blob: 74e8c7065a16bfccb21ee0562d3b37325e6b57ac [file] [log] [blame]
// Copyright 2019 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cmath>
#include <limits>
#include <type_traits>
#include <utility>
#include <vector>
#include "dawn/common/Assert.h"
#include "dawn/common/Math.h"
#include "dawn/tests/DawnTest.h"
#include "dawn/utils/ComboRenderPipelineDescriptor.h"
#include "dawn/utils/TextureUtils.h"
#include "dawn/utils/WGPUHelpers.h"
namespace dawn {
namespace {
enum class TextureComponentType {
Float,
Sint,
Uint,
};
// An expectation for float buffer content that can correctly compare different NaN values and
// supports a basic tolerance for comparison of finite values.
class ExpectFloatWithTolerance : public detail::Expectation {
public:
ExpectFloatWithTolerance(std::vector<float> expected, float tolerance)
: mExpected(std::move(expected)), mTolerance(tolerance) {}
testing::AssertionResult Check(const void* data, size_t size) override {
DAWN_ASSERT(size == sizeof(float) * mExpected.size());
const float* actual = static_cast<const float*>(data);
for (size_t i = 0; i < mExpected.size(); ++i) {
float expectedValue = mExpected[i];
float actualValue = actual[i];
if (!FloatsMatch(expectedValue, actualValue)) {
testing::AssertionResult result = testing::AssertionFailure()
<< "Expected data[" << i << "] to be close to "
<< expectedValue << ", actual " << actualValue
<< std::endl;
return result;
}
}
return testing::AssertionSuccess();
}
private:
bool FloatsMatch(float expected, float actual) {
if (std::isnan(expected)) {
return std::isnan(actual);
}
if (std::isinf(expected)) {
return std::isinf(actual) && std::signbit(expected) == std::signbit(actual);
}
if (mTolerance == 0.0f) {
return expected == actual;
}
float error = std::abs(expected - actual);
return error < mTolerance;
}
std::vector<float> mExpected;
float mTolerance;
};
// An expectation for float16 buffers that can correctly compare NaNs (all NaNs are equivalent).
class ExpectFloat16 : public detail::Expectation {
public:
explicit ExpectFloat16(std::vector<uint16_t> expected) : mExpected(std::move(expected)) {}
testing::AssertionResult Check(const void* data, size_t size) override {
DAWN_ASSERT(size == sizeof(uint16_t) * mExpected.size());
const uint16_t* actual = static_cast<const uint16_t*>(data);
for (size_t i = 0; i < mExpected.size(); ++i) {
uint16_t expectedValue = mExpected[i];
uint16_t actualValue = actual[i];
if (!Floats16Match(expectedValue, actualValue)) {
testing::AssertionResult result = testing::AssertionFailure()
<< "Expected data[" << i << "] to be "
<< expectedValue << ", actual " << actualValue
<< std::endl;
return result;
}
}
return testing::AssertionSuccess();
}
private:
bool Floats16Match(float expected, float actual) {
if (IsFloat16NaN(expected)) {
return IsFloat16NaN(actual);
}
return expected == actual;
}
std::vector<uint16_t> mExpected;
};
// An expectation for RG11B10Ufloat buffer content that can correctly compare different NaN values
class ExpectRG11B10Ufloat : public detail::Expectation {
public:
explicit ExpectRG11B10Ufloat(std::vector<uint32_t> expected) : mExpected(std::move(expected)) {}
testing::AssertionResult Check(const void* data, size_t size) override {
DAWN_ASSERT(size == sizeof(uint32_t) * mExpected.size());
const uint32_t* actual = static_cast<const uint32_t*>(data);
for (size_t i = 0; i < mExpected.size(); ++i) {
uint32_t expectedValue = mExpected[i];
uint32_t actualValue = actual[i];
if (!RG11B10UfloatMatch(expectedValue, actualValue)) {
testing::AssertionResult result = testing::AssertionFailure()
<< "Expected data[" << i << "] to be "
<< expectedValue << ", actual " << actualValue
<< std::endl;
return result;
}
}
return testing::AssertionSuccess();
}
private:
bool RG11B10UfloatMatch(uint32_t expected, uint32_t actual) {
const uint32_t expectedR = expected & 0x7FF;
const uint32_t expectedG = (expected >> 11) & 0x7FF;
const uint32_t expectedB = (expected >> 22) & 0x3FF;
const uint32_t actualR = actual & 0x7FF;
const uint32_t actualG = (actual >> 11) & 0x7FF;
const uint32_t actualB = (actual >> 22) & 0x3FF;
return Float11Match(expectedR, actualR) && Float11Match(expectedG, actualG) &&
Float10Match(expectedB, actualB);
}
bool Float11Match(uint32_t expected, uint32_t actual) {
DAWN_ASSERT((expected & ~0x7FF) == 0);
DAWN_ASSERT((actual & ~0x7FF) == 0);
if (IsFloat11NaN(expected)) {
return IsFloat11NaN(actual);
}
return expected == actual;
}
bool Float10Match(uint32_t expected, uint32_t actual) {
DAWN_ASSERT((expected & ~0x3FF) == 0);
DAWN_ASSERT((actual & ~0x3FF) == 0);
if (IsFloat10NaN(expected)) {
return IsFloat10NaN(actual);
}
return expected == actual;
}
// The number is NaN if exponent bits are all 1 and mantissa is non-zero
bool IsFloat11NaN(uint32_t value) {
DAWN_ASSERT((value & ~0x7FF) == 0);
return ((value & 0x7C0) == 0x7C0) && ((value & 0x3F) != 0);
}
bool IsFloat10NaN(uint32_t value) {
DAWN_ASSERT((value & ~0x3FF) == 0);
return ((value & 0x3E0) == 0x3E0) && ((value & 0x1F) != 0);
}
std::vector<uint32_t> mExpected;
};
class TextureFormatTest : public DawnTest {
protected:
// Structure containing all the information that tests need to know about the format.
struct FormatTestInfo {
wgpu::TextureFormat format;
uint32_t texelByteSize;
TextureComponentType type;
uint32_t componentCount;
};
// Returns a reprensentation of a format that can be used to contain the "uncompressed" values
// of the format. That the equivalent format with all channels 32bit-sized.
FormatTestInfo GetUncompressedFormatInfo(FormatTestInfo formatInfo) {
switch (formatInfo.type) {
case TextureComponentType::Float:
return {wgpu::TextureFormat::RGBA32Float, 16, formatInfo.type, 4};
case TextureComponentType::Sint:
return {wgpu::TextureFormat::RGBA32Sint, 16, formatInfo.type, 4};
case TextureComponentType::Uint:
return {wgpu::TextureFormat::RGBA32Uint, 16, formatInfo.type, 4};
default:
DAWN_UNREACHABLE();
}
}
// Return a pipeline that can be used in a full-texture draw to sample from the texture in the
// bindgroup and output its decompressed values to the render target.
wgpu::RenderPipeline CreateSamplePipeline(FormatTestInfo sampleFormatInfo,
FormatTestInfo renderFormatInfo) {
utils::ComboRenderPipelineDescriptor desc;
wgpu::ShaderModule vsModule = utils::CreateShaderModule(device, R"(
@vertex
fn main(@builtin(vertex_index) VertexIndex : u32) -> @builtin(position) vec4f {
var pos = array(
vec2f(-3.0, -1.0),
vec2f( 3.0, -1.0),
vec2f( 0.0, 2.0));
return vec4f(pos[VertexIndex], 0.0, 1.0);
})");
// Compute the WGSL type of the texture's data.
const char* type = utils::GetWGSLColorTextureComponentType(sampleFormatInfo.format);
std::ostringstream fsSource;
fsSource << "@group(0) @binding(0) var myTexture : texture_2d<" << type << ">;\n";
fsSource << "struct FragmentOut {\n";
fsSource << " @location(0) color : vec4<" << type << ">\n";
fsSource << R"(}
@fragment
fn main(@builtin(position) FragCoord : vec4f) -> FragmentOut {
var output : FragmentOut;
output.color = textureLoad(myTexture, vec2i(FragCoord.xy), 0);
return output;
})";
wgpu::ShaderModule fsModule = utils::CreateShaderModule(device, fsSource.str().c_str());
desc.vertex.module = vsModule;
desc.cFragment.module = fsModule;
desc.cTargets[0].format = renderFormatInfo.format;
return device.CreateRenderPipeline(&desc);
}
// The sampling test uploads the sample data in a texture with the sampleFormatInfo.format.
// It then samples from it and renders the results in a texture with the
// renderFormatInfo.format format. Finally it checks that the data rendered matches
// expectedRenderData, using the cutom expectation if present.
void DoSampleTest(FormatTestInfo sampleFormatInfo,
const void* sampleData,
size_t sampleDataSize,
FormatTestInfo renderFormatInfo,
const void* expectedRenderData,
size_t expectedRenderDataSize,
detail::Expectation* customExpectation) {
// The input data should contain an exact number of texels
DAWN_ASSERT(sampleDataSize % sampleFormatInfo.texelByteSize == 0);
uint32_t width = sampleDataSize / sampleFormatInfo.texelByteSize;
// The input data must be a multiple of 4 byte in length for WriteBuffer
DAWN_ASSERT(sampleDataSize % 4 == 0);
DAWN_ASSERT(expectedRenderDataSize % 4 == 0);
// Create the texture we will sample from
wgpu::TextureDescriptor sampleTextureDesc;
sampleTextureDesc.usage = wgpu::TextureUsage::CopyDst | wgpu::TextureUsage::TextureBinding;
sampleTextureDesc.size = {width, 1, 1};
sampleTextureDesc.format = sampleFormatInfo.format;
wgpu::Texture sampleTexture = device.CreateTexture(&sampleTextureDesc);
wgpu::Buffer uploadBuffer = utils::CreateBufferFromData(device, sampleData, sampleDataSize,
wgpu::BufferUsage::CopySrc);
// Create the texture that we will render results to
DAWN_ASSERT(expectedRenderDataSize == width * renderFormatInfo.texelByteSize);
wgpu::TextureDescriptor renderTargetDesc;
renderTargetDesc.usage = wgpu::TextureUsage::CopySrc | wgpu::TextureUsage::RenderAttachment;
renderTargetDesc.size = {width, 1, 1};
renderTargetDesc.format = renderFormatInfo.format;
wgpu::Texture renderTarget = device.CreateTexture(&renderTargetDesc);
// Create the readback buffer for the data in renderTarget
wgpu::BufferDescriptor readbackBufferDesc;
readbackBufferDesc.usage = wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::CopySrc;
readbackBufferDesc.size = expectedRenderDataSize;
wgpu::Buffer readbackBuffer = device.CreateBuffer(&readbackBufferDesc);
// Prepare objects needed to sample from texture in the renderpass
wgpu::RenderPipeline pipeline = CreateSamplePipeline(sampleFormatInfo, renderFormatInfo);
wgpu::BindGroup bindGroup = utils::MakeBindGroup(device, pipeline.GetBindGroupLayout(0),
{{0, sampleTexture.CreateView()}});
// Encode commands for the test that fill texture, sample it to render to renderTarget then
// copy renderTarget in a buffer so we can read it easily.
wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
{
wgpu::ImageCopyBuffer bufferView = utils::CreateImageCopyBuffer(uploadBuffer, 0, 256);
wgpu::ImageCopyTexture textureView =
utils::CreateImageCopyTexture(sampleTexture, 0, {0, 0, 0});
wgpu::Extent3D extent{width, 1, 1};
encoder.CopyBufferToTexture(&bufferView, &textureView, &extent);
}
utils::ComboRenderPassDescriptor renderPassDesc({renderTarget.CreateView()});
wgpu::RenderPassEncoder renderPass = encoder.BeginRenderPass(&renderPassDesc);
renderPass.SetPipeline(pipeline);
renderPass.SetBindGroup(0, bindGroup);
renderPass.Draw(3);
renderPass.End();
{
wgpu::ImageCopyBuffer bufferView = utils::CreateImageCopyBuffer(readbackBuffer, 0, 256);
wgpu::ImageCopyTexture textureView =
utils::CreateImageCopyTexture(renderTarget, 0, {0, 0, 0});
wgpu::Extent3D extent{width, 1, 1};
encoder.CopyTextureToBuffer(&textureView, &bufferView, &extent);
}
wgpu::CommandBuffer commands = encoder.Finish();
queue.Submit(1, &commands);
// For floats use a special expectation that understands how to compare NaNs and support a
// tolerance.
if (customExpectation != nullptr) {
AddBufferExpectation(__FILE__, __LINE__, readbackBuffer, 0, expectedRenderDataSize,
customExpectation);
} else {
EXPECT_BUFFER_U32_RANGE_EQ(static_cast<const uint32_t*>(expectedRenderData),
readbackBuffer, 0,
expectedRenderDataSize / sizeof(uint32_t));
}
}
template <typename Data>
std::vector<Data> ExpandDataTo4Component(const std::vector<Data>& originalData,
uint32_t originalComponentCount,
const std::array<Data, 4>& defaultValues) {
std::vector<Data> result;
for (size_t i = 0; i < originalData.size() / originalComponentCount; i++) {
for (size_t component = 0; component < 4; component++) {
if (component < originalComponentCount) {
result.push_back(originalData[i * originalComponentCount + component]);
} else {
result.push_back(defaultValues[component]);
}
}
}
return result;
}
// Helper functions used to run tests that convert the typeful test objects to typeless void*
template <typename TextureData, typename RenderData>
void DoFormatSamplingTest(FormatTestInfo formatInfo,
const std::vector<TextureData>& textureData,
const std::vector<RenderData>& expectedRenderData,
detail::Expectation* customExpectation = nullptr) {
FormatTestInfo renderFormatInfo = GetUncompressedFormatInfo(formatInfo);
// Expand the expected data to be 4 component wide with the default sampling values of
// (0, 0, 0, 1)
std::array<RenderData, 4> defaultValues = {RenderData(0), RenderData(0), RenderData(0),
RenderData(1)};
std::vector<RenderData> expandedRenderData =
ExpandDataTo4Component(expectedRenderData, formatInfo.componentCount, defaultValues);
DoSampleTest(formatInfo, textureData.data(), textureData.size() * sizeof(TextureData),
renderFormatInfo, expandedRenderData.data(),
expandedRenderData.size() * sizeof(RenderData), customExpectation);
}
template <typename TextureData>
void DoFloatFormatSamplingTest(FormatTestInfo formatInfo,
const std::vector<TextureData>& textureData,
const std::vector<float>& expectedRenderData,
float floatTolerance = 0.0f) {
// Expand the expected data to be 4 component wide with the default sampling values of
// (0, 0, 0, 1)
std::array<float, 4> defaultValues = {0.0f, 0.0f, 0.0f, 1.0f};
std::vector<float> expandedRenderData =
ExpandDataTo4Component(expectedRenderData, formatInfo.componentCount, defaultValues);
// Use a special expectation that understands how to compare NaNs and supports a tolerance.
DoFormatSamplingTest(formatInfo, textureData, expectedRenderData,
new ExpectFloatWithTolerance(expandedRenderData, floatTolerance));
}
template <typename TextureData, typename RenderData>
void DoFormatRenderingTest(FormatTestInfo formatInfo,
const std::vector<TextureData>& textureData,
const std::vector<RenderData>& expectedRenderData,
detail::Expectation* customExpectation = nullptr) {
FormatTestInfo sampleFormatInfo = GetUncompressedFormatInfo(formatInfo);
// Expand the sampling texture data to contain garbage data for unused components to check
// that they don't influence the rendering result.
std::array<TextureData, 4> garbageValues;
garbageValues.fill(13);
std::vector<TextureData> expandedTextureData =
ExpandDataTo4Component(textureData, formatInfo.componentCount, garbageValues);
DoSampleTest(sampleFormatInfo, expandedTextureData.data(),
expandedTextureData.size() * sizeof(TextureData), formatInfo,
expectedRenderData.data(), expectedRenderData.size() * sizeof(RenderData),
customExpectation);
}
// Below are helper functions for types that are very similar to one another so the logic is
// shared.
template <typename T>
void DoUnormTest(FormatTestInfo formatInfo) {
static_assert(!std::is_signed<T>::value && std::is_integral<T>::value);
DAWN_ASSERT(sizeof(T) * formatInfo.componentCount == formatInfo.texelByteSize);
DAWN_ASSERT(formatInfo.type == TextureComponentType::Float);
DAWN_TEST_UNSUPPORTED_IF((utils::IsNorm16TextureFormat(formatInfo.format)) &&
!IsNorm16TextureFormatsSupported());
T maxValue = std::numeric_limits<T>::max();
std::vector<T> textureData = {0, 1, maxValue, maxValue};
std::vector<float> uncompressedData = {0.0f, 1.0f / maxValue, 1.0f, 1.0f};
DoFormatSamplingTest(formatInfo, textureData, uncompressedData);
DoFormatRenderingTest(formatInfo, uncompressedData, textureData);
}
template <typename T>
void DoSnormTest(FormatTestInfo formatInfo) {
static_assert(std::is_signed<T>::value && std::is_integral<T>::value);
DAWN_ASSERT(sizeof(T) * formatInfo.componentCount == formatInfo.texelByteSize);
DAWN_ASSERT(formatInfo.type == TextureComponentType::Float);
DAWN_TEST_UNSUPPORTED_IF((utils::IsNorm16TextureFormat(formatInfo.format)) &&
!IsNorm16TextureFormatsSupported());
T maxValue = std::numeric_limits<T>::max();
T minValue = std::numeric_limits<T>::min();
std::vector<T> textureData = {0, 1, -1, maxValue, minValue, T(minValue + 1), 0, 0};
std::vector<float> uncompressedData = {
0.0f, 1.0f / maxValue, -1.0f / maxValue, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f};
DoFloatFormatSamplingTest(formatInfo, textureData, uncompressedData, 0.0001f / maxValue);
// Snorm formats aren't renderable because they are not guaranteed renderable in Vulkan
}
template <typename T>
void DoUintTest(FormatTestInfo formatInfo) {
static_assert(!std::is_signed<T>::value && std::is_integral<T>::value);
DAWN_ASSERT(sizeof(T) * formatInfo.componentCount == formatInfo.texelByteSize);
DAWN_ASSERT(formatInfo.type == TextureComponentType::Uint);
T maxValue = std::numeric_limits<T>::max();
std::vector<T> textureData = {0, 1, maxValue, maxValue};
std::vector<uint32_t> uncompressedData = {0, 1, maxValue, maxValue};
DoFormatSamplingTest(formatInfo, textureData, uncompressedData);
DoFormatRenderingTest(formatInfo, uncompressedData, textureData);
}
template <typename T>
void DoSintTest(FormatTestInfo formatInfo) {
static_assert(std::is_signed<T>::value && std::is_integral<T>::value);
DAWN_ASSERT(sizeof(T) * formatInfo.componentCount == formatInfo.texelByteSize);
DAWN_ASSERT(formatInfo.type == TextureComponentType::Sint);
T maxValue = std::numeric_limits<T>::max();
T minValue = std::numeric_limits<T>::min();
std::vector<T> textureData = {0, 1, maxValue, minValue};
std::vector<int32_t> uncompressedData = {0, 1, maxValue, minValue};
DoFormatSamplingTest(formatInfo, textureData, uncompressedData);
DoFormatRenderingTest(formatInfo, uncompressedData, textureData);
}
void DoFloat32Test(FormatTestInfo formatInfo) {
DAWN_ASSERT(sizeof(float) * formatInfo.componentCount == formatInfo.texelByteSize);
DAWN_ASSERT(formatInfo.type == TextureComponentType::Float);
std::vector<float> textureData = {+0.0f, -0.0f, 1.0f, 1.0e-29f,
1.0e29f, NAN, INFINITY, -INFINITY};
DoFloatFormatSamplingTest(formatInfo, textureData, textureData);
DoFormatRenderingTest(formatInfo, textureData, textureData,
new ExpectFloatWithTolerance(textureData, 0.0f));
}
void DoFloat16Test(FormatTestInfo formatInfo) {
DAWN_ASSERT(sizeof(int16_t) * formatInfo.componentCount == formatInfo.texelByteSize);
DAWN_ASSERT(formatInfo.type == TextureComponentType::Float);
std::vector<float> uncompressedData = {+0.0f, -0.0f, 1.0f, 1.01e-4f,
1.0e4f, NAN, INFINITY, -INFINITY};
std::vector<uint16_t> textureData;
for (float value : uncompressedData) {
textureData.push_back(Float32ToFloat16(value));
}
DoFloatFormatSamplingTest(formatInfo, textureData, uncompressedData, 1.0e-5f);
// Use a special expectation that knows that all Float16 NaNs are equivalent.
DoFormatRenderingTest(formatInfo, uncompressedData, textureData,
new ExpectFloat16(textureData));
}
std::vector<wgpu::FeatureName> GetRequiredFeatures() override {
std::vector<wgpu::FeatureName> requiredFeatures = {};
if (SupportsFeatures({wgpu::FeatureName::RG11B10UfloatRenderable})) {
mIsRG11B10UfloatRenderableSupported = true;
requiredFeatures.push_back(wgpu::FeatureName::RG11B10UfloatRenderable);
}
if (SupportsFeatures({wgpu::FeatureName::Norm16TextureFormats})) {
mIsNorm16TextureFormatsSupported = true;
requiredFeatures.push_back(wgpu::FeatureName::Norm16TextureFormats);
}
return requiredFeatures;
}
bool IsRG11B10UfloatRenderableSupported() { return mIsRG11B10UfloatRenderableSupported; }
bool IsNorm16TextureFormatsSupported() { return mIsNorm16TextureFormatsSupported; }
private:
bool mIsRG11B10UfloatRenderableSupported = false;
bool mIsNorm16TextureFormatsSupported = false;
};
// Test the R8Unorm format
TEST_P(TextureFormatTest, R8Unorm) {
DoUnormTest<uint8_t>({wgpu::TextureFormat::R8Unorm, 1, TextureComponentType::Float, 1});
}
// Test the RG8Unorm format
TEST_P(TextureFormatTest, RG8Unorm) {
DoUnormTest<uint8_t>({wgpu::TextureFormat::RG8Unorm, 2, TextureComponentType::Float, 2});
}
// Test the R16Unorm format
TEST_P(TextureFormatTest, R16Unorm) {
DoUnormTest<uint16_t>({wgpu::TextureFormat::R16Unorm, 2, TextureComponentType::Float, 1});
}
// Test the RG16Unorm format
TEST_P(TextureFormatTest, RG16Unorm) {
DoUnormTest<uint16_t>({wgpu::TextureFormat::RG16Unorm, 4, TextureComponentType::Float, 2});
}
// Test the RGBA16Unorm format
TEST_P(TextureFormatTest, RGBA16Unorm) {
DoUnormTest<uint16_t>({wgpu::TextureFormat::RGBA16Unorm, 8, TextureComponentType::Float, 4});
}
// Test the RGBA8Unorm format
TEST_P(TextureFormatTest, RGBA8Unorm) {
DoUnormTest<uint8_t>({wgpu::TextureFormat::RGBA8Unorm, 4, TextureComponentType::Float, 4});
}
// Test the BGRA8Unorm format
TEST_P(TextureFormatTest, BGRA8Unorm) {
// Intel's implementation of BGRA on ES is broken: it claims to support
// GL_EXT_texture_format_BGRA8888, but won't accept GL_BGRA or GL_BGRA8_EXT as internalFormat.
DAWN_SUPPRESS_TEST_IF(IsIntel() && IsOpenGLES() && IsLinux());
uint8_t maxValue = std::numeric_limits<uint8_t>::max();
std::vector<uint8_t> textureData = {maxValue, 1, 0, maxValue};
std::vector<float> uncompressedData = {0.0f, 1.0f / maxValue, 1.0f, 1.0f};
DoFormatSamplingTest({wgpu::TextureFormat::BGRA8Unorm, 4, TextureComponentType::Float, 4},
textureData, uncompressedData);
DoFormatRenderingTest({wgpu::TextureFormat::BGRA8Unorm, 4, TextureComponentType::Float, 4},
uncompressedData, textureData);
}
// Test the R8Snorm format
TEST_P(TextureFormatTest, R8Snorm) {
DoSnormTest<int8_t>({wgpu::TextureFormat::R8Snorm, 1, TextureComponentType::Float, 1});
}
// Test the RG8Snorm format
TEST_P(TextureFormatTest, RG8Snorm) {
DoSnormTest<int8_t>({wgpu::TextureFormat::RG8Snorm, 2, TextureComponentType::Float, 2});
}
// Test the RGBA8Snorm format
TEST_P(TextureFormatTest, RGBA8Snorm) {
DoSnormTest<int8_t>({wgpu::TextureFormat::RGBA8Snorm, 4, TextureComponentType::Float, 4});
}
// Test the R16Snorm format
TEST_P(TextureFormatTest, R16Snorm) {
DoSnormTest<int16_t>({wgpu::TextureFormat::R16Snorm, 2, TextureComponentType::Float, 1});
}
// Test the RG16Snorm format
TEST_P(TextureFormatTest, RG16Snorm) {
DoSnormTest<int16_t>({wgpu::TextureFormat::RG16Snorm, 4, TextureComponentType::Float, 2});
}
// Test the RGBA16Snorm format
TEST_P(TextureFormatTest, RGBA16Snorm) {
DoSnormTest<int16_t>({wgpu::TextureFormat::RGBA16Snorm, 8, TextureComponentType::Float, 4});
}
// Test the R8Uint format
TEST_P(TextureFormatTest, R8Uint) {
DoUintTest<uint8_t>({wgpu::TextureFormat::R8Uint, 1, TextureComponentType::Uint, 1});
}
// Test the RG8Uint format
TEST_P(TextureFormatTest, RG8Uint) {
DoUintTest<uint8_t>({wgpu::TextureFormat::RG8Uint, 2, TextureComponentType::Uint, 2});
}
// Test the RGBA8Uint format
TEST_P(TextureFormatTest, RGBA8Uint) {
DoUintTest<uint8_t>({wgpu::TextureFormat::RGBA8Uint, 4, TextureComponentType::Uint, 4});
}
// Test the R16Uint format
TEST_P(TextureFormatTest, R16Uint) {
DoUintTest<uint16_t>({wgpu::TextureFormat::R16Uint, 2, TextureComponentType::Uint, 1});
}
// Test the RG16Uint format
TEST_P(TextureFormatTest, RG16Uint) {
DoUintTest<uint16_t>({wgpu::TextureFormat::RG16Uint, 4, TextureComponentType::Uint, 2});
}
// Test the RGBA16Uint format
TEST_P(TextureFormatTest, RGBA16Uint) {
DoUintTest<uint16_t>({wgpu::TextureFormat::RGBA16Uint, 8, TextureComponentType::Uint, 4});
}
// Test the R32Uint format
TEST_P(TextureFormatTest, R32Uint) {
DoUintTest<uint32_t>({wgpu::TextureFormat::R32Uint, 4, TextureComponentType::Uint, 1});
}
// Test the RG32Uint format
TEST_P(TextureFormatTest, RG32Uint) {
DoUintTest<uint32_t>({wgpu::TextureFormat::RG32Uint, 8, TextureComponentType::Uint, 2});
}
// Test the RGBA32Uint format
TEST_P(TextureFormatTest, RGBA32Uint) {
DoUintTest<uint32_t>({wgpu::TextureFormat::RGBA32Uint, 16, TextureComponentType::Uint, 4});
}
// Test the R8Sint format
TEST_P(TextureFormatTest, R8Sint) {
DoSintTest<int8_t>({wgpu::TextureFormat::R8Sint, 1, TextureComponentType::Sint, 1});
}
// Test the RG8Sint format
TEST_P(TextureFormatTest, RG8Sint) {
DoSintTest<int8_t>({wgpu::TextureFormat::RG8Sint, 2, TextureComponentType::Sint, 2});
}
// Test the RGBA8Sint format
TEST_P(TextureFormatTest, RGBA8Sint) {
DoSintTest<int8_t>({wgpu::TextureFormat::RGBA8Sint, 4, TextureComponentType::Sint, 4});
}
// Test the R16Sint format
TEST_P(TextureFormatTest, R16Sint) {
DoSintTest<int16_t>({wgpu::TextureFormat::R16Sint, 2, TextureComponentType::Sint, 1});
}
// Test the RG16Sint format
TEST_P(TextureFormatTest, RG16Sint) {
DoSintTest<int16_t>({wgpu::TextureFormat::RG16Sint, 4, TextureComponentType::Sint, 2});
}
// Test the RGBA16Sint format
TEST_P(TextureFormatTest, RGBA16Sint) {
DoSintTest<int16_t>({wgpu::TextureFormat::RGBA16Sint, 8, TextureComponentType::Sint, 4});
}
// Test the R32Sint format
TEST_P(TextureFormatTest, R32Sint) {
DoSintTest<int32_t>({wgpu::TextureFormat::R32Sint, 4, TextureComponentType::Sint, 1});
}
// Test the RG32Sint format
TEST_P(TextureFormatTest, RG32Sint) {
DoSintTest<int32_t>({wgpu::TextureFormat::RG32Sint, 8, TextureComponentType::Sint, 2});
}
// Test the RGBA32Sint format
TEST_P(TextureFormatTest, RGBA32Sint) {
DoSintTest<int32_t>({wgpu::TextureFormat::RGBA32Sint, 16, TextureComponentType::Sint, 4});
}
// Test the R32Float format
TEST_P(TextureFormatTest, R32Float) {
DoFloat32Test({wgpu::TextureFormat::R32Float, 4, TextureComponentType::Float, 1});
}
// Test the RG32Float format
TEST_P(TextureFormatTest, RG32Float) {
DoFloat32Test({wgpu::TextureFormat::RG32Float, 8, TextureComponentType::Float, 2});
}
// Test the RGBA32Float format
TEST_P(TextureFormatTest, RGBA32Float) {
DoFloat32Test({wgpu::TextureFormat::RGBA32Float, 16, TextureComponentType::Float, 4});
}
// Test the R16Float format
TEST_P(TextureFormatTest, R16Float) {
// TODO(https://crbug.com/swiftshader/147) Rendering INFINITY isn't handled correctly by
// swiftshader
DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsSwiftshader() || IsANGLE());
DoFloat16Test({wgpu::TextureFormat::R16Float, 2, TextureComponentType::Float, 1});
}
// Test the RG16Float format
TEST_P(TextureFormatTest, RG16Float) {
// TODO(https://crbug.com/swiftshader/147) Rendering INFINITY isn't handled correctly by
// swiftshader
DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsSwiftshader() || IsANGLE());
DoFloat16Test({wgpu::TextureFormat::RG16Float, 4, TextureComponentType::Float, 2});
}
// Test the RGBA16Float format
TEST_P(TextureFormatTest, RGBA16Float) {
// TODO(https://crbug.com/swiftshader/147) Rendering INFINITY isn't handled correctly by
// swiftshader
DAWN_SUPPRESS_TEST_IF(IsVulkan() && IsSwiftshader() || IsANGLE());
DoFloat16Test({wgpu::TextureFormat::RGBA16Float, 8, TextureComponentType::Float, 4});
}
// Test the RGBA8Unorm format
TEST_P(TextureFormatTest, RGBA8UnormSrgb) {
uint8_t maxValue = std::numeric_limits<uint8_t>::max();
std::vector<uint8_t> textureData = {0, 1, maxValue, 64, 35, 68, 152, 168};
std::vector<float> uncompressedData;
for (size_t i = 0; i < textureData.size(); i += 4) {
uncompressedData.push_back(SRGBToLinear(textureData[i + 0] / static_cast<float>(maxValue)));
uncompressedData.push_back(SRGBToLinear(textureData[i + 1] / static_cast<float>(maxValue)));
uncompressedData.push_back(SRGBToLinear(textureData[i + 2] / static_cast<float>(maxValue)));
// Alpha is linear for sRGB formats
uncompressedData.push_back(textureData[i + 3] / static_cast<float>(maxValue));
}
DoFloatFormatSamplingTest(
{wgpu::TextureFormat::RGBA8UnormSrgb, 4, TextureComponentType::Float, 4}, textureData,
uncompressedData, 1.0e-3);
DoFormatRenderingTest({wgpu::TextureFormat::RGBA8UnormSrgb, 4, TextureComponentType::Float, 4},
uncompressedData, textureData);
}
// Test the BGRA8UnormSrgb format
TEST_P(TextureFormatTest, BGRA8UnormSrgb) {
// TODO(cwallez@chromium.org): This format doesn't exist in OpenGL, emulate it using
// RGBA8UnormSrgb and swizzling / shader twiddling
DAWN_SUPPRESS_TEST_IF(IsOpenGL() || IsOpenGLES());
uint8_t maxValue = std::numeric_limits<uint8_t>::max();
std::vector<uint8_t> textureData = {0, 1, maxValue, 64, 35, 68, 152, 168};
std::vector<float> uncompressedData;
for (size_t i = 0; i < textureData.size(); i += 4) {
// Note that R and B are swapped
uncompressedData.push_back(SRGBToLinear(textureData[i + 2] / static_cast<float>(maxValue)));
uncompressedData.push_back(SRGBToLinear(textureData[i + 1] / static_cast<float>(maxValue)));
uncompressedData.push_back(SRGBToLinear(textureData[i + 0] / static_cast<float>(maxValue)));
// Alpha is linear for sRGB formats
uncompressedData.push_back(textureData[i + 3] / static_cast<float>(maxValue));
}
DoFloatFormatSamplingTest(
{wgpu::TextureFormat::BGRA8UnormSrgb, 4, TextureComponentType::Float, 4}, textureData,
uncompressedData, 1.0e-3);
DoFormatRenderingTest({wgpu::TextureFormat::BGRA8UnormSrgb, 4, TextureComponentType::Float, 4},
uncompressedData, textureData);
}
// Test the RGB10A2Unorm format
TEST_P(TextureFormatTest, RGB10A2Uint) {
auto MakeRGB10A2 = [](uint32_t r, uint32_t g, uint32_t b, uint32_t a) -> uint32_t {
DAWN_ASSERT((r & 0x3FF) == r);
DAWN_ASSERT((g & 0x3FF) == g);
DAWN_ASSERT((b & 0x3FF) == b);
DAWN_ASSERT((a & 0x3) == a);
return r | g << 10 | b << 20 | a << 30;
};
std::vector<uint32_t> textureData = {MakeRGB10A2(0, 0, 0, 0), MakeRGB10A2(1023, 1023, 1023, 1),
MakeRGB10A2(243, 576, 765, 2), MakeRGB10A2(0, 0, 0, 3)};
// clang-format off
std::vector<uint32_t> uncompressedData = {
0, 0, 0, 0,
1023, 1023, 1023, 1,
243, 576, 765, 2,
0, 0, 0, 3
};
// clang-format on
DoFormatSamplingTest({wgpu::TextureFormat::RGB10A2Uint, 4, TextureComponentType::Uint, 4},
textureData, uncompressedData);
DoFormatRenderingTest({wgpu::TextureFormat::RGB10A2Uint, 4, TextureComponentType::Uint, 4},
uncompressedData, textureData);
}
// Test the RGB10A2Unorm format
TEST_P(TextureFormatTest, RGB10A2Unorm) {
auto MakeRGB10A2 = [](uint32_t r, uint32_t g, uint32_t b, uint32_t a) -> uint32_t {
DAWN_ASSERT((r & 0x3FF) == r);
DAWN_ASSERT((g & 0x3FF) == g);
DAWN_ASSERT((b & 0x3FF) == b);
DAWN_ASSERT((a & 0x3) == a);
return r | g << 10 | b << 20 | a << 30;
};
std::vector<uint32_t> textureData = {MakeRGB10A2(0, 0, 0, 0), MakeRGB10A2(1023, 1023, 1023, 1),
MakeRGB10A2(243, 576, 765, 2), MakeRGB10A2(0, 0, 0, 3)};
// clang-format off
std::vector<float> uncompressedData = {
0.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 1.0f, 1 / 3.0f,
243 / 1023.0f, 576 / 1023.0f, 765 / 1023.0f, 2 / 3.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
// clang-format on
DoFloatFormatSamplingTest(
{wgpu::TextureFormat::RGB10A2Unorm, 4, TextureComponentType::Float, 4}, textureData,
uncompressedData, 1.0e-5);
DoFormatRenderingTest({wgpu::TextureFormat::RGB10A2Unorm, 4, TextureComponentType::Float, 4},
uncompressedData, textureData);
}
// Test the RG11B10Ufloat format
TEST_P(TextureFormatTest, RG11B10Ufloat) {
constexpr uint32_t kFloat11Zero = 0;
constexpr uint32_t kFloat11Infinity = 0x7C0;
constexpr uint32_t kFloat11Nan = 0x7C1;
constexpr uint32_t kFloat11One = 0x3C0;
constexpr uint32_t kFloat10Zero = 0;
constexpr uint32_t kFloat10Infinity = 0x3E0;
constexpr uint32_t kFloat10Nan = 0x3E1;
constexpr uint32_t kFloat10One = 0x1E0;
auto MakeRG11B10 = [](uint32_t r, uint32_t g, uint32_t b) {
DAWN_ASSERT((r & 0x7FF) == r);
DAWN_ASSERT((g & 0x7FF) == g);
DAWN_ASSERT((b & 0x3FF) == b);
return r | g << 11 | b << 22;
};
// Test each of (0, 1, INFINITY, NaN) for each component but never two with the same value at a
// time.
std::vector<uint32_t> textureData = {
MakeRG11B10(kFloat11Zero, kFloat11Infinity, kFloat10Nan),
MakeRG11B10(kFloat11Infinity, kFloat11Nan, kFloat10One),
MakeRG11B10(kFloat11Nan, kFloat11One, kFloat10Zero),
MakeRG11B10(kFloat11One, kFloat11Zero, kFloat10Infinity),
};
// This is one of the only 3-channel formats, so we don't have specific testing for them. Alpha
// should always be sampled as 1
// clang-format off
std::vector<float> uncompressedData = {
0.0f, INFINITY, NAN, 1.0f,
INFINITY, NAN, 1.0f, 1.0f,
NAN, 1.0f, 0.0f, 1.0f,
1.0f, 0.0f, INFINITY, 1.0f
};
// clang-format on
DoFloatFormatSamplingTest(
{wgpu::TextureFormat::RG11B10Ufloat, 4, TextureComponentType::Float, 4}, textureData,
uncompressedData);
// This format is renderable if "rg11b10ufloat-renderable" feature is enabled
if (IsRG11B10UfloatRenderableSupported()) {
// TODO(https://crbug.com/swiftshader/147) Rendering INFINITY and NaN isn't handled
// correctly by swiftshader
if ((IsVulkan() && IsSwiftshader()) || IsANGLE()) {
WarningLog() << "Skip Rendering test because Swiftshader doesn't render INFINITY "
"and NaN correctly for RG11B10Ufloat texture format.";
} else {
DoFormatRenderingTest(
{wgpu::TextureFormat::RG11B10Ufloat, 4, TextureComponentType::Float, 4},
uncompressedData, textureData, new ExpectRG11B10Ufloat(textureData));
}
}
}
// Test the RGB9E5Ufloat format
TEST_P(TextureFormatTest, RGB9E5Ufloat) {
// RGB9E5 is different from other floating point formats because the mantissa doesn't index in
// the window defined by the exponent but is instead treated as a pure multiplier. There is
// also no Infinity or NaN. The OpenGL 4.6 spec has the best explanation I've found in section
// 8.25 "Shared Exponent Texture Color Conversion":
//
// red = reduint * 2^(expuint - B - N) = reduint * 2^(expuint - 24)
//
// Where reduint and expuint are the integer values when considering the E5 as a 5bit uint, and
// the r9 as a 9bit uint. B the number of bits of the mantissa (9), and N the offset for the
// exponent (15).
float smallestExponent = std::pow(2.0f, -24.0f);
float largestExponent = std::pow(2.0f, float{31 - 24});
auto MakeRGB9E5 = [](uint32_t r, uint32_t g, uint32_t b, uint32_t e) {
DAWN_ASSERT((r & 0x1FF) == r);
DAWN_ASSERT((g & 0x1FF) == g);
DAWN_ASSERT((b & 0x1FF) == b);
DAWN_ASSERT((e & 0x1F) == e);
return r | g << 9 | b << 18 | e << 27;
};
// Test the smallest largest, and "1" exponents
std::vector<uint32_t> textureData = {
MakeRGB9E5(0, 1, 2, 0b00000),
MakeRGB9E5(2, 1, 0, 0b11111),
MakeRGB9E5(0, 1, 2, 0b11000),
};
// This is one of the only 3-channel formats, so we don't have specific testing for them. Alpha
// should always be sampled as 1
// clang-format off
std::vector<float> uncompressedData = {
0.0f, smallestExponent, 2.0f * smallestExponent, 1.0f,
2.0f * largestExponent, largestExponent, 0.0f, 1.0f,
0.0f, 1.0f, 2.0f, 1.0f,
};
// clang-format on
DoFloatFormatSamplingTest(
{wgpu::TextureFormat::RGB9E5Ufloat, 4, TextureComponentType::Float, 4}, textureData,
uncompressedData);
// This format is not renderable.
}
DAWN_INSTANTIATE_TEST(TextureFormatTest,
D3D11Backend(),
D3D12Backend(),
MetalBackend(),
OpenGLBackend(),
OpenGLESBackend(),
VulkanBackend());
} // anonymous namespace
} // namespace dawn