attachmentInfo = renderPass->depthStencilAttachment;
TextureView* view = ToBackend(attachmentInfo.view.Get());
attachments[attachmentCount] = view->GetHandle();
clearValues[attachmentCount].depthStencil.depth = attachmentInfo.clearDepth;
clearValues[attachmentCount].depthStencil.stencil = attachmentInfo.clearStencil;
attachmentCount++;
}
for (uint32_t i :
IterateBitSet(renderPass->attachmentState->GetColorAttachmentsMask())) {
if (renderPass->colorAttachments[i].resolveTarget.Get() != nullptr) {
TextureView* view =
ToBackend(renderPass->colorAttachments[i].resolveTarget.Get());
attachments[attachmentCount] = view->GetHandle();
attachmentCount++;
}
}
// Chain attachments and create the framebuffer
VkFramebufferCreateInfo createInfo;
createInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
createInfo.pNext = nullptr;
createInfo.flags = 0;
createInfo.renderPass = renderPassVK;
createInfo.attachmentCount = attachmentCount;
createInfo.pAttachments = AsVkArray(attachments.data());
createInfo.width = renderPass->width;
createInfo.height = renderPass->height;
createInfo.layers = 1;
DAWN_TRY(
CheckVkSuccess(device->fn.CreateFramebuffer(device->GetVkDevice(), &createInfo,
nullptr, &*framebuffer),
"CreateFramebuffer"));
// We don't reuse VkFramebuffers so mark the framebuffer for deletion as soon as the
// commands currently being recorded are finished.
device->GetFencedDeleter()->DeleteWhenUnused(framebuffer);
}
VkRenderPassBeginInfo beginInfo;
beginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
beginInfo.pNext = nullptr;
beginInfo.renderPass = renderPassVK;
beginInfo.framebuffer = framebuffer;
beginInfo.renderArea.offset.x = 0;
beginInfo.renderArea.offset.y = 0;
beginInfo.renderArea.extent.width = renderPass->width;
beginInfo.renderArea.extent.height = renderPass->height;
beginInfo.clearValueCount = attachmentCount;
beginInfo.pClearValues = clearValues.data();
device->fn.CmdBeginRenderPass(commands, &beginInfo, VK_SUBPASS_CONTENTS_INLINE);
return {};
}
} // anonymous namespace
// static
CommandBuffer* CommandBuffer::Create(CommandEncoder* encoder,
const CommandBufferDescriptor* descriptor) {
return new CommandBuffer(encoder, descriptor);
}
CommandBuffer::CommandBuffer(CommandEncoder* encoder, const CommandBufferDescriptor* descriptor)
: CommandBufferBase(encoder, descriptor), mCommands(encoder->AcquireCommands()) {
}
CommandBuffer::~CommandBuffer() {
FreeCommands(&mCommands);
}
void CommandBuffer::RecordCopyImageWithTemporaryBuffer(
CommandRecordingContext* recordingContext,
const TextureCopy& srcCopy,
const TextureCopy& dstCopy,
const Extent3D& copySize) {
ASSERT(srcCopy.texture->GetFormat().format == dstCopy.texture->GetFormat().format);
dawn_native::Format format = srcCopy.texture->GetFormat();
ASSERT(copySize.width % format.blockWidth == 0);
ASSERT(copySize.height % format.blockHeight == 0);
// Create the temporary buffer. Note that We don't need to respect WebGPU's 256 alignment
// because it isn't a hard constraint in Vulkan.
uint64_t tempBufferSize =
(copySize.width / format.blockWidth * copySize.height / format.blockHeight) *
format.blockByteSize;
BufferDescriptor tempBufferDescriptor;
tempBufferDescriptor.size = tempBufferSize;
tempBufferDescriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
Device* device = ToBackend(GetDevice());
Ref<Buffer> tempBuffer = AcquireRef(ToBackend(device->CreateBuffer(&tempBufferDescriptor)));
BufferCopy tempBufferCopy;
tempBufferCopy.buffer = tempBuffer.Get();
tempBufferCopy.rowsPerImage = copySize.height;
tempBufferCopy.offset = 0;
tempBufferCopy.bytesPerRow = copySize.width / format.blockWidth * format.blockByteSize;
VkCommandBuffer commands = recordingContext->commandBuffer;
VkImage srcImage = ToBackend(srcCopy.texture)->GetHandle();
VkImage dstImage = ToBackend(dstCopy.texture)->GetHandle();
tempBuffer->TransitionUsageNow(recordingContext, wgpu::BufferUsage::CopyDst);
VkBufferImageCopy srcToTempBufferRegion =
ComputeBufferImageCopyRegion(tempBufferCopy, srcCopy, copySize);
// The Dawn CopySrc usage is always mapped to GENERAL
device->fn.CmdCopyImageToBuffer(commands, srcImage, VK_IMAGE_LAYOUT_GENERAL,
tempBuffer->GetHandle(), 1, &srcToTempBufferRegion);
tempBuffer->TransitionUsageNow(recordingContext, wgpu::BufferUsage::CopySrc);
VkBufferImageCopy tempBufferToDstRegion =
ComputeBufferImageCopyRegion(tempBufferCopy, dstCopy, copySize);
// Dawn guarantees dstImage be in the TRANSFER_DST_OPTIMAL layout after the
// copy command.
device->fn.CmdCopyBufferToImage(commands, tempBuffer->GetHandle(), dstImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&tempBufferToDstRegion);
recordingContext->tempBuffers.emplace_back(tempBuffer);
}
MaybeError CommandBuffer::RecordCommands(CommandRecordingContext* recordingContext) {
Device* device = ToBackend(GetDevice());
VkCommandBuffer commands = recordingContext->commandBuffer;
// Records the necessary barriers for the resource usage pre-computed by the frontend
auto TransitionForPass = [](Device* device, CommandRecordingContext* recordingContext,
const PassResourceUsage& usages) {
std::vector<VkBufferMemoryBarrier> bufferBarriers;
std::vector<VkImageMemoryBarrier> imageBarriers;
VkPipelineStageFlags srcStages = 0;
VkPipelineStageFlags dstStages = 0;
for (size_t i = 0; i < usages.buffers.size(); ++i) {
Buffer* buffer = ToBackend(usages.buffers[i]);
buffer->TransitionUsageNow(recordingContext, usages.bufferUsages[i],
&bufferBarriers, &srcStages, &dstStages);
}
for (size_t i = 0; i < usages.textures.size(); ++i) {
Texture* texture = ToBackend(usages.textures[i]);
// Clear textures that are not output attachments. Output attachments will be
// cleared in RecordBeginRenderPass by setting the loadop to clear when the
// texture subresource has not been initialized before the render pass.
if (!(usages.textureUsages[i].usage & wgpu::TextureUsage::OutputAttachment)) {
texture->EnsureSubresourceContentInitialized(recordingContext,
texture->GetAllSubresources());
}
texture->TransitionUsageForPass(recordingContext, usages.textureUsages[i],
&imageBarriers, &srcStages, &dstStages);
}
if (bufferBarriers.size() || imageBarriers.size()) {
device->fn.CmdPipelineBarrier(recordingContext->commandBuffer, srcStages, dstStages,
0, 0, nullptr, bufferBarriers.size(),
bufferBarriers.data(), imageBarriers.size(),
imageBarriers.data());
}
};
const std::vector<PassResourceUsage>& passResourceUsages = GetResourceUsages().perPass;
size_t nextPassNumber = 0;
Command type;
while (mCommands.NextCommandId(&type)) {
switch (type) {
case Command::CopyBufferToBuffer: {
CopyBufferToBufferCmd* copy = mCommands.NextCommand<CopyBufferToBufferCmd>();
Buffer* srcBuffer = ToBackend(copy->source.Get());
Buffer* dstBuffer = ToBackend(copy->destination.Get());
srcBuffer->EnsureDataInitialized(recordingContext);
dstBuffer->EnsureDataInitializedAsDestination(
recordingContext, copy->destinationOffset, copy->size);
srcBuffer->TransitionUsageNow(recordingContext, wgpu::BufferUsage::CopySrc);
dstBuffer->TransitionUsageNow(recordingContext, wgpu::BufferUsage::CopyDst);
VkBufferCopy region;
region.srcOffset = copy->sourceOffset;
region.dstOffset = copy->destinationOffset;
region.size = copy->size;
VkBuffer srcHandle = srcBuffer->GetHandle();
VkBuffer dstHandle = dstBuffer->GetHandle();
device->fn.CmdCopyBuffer(commands, srcHandle, dstHandle, 1, &region);
break;
}
case Command::CopyBufferToTexture: {
CopyBufferToTextureCmd* copy = mCommands.NextCommand<CopyBufferToTextureCmd>();
auto& src = copy->source;
auto& dst = copy->destination;
VkBufferImageCopy region =
ComputeBufferImageCopyRegion(src, dst, copy->copySize);
VkImageSubresourceLayers subresource = region.imageSubresource;
ASSERT(dst.texture->GetDimension() == wgpu::TextureDimension::e2D);
SubresourceRange range = {subresource.mipLevel, 1, subresource.baseArrayLayer,
subresource.layerCount};
if (IsCompleteSubresourceCopiedTo(dst.texture.Get(), copy->copySize,
subresource.mipLevel)) {
// Since texture has been overwritten, it has been "initialized"
dst.texture->SetIsSubresourceContentInitialized(true, range);
} else {
ToBackend(dst.texture)
->EnsureSubresourceContentInitialized(recordingContext, range);
}
ToBackend(src.buffer)
->TransitionUsageNow(recordingContext, wgpu::BufferUsage::CopySrc);
ToBackend(dst.texture)
->TransitionUsageNow(recordingContext, wgpu::TextureUsage::CopyDst, range);
VkBuffer srcBuffer = ToBackend(src.buffer)->GetHandle();
VkImage dstImage = ToBackend(dst.texture)->GetHandle();
// Dawn guarantees dstImage be in the TRANSFER_DST_OPTIMAL layout after the
// copy command.
device->fn.CmdCopyBufferToImage(commands, srcBuffer, dstImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&region);
break;
}
case Command::CopyTextureToBuffer: {
CopyTextureToBufferCmd* copy = mCommands.NextCommand<CopyTextureToBufferCmd>();
auto& src = copy->source;
auto& dst = copy->destination;
VkBufferImageCopy region =
ComputeBufferImageCopyRegion(dst, src, copy->copySize);
VkImageSubresourceLayers subresource = region.imageSubresource;
ASSERT(src.texture->GetDimension() == wgpu::TextureDimension::e2D);
const SubresourceRange range = {subresource.mipLevel, 1,
subresource.baseArrayLayer,
subresource.layerCount};
ToBackend(src.texture)
->EnsureSubresourceContentInitialized(recordingContext, range);
ToBackend(src.texture)
->TransitionUsageNow(recordingContext, wgpu::TextureUsage::CopySrc, range);
ToBackend(dst.buffer)
->TransitionUsageNow(recordingContext, wgpu::BufferUsage::CopyDst);
VkImage srcImage = ToBackend(src.texture)->GetHandle();
VkBuffer dstBuffer = ToBackend(dst.buffer)->GetHandle();
// The Dawn CopySrc usage is always mapped to GENERAL
device->fn.CmdCopyImageToBuffer(commands, srcImage, VK_IMAGE_LAYOUT_GENERAL,
dstBuffer, 1, &region);
break;
}
case Command::CopyTextureToTexture: {
CopyTextureToTextureCmd* copy =
mCommands.NextCommand<CopyTextureToTextureCmd>();
TextureCopy& src = copy->source;
TextureCopy& dst = copy->destination;
SubresourceRange srcRange = GetSubresourcesAffectedByCopy(src, copy->copySize);
SubresourceRange dstRange = GetSubresourcesAffectedByCopy(dst, copy->copySize);
ToBackend(src.texture)
->EnsureSubresourceContentInitialized(recordingContext, srcRange);
if (IsCompleteSubresourceCopiedTo(dst.texture.Get(), copy->copySize,
dst.mipLevel)) {
// Since destination texture has been overwritten, it has been "initialized"
dst.texture->SetIsSubresourceContentInitialized(true, dstRange);
} else {
ToBackend(dst.texture)
->EnsureSubresourceContentInitialized(recordingContext, dstRange);
}
if (src.texture.Get() == dst.texture.Get() && src.mipLevel == dst.mipLevel) {
// When there are overlapped subresources, the layout of the overlapped
// subresources should all be GENERAL instead of what we set now. Currently
// it is not allowed to copy with overlapped subresources, but we still
// add the ASSERT here as a reminder for this possible misuse.
ASSERT(
!IsRangeOverlapped(src.origin.z, dst.origin.z, copy->copySize.depth));
}
// TODO after Yunchao's CL
ToBackend(src.texture)
->TransitionUsageNow(recordingContext, wgpu::TextureUsage::CopySrc,
srcRange);
ToBackend(dst.texture)
->TransitionUsageNow(recordingContext, wgpu::TextureUsage::CopyDst,
dstRange);
// In some situations we cannot do texture-to-texture copies with vkCmdCopyImage
// because as Vulkan SPEC always validates image copies with the virtual size of
// the image subresource, when the extent that fits in the copy region of one
// subresource but does not fit in the one of another subresource, we will fail
// to find a valid extent to satisfy the requirements on both source and
// destination image subresource. For example, when the source is the first
// level of a 16x16 texture in BC format, and the destination is the third level
// of a 60x60 texture in the same format, neither 16x16 nor 15x15 is valid as
// the extent of vkCmdCopyImage.
// Our workaround for this issue is replacing the texture-to-texture copy with
// one texture-to-buffer copy and one buffer-to-texture copy.
bool copyUsingTemporaryBuffer =
device->IsToggleEnabled(
Toggle::UseTemporaryBufferInCompressedTextureToTextureCopy) &&
src.texture->GetFormat().isCompressed &&
!HasSameTextureCopyExtent(src, dst, copy->copySize);
if (!copyUsingTemporaryBuffer) {
VkImage srcImage = ToBackend(src.texture)->GetHandle();
VkImage dstImage = ToBackend(dst.texture)->GetHandle();
VkImageCopy region = ComputeImageCopyRegion(src, dst, copy->copySize);
// Dawn guarantees dstImage be in the TRANSFER_DST_OPTIMAL layout after the
// copy command.
device->fn.CmdCopyImage(commands, srcImage, VK_IMAGE_LAYOUT_GENERAL,
dstImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&region);
} else {
RecordCopyImageWithTemporaryBuffer(recordingContext, src, dst,
copy->copySize);
}
break;
}
case Command::BeginRenderPass: {
BeginRenderPassCmd* cmd = mCommands.NextCommand<BeginRenderPassCmd>();
TransitionForPass(device, recordingContext, passResourceUsages[nextPassNumber]);
LazyClearRenderPassAttachments(cmd);
DAWN_TRY(RecordRenderPass(recordingContext, cmd));
nextPassNumber++;
break;
}
case Command::BeginComputePass: {
mCommands.NextCommand<BeginComputePassCmd>();
TransitionForPass(device, recordingContext, passResourceUsages[nextPassNumber]);
DAWN_TRY(RecordComputePass(recordingContext));
nextPassNumber++;
break;
}
case Command::WriteTimestamp: {
return DAWN_UNIMPLEMENTED_ERROR("Waiting for implementation.");
}
default: {
UNREACHABLE();
break;
}
}
}
return {};
}
MaybeError CommandBuffer::RecordComputePass(CommandRecordingContext* recordingContext) {
Device* device = ToBackend(GetDevice());
VkCommandBuffer commands = recordingContext->commandBuffer;
ComputeDescriptorSetTracker descriptorSets = {};
Command type;
while (mCommands.NextCommandId(&type)) {
switch (type) {
case Command::EndComputePass: {
mCommands.NextCommand<EndComputePassCmd>();
return {};
}
case Command::Dispatch: {
DispatchCmd* dispatch = mCommands.NextCommand<DispatchCmd>();
descriptorSets.Apply(device, recordingContext, VK_PIPELINE_BIND_POINT_COMPUTE);
device->fn.CmdDispatch(commands, dispatch->x, dispatch->y, dispatch->z);
break;
}
case Command::DispatchIndirect: {
DispatchIndirectCmd* dispatch = mCommands.NextCommand<DispatchIndirectCmd>();
VkBuffer indirectBuffer = ToBackend(dispatch->indirectBuffer)->GetHandle();
descriptorSets.Apply(device, recordingContext, VK_PIPELINE_BIND_POINT_COMPUTE);
device->fn.CmdDispatchIndirect(
commands, indirectBuffer,
static_cast<VkDeviceSize>(dispatch->indirectOffset));
break;
}
case Command::SetBindGroup: {
SetBindGroupCmd* cmd = mCommands.NextCommand<SetBindGroupCmd>();
BindGroup* bindGroup = ToBackend(cmd->group.Get());
uint32_t* dynamicOffsets = nullptr;
if (cmd->dynamicOffsetCount > 0) {
dynamicOffsets = mCommands.NextData<uint32_t>(cmd->dynamicOffsetCount);
}
descriptorSets.OnSetBindGroup(cmd->index, bindGroup, cmd->dynamicOffsetCount,
dynamicOffsets);
break;
}
case Command::SetComputePipeline: {
SetComputePipelineCmd* cmd = mCommands.NextCommand<SetComputePipelineCmd>();
ComputePipeline* pipeline = ToBackend(cmd->pipeline).Get();
device->fn.CmdBindPipeline(commands, VK_PIPELINE_BIND_POINT_COMPUTE,
pipeline->GetHandle());
descriptorSets.OnSetPipeline(pipeline);
break;
}
case Command::InsertDebugMarker: {
if (device->GetDeviceInfo().HasExt(DeviceExt::DebugMarker)) {
InsertDebugMarkerCmd* cmd = mCommands.NextCommand<InsertDebugMarkerCmd>();
const char* label = mCommands.NextData<char>(cmd->length + 1);
VkDebugMarkerMarkerInfoEXT markerInfo;
markerInfo.sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT;
markerInfo.pNext = nullptr;
markerInfo.pMarkerName = label;
// Default color to black
markerInfo.color[0] = 0.0;
markerInfo.color[1] = 0.0;
markerInfo.color[2] = 0.0;
markerInfo.color[3] = 1.0;
device->fn.CmdDebugMarkerInsertEXT(commands, &markerInfo);
} else {
SkipCommand(&mCommands, Command::InsertDebugMarker);
}
break;
}
case Command::PopDebugGroup: {
if (device->GetDeviceInfo().HasExt(DeviceExt::DebugMarker)) {
mCommands.NextCommand<PopDebugGroupCmd>();
device->fn.CmdDebugMarkerEndEXT(commands);
} else {
SkipCommand(&mCommands, Command::PopDebugGroup);
}
break;
}
case Command::PushDebugGroup: {
if (device->GetDeviceInfo().HasExt(DeviceExt::DebugMarker)) {
PushDebugGroupCmd* cmd = mCommands.NextCommand<PushDebugGroupCmd>();
const char* label = mCommands.NextData<char>(cmd->length + 1);
VkDebugMarkerMarkerInfoEXT markerInfo;
markerInfo.sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT;
markerInfo.pNext = nullptr;
markerInfo.pMarkerName = label;
// Default color to black
markerInfo.color[0] = 0.0;
markerInfo.color[1] = 0.0;
markerInfo.color[2] = 0.0;
markerInfo.color[3] = 1.0;
device->fn.CmdDebugMarkerBeginEXT(commands, &markerInfo);
} else {
SkipCommand(&mCommands, Command::PushDebugGroup);
}
break;
}
case Command::WriteTimestamp: {
return DAWN_UNIMPLEMENTED_ERROR("Waiting for implementation.");
}
default: {
UNREACHABLE();
break;
}
}
}
// EndComputePass should have been called
UNREACHABLE();
}
MaybeError CommandBuffer::RecordRenderPass(CommandRecordingContext* recordingContext,
BeginRenderPassCmd* renderPassCmd) {
Device* device = ToBackend(GetDevice());
VkCommandBuffer commands = recordingContext->commandBuffer;
DAWN_TRY(RecordBeginRenderPass(recordingContext, device, renderPassCmd));
// Set the default value for the dynamic state
{
device->fn.CmdSetLineWidth(commands, 1.0f);
device->fn.CmdSetDepthBounds(commands, 0.0f, 1.0f);
device->fn.CmdSetStencilReference(commands, VK_STENCIL_FRONT_AND_BACK, 0);
float blendConstants[4] = {
0.0f,
0.0f,
0.0f,
0.0f,
};
device->fn.CmdSetBlendConstants(commands, blendConstants);
// The viewport and scissor default to cover all of the attachments
VkViewport viewport;
viewport.x = 0.0f;
viewport.y = static_cast<float>(renderPassCmd->height);
viewport.width = static_cast<float>(renderPassCmd->width);
viewport.height = -static_cast<float>(renderPassCmd->height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
device->fn.CmdSetViewport(commands, 0, 1, &viewport);
VkRect2D scissorRect;
scissorRect.offset.x = 0;
scissorRect.offset.y = 0;
scissorRect.extent.width = renderPassCmd->width;
scissorRect.extent.height = renderPassCmd->height;
device->fn.CmdSetScissor(commands, 0, 1, &scissorRect);
}
RenderDescriptorSetTracker descriptorSets = {};
RenderPipeline* lastPipeline = nullptr;
auto EncodeRenderBundleCommand = [&](CommandIterator* iter, Command type) {
switch (type) {
case Command::Draw: {
DrawCmd* draw = iter->NextCommand<DrawCmd>();
descriptorSets.Apply(device, recordingContext, VK_PIPELINE_BIND_POINT_GRAPHICS);
device->fn.CmdDraw(commands, draw->vertexCount, draw->instanceCount,
draw->firstVertex, draw->firstInstance);
break;
}
case Command::DrawIndexed: {
DrawIndexedCmd* draw = iter->NextCommand<DrawIndexedCmd>();
descriptorSets.Apply(device, recordingContext, VK_PIPELINE_BIND_POINT_GRAPHICS);
device->fn.CmdDrawIndexed(commands, draw->indexCount, draw->instanceCount,
draw->firstIndex, draw->baseVertex,
draw->firstInstance);
break;
}
case Command::DrawIndirect: {
DrawIndirectCmd* draw = iter->NextCommand<DrawIndirectCmd>();
VkBuffer indirectBuffer = ToBackend(draw->indirectBuffer)->GetHandle();
descriptorSets.Apply(device, recordingContext, VK_PIPELINE_BIND_POINT_GRAPHICS);
device->fn.CmdDrawIndirect(commands, indirectBuffer,
static_cast<VkDeviceSize>(draw->indirectOffset), 1,
0);
break;
}
case Command::DrawIndexedIndirect: {
DrawIndirectCmd* draw = iter->NextCommand<DrawIndirectCmd>();
VkBuffer indirectBuffer = ToBackend(draw->indirectBuffer)->GetHandle();
descriptorSets.Apply(device, recordingContext, VK_PIPELINE_BIND_POINT_GRAPHICS);
device->fn.CmdDrawIndexedIndirect(
commands, indirectBuffer, static_cast<VkDeviceSize>(draw->indirectOffset),
1, 0);
break;
}
case Command::InsertDebugMarker: {
if (device->GetDeviceInfo().HasExt(DeviceExt::DebugMarker)) {
InsertDebugMarkerCmd* cmd = iter->NextCommand<InsertDebugMarkerCmd>();
const char* label = iter->NextData<char>(cmd->length + 1);
VkDebugMarkerMarkerInfoEXT markerInfo;
markerInfo.sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT;
markerInfo.pNext = nullptr;
markerInfo.pMarkerName = label;
// Default color to black
markerInfo.color[0] = 0.0;
markerInfo.color[1] = 0.0;
markerInfo.color[2] = 0.0;
markerInfo.color[3] = 1.0;
device->fn.CmdDebugMarkerInsertEXT(commands, &markerInfo);
} else {
SkipCommand(iter, Command::InsertDebugMarker);
}
break;
}
case Command::PopDebugGroup: {
if (device->GetDeviceInfo().HasExt(DeviceExt::DebugMarker)) {
iter->NextCommand<PopDebugGroupCmd>();
device->fn.CmdDebugMarkerEndEXT(commands);
} else {
SkipCommand(iter, Command::PopDebugGroup);
}
break;
}
case Command::PushDebugGroup: {
if (device->GetDeviceInfo().HasExt(DeviceExt::DebugMarker)) {
PushDebugGroupCmd* cmd = iter->NextCommand<PushDebugGroupCmd>();
const char* label = iter->NextData<char>(cmd->length + 1);
VkDebugMarkerMarkerInfoEXT markerInfo;
markerInfo.sType = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT;
markerInfo.pNext = nullptr;
markerInfo.pMarkerName = label;
// Default color to black
markerInfo.color[0] = 0.0;
markerInfo.color[1] = 0.0;
markerInfo.color[2] = 0.0;
markerInfo.color[3] = 1.0;
device->fn.CmdDebugMarkerBeginEXT(commands, &markerInfo);
} else {
SkipCommand(iter, Command::PushDebugGroup);
}
break;
}
case Command::SetBindGroup: {
SetBindGroupCmd* cmd = iter->NextCommand<SetBindGroupCmd>();
BindGroup* bindGroup = ToBackend(cmd->group.Get());
uint32_t* dynamicOffsets = nullptr;
if (cmd->dynamicOffsetCount > 0) {
dynamicOffsets = iter->NextData<uint32_t>(cmd->dynamicOffsetCount);
}
descriptorSets.OnSetBindGroup(cmd->index, bindGroup, cmd->dynamicOffsetCount,
dynamicOffsets);
break;
}
case Command::SetIndexBuffer: {
SetIndexBufferCmd* cmd = iter->NextCommand<SetIndexBufferCmd>();
VkBuffer indexBuffer = ToBackend(cmd->buffer)->GetHandle();
// TODO(cwallez@chromium.org): get the index type from the last render pipeline
// and rebind if needed on pipeline change
ASSERT(lastPipeline != nullptr);
VkIndexType indexType =
VulkanIndexType(lastPipeline->GetVertexStateDescriptor()->indexFormat);
device->fn.CmdBindIndexBuffer(
commands, indexBuffer, static_cast<VkDeviceSize>(cmd->offset), indexType);
break;
}
case Command::SetRenderPipeline: {
SetRenderPipelineCmd* cmd = iter->NextCommand<SetRenderPipelineCmd>();
RenderPipeline* pipeline = ToBackend(cmd->pipeline).Get();
device->fn.CmdBindPipeline(commands, VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeline->GetHandle());
lastPipeline = pipeline;
descriptorSets.OnSetPipeline(pipeline);
break;
}
case Command::SetVertexBuffer: {
SetVertexBufferCmd* cmd = iter->NextCommand<SetVertexBufferCmd>();
VkBuffer buffer = ToBackend(cmd->buffer)->GetHandle();
VkDeviceSize offset = static_cast<VkDeviceSize>(cmd->offset);
device->fn.CmdBindVertexBuffers(commands, cmd->slot, 1, &*buffer, &offset);
break;
}
default:
UNREACHABLE();
break;
}
};
Command type;
while (mCommands.NextCommandId(&type)) {
switch (type) {
case Command::EndRenderPass: {
mCommands.NextCommand<EndRenderPassCmd>();
device->fn.CmdEndRenderPass(commands);
return {};
}
case Command::SetBlendColor: {
SetBlendColorCmd* cmd = mCommands.NextCommand<SetBlendColorCmd>();
float blendConstants[4] = {
cmd->color.r,
cmd->color.g,
cmd->color.b,
cmd->color.a,
};
device->fn.CmdSetBlendConstants(commands, blendConstants);
break;
}
case Command::SetStencilReference: {
SetStencilReferenceCmd* cmd = mCommands.NextCommand<SetStencilReferenceCmd>();
device->fn.CmdSetStencilReference(commands, VK_STENCIL_FRONT_AND_BACK,
cmd->reference);
break;
}
case Command::SetViewport: {
SetViewportCmd* cmd = mCommands.NextCommand<SetViewportCmd>();
VkViewport viewport;
viewport.x = cmd->x;
viewport.y = cmd->y + cmd->height;
viewport.width = cmd->width;
viewport.height = -cmd->height;
viewport.minDepth = cmd->minDepth;
viewport.maxDepth = cmd->maxDepth;
device->fn.CmdSetViewport(commands, 0, 1, &viewport);
break;
}
case Command::SetScissorRect: {
SetScissorRectCmd* cmd = mCommands.NextCommand<SetScissorRectCmd>();
VkRect2D rect;
rect.offset.x = cmd->x;
rect.offset.y = cmd->y;
rect.extent.width = cmd->width;
rect.extent.height = cmd->height;
device->fn.CmdSetScissor(commands, 0, 1, &rect);
break;
}
case Command::ExecuteBundles: {
ExecuteBundlesCmd* cmd = mCommands.NextCommand<ExecuteBundlesCmd>();
auto bundles = mCommands.NextData<Ref<RenderBundleBase>>(cmd->count);
for (uint32_t i = 0; i < cmd->count; ++i) {
CommandIterator* iter = bundles[i]->GetCommands();
iter->Reset();
while (iter->NextCommandId(&type)) {
EncodeRenderBundleCommand(iter, type);
}
}
break;
}
case Command::WriteTimestamp: {
return DAWN_UNIMPLEMENTED_ERROR("Waiting for implementation.");
}
default: {
EncodeRenderBundleCommand(&mCommands, type);
break;
}
}
}
// EndRenderPass should have been called
UNREACHABLE();
}
}} // namespace dawn_native::vulkan