blob: 1a5407cd1f465104e95447c6c70b423fc86f39f2 [file] [log] [blame]
// Copyright 2017 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "dawn/native/Buffer.h"
#include <cstdio>
#include <cstring>
#include <limits>
#include <string>
#include <utility>
#include "dawn/common/Alloc.h"
#include "dawn/common/Assert.h"
#include "dawn/native/Adapter.h"
#include "dawn/native/CallbackTaskManager.h"
#include "dawn/native/ChainUtils.h"
#include "dawn/native/Commands.h"
#include "dawn/native/Device.h"
#include "dawn/native/DynamicUploader.h"
#include "dawn/native/ErrorData.h"
#include "dawn/native/EventManager.h"
#include "dawn/native/Instance.h"
#include "dawn/native/ObjectType_autogen.h"
#include "dawn/native/PhysicalDevice.h"
#include "dawn/native/Queue.h"
#include "dawn/native/ValidationUtils_autogen.h"
#include "dawn/platform/DawnPlatform.h"
#include "dawn/platform/tracing/TraceEvent.h"
namespace dawn::native {
namespace {
struct MapRequestTask : TrackTaskCallback {
MapRequestTask(dawn::platform::Platform* platform, Ref<BufferBase> buffer, MapRequestID id)
: TrackTaskCallback(platform), buffer(std::move(buffer)), id(id) {}
~MapRequestTask() override = default;
private:
void FinishImpl() override {
{
// This is called from a callback, and no lock will be held by default. Hence, we need
// to lock the mutex now because mSerial might be changed by another thread.
auto deviceLock(buffer->GetDevice()->GetScopedLock());
DAWN_ASSERT(mSerial != kMaxExecutionSerial);
TRACE_EVENT1(mPlatform, General, "Buffer::TaskInFlight::Finished", "serial",
uint64_t(mSerial));
}
buffer->CallbackOnMapRequestCompleted(id, WGPUBufferMapAsyncStatus_Success);
}
void HandleDeviceLossImpl() override {
buffer->CallbackOnMapRequestCompleted(id, WGPUBufferMapAsyncStatus_DeviceLost);
}
void HandleShutDownImpl() override {
buffer->CallbackOnMapRequestCompleted(id, WGPUBufferMapAsyncStatus_DestroyedBeforeCallback);
}
Ref<BufferBase> buffer;
MapRequestID id;
};
class ErrorBuffer final : public BufferBase {
public:
ErrorBuffer(DeviceBase* device, const BufferDescriptor* descriptor)
: BufferBase(device, descriptor, ObjectBase::kError) {
if (descriptor->mappedAtCreation) {
// Check that the size can be used to allocate an mFakeMappedData. A malloc(0)
// is invalid, and on 32bit systems we should avoid a narrowing conversion that
// would make size = 1 << 32 + 1 allocate one byte.
bool isValidSize = descriptor->size != 0 &&
descriptor->size < uint64_t(std::numeric_limits<size_t>::max());
if (isValidSize) {
mFakeMappedData =
std::unique_ptr<uint8_t[]>(AllocNoThrow<uint8_t>(descriptor->size));
}
// Since error buffers in this case may allocate memory, we need to track them
// for destruction on the device.
GetObjectTrackingList()->Track(this);
}
}
private:
bool IsCPUWritableAtCreation() const override { DAWN_UNREACHABLE(); }
MaybeError MapAtCreationImpl() override { DAWN_UNREACHABLE(); }
MaybeError MapAsyncImpl(wgpu::MapMode mode, size_t offset, size_t size) override {
DAWN_UNREACHABLE();
}
void* GetMappedPointer() override { return mFakeMappedData.get(); }
void UnmapImpl() override { mFakeMappedData.reset(); }
std::unique_ptr<uint8_t[]> mFakeMappedData;
};
// GetMappedRange on a zero-sized buffer returns a pointer to this value.
static uint32_t sZeroSizedMappingData = 0xCAFED00D;
} // anonymous namespace
struct BufferBase::MapAsyncEvent final : public EventManager::TrackedEvent {
// MapAsyncEvent stores a raw pointer to the buffer so that it can
// update the buffer's map state when it completes.
// If the map completes early (error, unmap, destroy), then the buffer
// is no longer needed and we store the early status instead.
// The raw pointer is safe because the early status is set to destroyed
// before the buffer is dropped.
// Note: this could be an atomic + spin lock on a sentinel enum if the mutex
// cost is high.
MutexProtected<std::variant<BufferBase*, wgpu::BufferMapAsyncStatus>> mBufferOrEarlyStatus;
WGPUBufferMapCallback mCallback;
void* mUserdata;
// Create an event backed by the given queue execution serial.
MapAsyncEvent(DeviceBase* device,
BufferBase* buffer,
const BufferMapCallbackInfo& callbackInfo,
ExecutionSerial serial)
: TrackedEvent(callbackInfo.mode, device->GetQueue(), serial),
mBufferOrEarlyStatus(buffer),
mCallback(callbackInfo.callback),
mUserdata(callbackInfo.userdata) {
TRACE_EVENT_ASYNC_BEGIN0(device->GetPlatform(), General, "Buffer::APIMapAsync",
uint64_t(serial));
}
// Create an event that's ready at creation (for errors, etc.)
MapAsyncEvent(DeviceBase* device,
const BufferMapCallbackInfo& callbackInfo,
wgpu::BufferMapAsyncStatus earlyStatus)
: TrackedEvent(callbackInfo.mode, device->GetQueue(), kBeginningOfGPUTime),
mBufferOrEarlyStatus(earlyStatus),
mCallback(callbackInfo.callback),
mUserdata(callbackInfo.userdata) {
TRACE_EVENT_ASYNC_BEGIN0(device->GetPlatform(), General, "Buffer::APIMapAsync",
uint64_t(kBeginningOfGPUTime));
CompleteIfSpontaneous();
}
~MapAsyncEvent() override { EnsureComplete(EventCompletionType::Shutdown); }
void Complete(EventCompletionType completionType) override {
if (const auto* queueAndSerial = std::get_if<QueueAndSerial>(&GetCompletionData())) {
TRACE_EVENT_ASYNC_END0(queueAndSerial->queue->GetDevice()->GetPlatform(), General,
"Buffer::APIMapAsync",
uint64_t(queueAndSerial->completionSerial));
}
if (completionType == EventCompletionType::Shutdown) {
mCallback(ToAPI(wgpu::BufferMapAsyncStatus::Unknown), mUserdata);
return;
}
wgpu::BufferMapAsyncStatus status = wgpu::BufferMapAsyncStatus::Success;
Ref<MapAsyncEvent> pendingMapEvent;
// Lock the buffer / early status. This may race with UnmapEarly which occurs
// when the buffer is unmapped or destroyed.
mBufferOrEarlyStatus.Use([&](auto bufferOrEarlyStatus) {
if (auto* earlyStatus =
std::get_if<wgpu::BufferMapAsyncStatus>(&*bufferOrEarlyStatus)) {
// Assign the early status, if it was set.
status = *earlyStatus;
} else if (auto** buffer = std::get_if<BufferBase*>(&*bufferOrEarlyStatus)) {
// Set the buffer state to Mapped if this pending map succeeded.
// TODO(crbug.com/dawn/831): in order to be thread safe, mutation of the
// state and pending map event needs to be atomic w.r.t. UnmapInternal.
DAWN_ASSERT((*buffer)->mState == BufferState::PendingMap);
(*buffer)->mState = BufferState::Mapped;
pendingMapEvent = std::move((*buffer)->mPendingMapEvent);
}
});
mCallback(ToAPI(status), mUserdata);
}
// Set the buffer early status because it was unmapped early due to Unmap or Destroy.
// This can race with Complete such that the early status is ignored, but this is OK
// because we will still unmap the buffer. It will be as-if the application called
// Unmap/Destroy just after the map event completed.
// TODO(crbug.com/dawn/831): However, CompleteIfSpontaneous may race with Complete
// and hit an ASSERT that it was already completed. This would be resolved when
// mapping is thread-safe.
void UnmapEarly(wgpu::BufferMapAsyncStatus status) {
mBufferOrEarlyStatus.Use([&](auto bufferOrEarlyStatus) { *bufferOrEarlyStatus = status; });
CompleteIfSpontaneous();
}
};
MaybeError ValidateBufferDescriptor(DeviceBase* device, const BufferDescriptor* descriptor) {
UnpackedBufferDescriptorChain unpacked;
DAWN_TRY_ASSIGN(unpacked, ValidateAndUnpackChain(descriptor));
DAWN_TRY(ValidateBufferUsage(descriptor->usage));
if (const auto* hostMappedDesc = std::get<const BufferHostMappedPointer*>(unpacked)) {
// TODO(crbug.com/dawn/2018): Properly expose this limit.
uint32_t requiredAlignment = 4096;
if (device->GetAdapter()->GetPhysicalDevice()->GetBackendType() ==
wgpu::BackendType::D3D12) {
requiredAlignment = 65536;
}
DAWN_INVALID_IF(!device->HasFeature(Feature::HostMappedPointer), "%s requires %s.",
hostMappedDesc->sType, ToAPI(Feature::HostMappedPointer));
DAWN_INVALID_IF(!IsAligned(descriptor->size, requiredAlignment),
"Buffer size (%u) wrapping host-mapped memory was not aligned to %u.",
descriptor->size, requiredAlignment);
DAWN_INVALID_IF(!IsPtrAligned(hostMappedDesc->pointer, requiredAlignment),
"Host-mapped memory pointer (%p) was not aligned to %u.",
hostMappedDesc->pointer, requiredAlignment);
// TODO(dawn:2018) consider allowing the host-mapped buffers to be mapped through WebGPU.
DAWN_INVALID_IF(
descriptor->mappedAtCreation,
"Buffer created from host-mapped pointer requires mappedAtCreation to be false.");
}
wgpu::BufferUsage usage = descriptor->usage;
DAWN_INVALID_IF(usage == wgpu::BufferUsage::None, "Buffer usages must not be 0.");
if (!device->HasFeature(Feature::BufferMapExtendedUsages)) {
const wgpu::BufferUsage kMapWriteAllowedUsages =
wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc;
DAWN_INVALID_IF(
usage & wgpu::BufferUsage::MapWrite && !IsSubset(usage, kMapWriteAllowedUsages),
"Buffer usages (%s) is invalid. If a buffer usage contains %s the only other allowed "
"usage is %s.",
usage, wgpu::BufferUsage::MapWrite, wgpu::BufferUsage::CopySrc);
const wgpu::BufferUsage kMapReadAllowedUsages =
wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst;
DAWN_INVALID_IF(
usage & wgpu::BufferUsage::MapRead && !IsSubset(usage, kMapReadAllowedUsages),
"Buffer usages (%s) is invalid. If a buffer usage contains %s the only other allowed "
"usage is %s.",
usage, wgpu::BufferUsage::MapRead, wgpu::BufferUsage::CopyDst);
}
DAWN_INVALID_IF(descriptor->mappedAtCreation && descriptor->size % 4 != 0,
"Buffer is mapped at creation but its size (%u) is not a multiple of 4.",
descriptor->size);
DAWN_INVALID_IF(descriptor->size > device->GetLimits().v1.maxBufferSize,
"Buffer size (%u) exceeds the max buffer size limit (%u).", descriptor->size,
device->GetLimits().v1.maxBufferSize);
return {};
}
// Buffer
BufferBase::BufferBase(DeviceBase* device, const BufferDescriptor* descriptor)
: ApiObjectBase(device, descriptor->label),
mSize(descriptor->size),
mUsage(descriptor->usage),
mState(BufferState::Unmapped) {
// Add readonly storage usage if the buffer has a storage usage. The validation rules in
// ValidateSyncScopeResourceUsage will make sure we don't use both at the same time.
if (mUsage & wgpu::BufferUsage::Storage) {
mUsage |= kReadOnlyStorageBuffer;
}
// The query resolve buffer need to be used as a storage buffer in the internal compute
// pipeline which does timestamp uint conversion for timestamp query, it requires the buffer
// has Storage usage in the binding group. Implicitly add an InternalStorage usage which is
// only compatible with InternalStorageBuffer binding type in BGL. It shouldn't be
// compatible with StorageBuffer binding type and the query resolve buffer cannot be bound
// as storage buffer if it's created without Storage usage.
if (mUsage & wgpu::BufferUsage::QueryResolve) {
mUsage |= kInternalStorageBuffer;
}
// We also add internal storage usage for Indirect buffers for some transformations before
// DispatchIndirect calls on the backend (e.g. validations, support of [[num_workgroups]] on
// D3D12), since these transformations involve binding them as storage buffers for use in a
// compute pass.
if (mUsage & wgpu::BufferUsage::Indirect) {
mUsage |= kInternalStorageBuffer;
}
if (mUsage & wgpu::BufferUsage::CopyDst) {
if (device->IsToggleEnabled(Toggle::UseBlitForDepth16UnormTextureToBufferCopy) ||
device->IsToggleEnabled(Toggle::UseBlitForDepth32FloatTextureToBufferCopy) ||
device->IsToggleEnabled(Toggle::UseBlitForStencilTextureToBufferCopy) ||
device->IsToggleEnabled(Toggle::UseBlitForSnormTextureToBufferCopy) ||
device->IsToggleEnabled(Toggle::UseBlitForBGRA8UnormTextureToBufferCopy) ||
device->IsToggleEnabled(Toggle::UseBlitForRGB9E5UfloatTextureCopy)) {
mUsage |= kInternalStorageBuffer;
}
}
const BufferHostMappedPointer* hostMappedDesc = nullptr;
FindInChain(descriptor->nextInChain, &hostMappedDesc);
if (hostMappedDesc != nullptr) {
mState = BufferState::HostMappedPersistent;
}
GetObjectTrackingList()->Track(this);
}
BufferBase::BufferBase(DeviceBase* device,
const BufferDescriptor* descriptor,
ObjectBase::ErrorTag tag)
: ApiObjectBase(device, tag, descriptor->label),
mSize(descriptor->size),
mUsage(descriptor->usage),
mState(BufferState::Unmapped) {
if (descriptor->mappedAtCreation) {
mState = BufferState::MappedAtCreation;
mMapOffset = 0;
mMapSize = mSize;
}
}
BufferBase::~BufferBase() {
DAWN_ASSERT(mState == BufferState::Unmapped || mState == BufferState::Destroyed);
}
void BufferBase::DestroyImpl() {
// TODO(crbug.com/dawn/831): DestroyImpl is called from two places.
// - It may be called if the buffer is explicitly destroyed with APIDestroy.
// This case is NOT thread-safe and needs proper synchronization with other
// simultaneous uses of the buffer.
// - It may be called when the last ref to the buffer is dropped and the buffer
// is implicitly destroyed. This case is thread-safe because there are no
// other threads using the buffer since there are no other live refs.
if (mState == BufferState::Mapped || mState == BufferState::PendingMap) {
UnmapInternal(WGPUBufferMapAsyncStatus_DestroyedBeforeCallback);
} else if (mState == BufferState::MappedAtCreation) {
if (mStagingBuffer != nullptr) {
mStagingBuffer = nullptr;
} else if (mSize != 0) {
UnmapInternal(WGPUBufferMapAsyncStatus_DestroyedBeforeCallback);
}
}
mState = BufferState::Destroyed;
}
// static
BufferBase* BufferBase::MakeError(DeviceBase* device, const BufferDescriptor* descriptor) {
return new ErrorBuffer(device, descriptor);
}
ObjectType BufferBase::GetType() const {
return ObjectType::Buffer;
}
uint64_t BufferBase::GetSize() const {
DAWN_ASSERT(!IsError());
return mSize;
}
uint64_t BufferBase::GetAllocatedSize() const {
DAWN_ASSERT(!IsError());
// The backend must initialize this value.
DAWN_ASSERT(mAllocatedSize != 0);
return mAllocatedSize;
}
wgpu::BufferUsage BufferBase::GetUsage() const {
DAWN_ASSERT(!IsError());
return mUsage;
}
wgpu::BufferUsage BufferBase::GetUsageExternalOnly() const {
DAWN_ASSERT(!IsError());
return GetUsage() & ~kAllInternalBufferUsages;
}
wgpu::BufferUsage BufferBase::APIGetUsage() const {
return mUsage & ~kAllInternalBufferUsages;
}
wgpu::BufferMapState BufferBase::APIGetMapState() const {
switch (mState) {
case BufferState::Mapped:
case BufferState::MappedAtCreation:
return wgpu::BufferMapState::Mapped;
case BufferState::PendingMap:
return wgpu::BufferMapState::Pending;
case BufferState::Unmapped:
case BufferState::Destroyed:
return wgpu::BufferMapState::Unmapped;
default:
DAWN_UNREACHABLE();
return wgpu::BufferMapState::Unmapped;
}
}
MaybeError BufferBase::MapAtCreation() {
DAWN_TRY(MapAtCreationInternal());
void* ptr;
size_t size;
if (mSize == 0) {
return {};
} else if (mStagingBuffer != nullptr) {
// If there is a staging buffer for initialization, clear its contents directly.
// It should be exactly as large as the buffer allocation.
ptr = mStagingBuffer->GetMappedPointer();
size = mStagingBuffer->GetSize();
DAWN_ASSERT(size == GetAllocatedSize());
} else {
// Otherwise, the buffer is directly mappable on the CPU.
ptr = GetMappedPointer();
size = GetAllocatedSize();
}
DeviceBase* device = GetDevice();
if (device->IsToggleEnabled(Toggle::LazyClearResourceOnFirstUse) &&
!device->IsToggleEnabled(Toggle::DisableLazyClearForMappedAtCreationBuffer)) {
memset(ptr, uint8_t(0u), size);
device->IncrementLazyClearCountForTesting();
} else if (device->IsToggleEnabled(Toggle::NonzeroClearResourcesOnCreationForTesting)) {
memset(ptr, uint8_t(1u), size);
}
// Mark the buffer as initialized since we don't want to later clear it using the GPU since that
// would overwrite what the client wrote using the CPU.
SetIsDataInitialized();
return {};
}
MaybeError BufferBase::MapAtCreationInternal() {
DAWN_ASSERT(!IsError());
mMapOffset = 0;
mMapSize = mSize;
// 0-sized buffers are not supposed to be written to. Return back any non-null pointer.
// Skip handling 0-sized buffers so we don't try to map them in the backend.
if (mSize != 0) {
// Mappable buffers don't use a staging buffer and are just as if mapped through
// MapAsync.
if (IsCPUWritableAtCreation()) {
DAWN_TRY(MapAtCreationImpl());
} else {
// If any of these fail, the buffer will be deleted and replaced with an error
// buffer. The staging buffer is used to return mappable data to inititalize the
// buffer contents. Allocate one as large as the real buffer size so that every byte
// is initialized.
// TODO(crbug.com/dawn/828): Suballocate and reuse memory from a larger staging
// buffer so we don't create many small buffers.
BufferDescriptor stagingBufferDesc = {};
stagingBufferDesc.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::MapWrite;
stagingBufferDesc.size = Align(GetAllocatedSize(), 4);
stagingBufferDesc.mappedAtCreation = true;
stagingBufferDesc.label = "Dawn_MappedAtCreationStaging";
IgnoreLazyClearCountScope scope(GetDevice());
DAWN_TRY_ASSIGN(mStagingBuffer, GetDevice()->CreateBuffer(&stagingBufferDesc));
}
}
// Only set the state to mapped at creation if we did no fail any point in this helper.
// Otherwise, if we override the default unmapped state before succeeding to create a
// staging buffer, we will have issues when we try to destroy the buffer.
mState = BufferState::MappedAtCreation;
return {};
}
MaybeError BufferBase::ValidateCanUseOnQueueNow() const {
DAWN_ASSERT(!IsError());
switch (mState) {
case BufferState::Destroyed:
return DAWN_VALIDATION_ERROR("%s used in submit while destroyed.", this);
case BufferState::Mapped:
case BufferState::MappedAtCreation:
return DAWN_VALIDATION_ERROR("%s used in submit while mapped.", this);
case BufferState::PendingMap:
return DAWN_VALIDATION_ERROR("%s used in submit while pending map.", this);
case BufferState::HostMappedPersistent:
case BufferState::Unmapped:
return {};
}
DAWN_UNREACHABLE();
}
std::function<void()> BufferBase::PrepareMappingCallback(MapRequestID mapID,
WGPUBufferMapAsyncStatus status) {
DAWN_ASSERT(!IsError());
if (mMapCallback != nullptr && mapID == mLastMapID) {
auto callback = std::move(mMapCallback);
auto userdata = std::move(mMapUserdata);
WGPUBufferMapAsyncStatus actualStatus;
if (GetDevice()->IsLost()) {
actualStatus = WGPUBufferMapAsyncStatus_DeviceLost;
} else {
actualStatus = status;
}
// Tag the callback as fired before firing it, otherwise it could fire a second time if
// for example buffer.Unmap() is called before the MapRequestTask completes.
mMapCallback = nullptr;
mMapUserdata = nullptr;
return std::bind(callback, actualStatus, userdata);
}
return [] {};
}
void BufferBase::APIMapAsync(wgpu::MapMode mode,
size_t offset,
size_t size,
WGPUBufferMapCallback callback,
void* userdata) {
// Check for an existing pending map first because it just
// rejects the callback and doesn't produce a validation error.
if (mState == BufferState::PendingMap) {
if (callback) {
GetDevice()->GetCallbackTaskManager()->AddCallbackTask(
callback, WGPUBufferMapAsyncStatus_MappingAlreadyPending, userdata);
}
return;
}
// Handle the defaulting of size required by WebGPU, even if in webgpu_cpp.h it is not
// possible to default the function argument (because there is the callback later in the
// argument list)
if ((size == wgpu::kWholeMapSize) && (offset <= mSize)) {
size = mSize - offset;
}
WGPUBufferMapAsyncStatus status;
if (GetDevice()->ConsumedError(ValidateMapAsync(mode, offset, size, &status),
"calling %s.MapAsync(%s, %u, %u, ...).", this, mode, offset,
size)) {
if (callback) {
GetDevice()->GetCallbackTaskManager()->AddCallbackTask(callback, status, userdata);
}
return;
}
DAWN_ASSERT(!IsError());
mLastMapID++;
mMapMode = mode;
mMapOffset = offset;
mMapSize = size;
mMapCallback = callback;
mMapUserdata = userdata;
mState = BufferState::PendingMap;
if (GetDevice()->ConsumedError(MapAsyncImpl(mode, offset, size))) {
GetDevice()->GetCallbackTaskManager()->AddCallbackTask(
PrepareMappingCallback(mLastMapID, WGPUBufferMapAsyncStatus_DeviceLost));
return;
}
std::unique_ptr<MapRequestTask> request =
std::make_unique<MapRequestTask>(GetDevice()->GetPlatform(), this, mLastMapID);
TRACE_EVENT1(GetDevice()->GetPlatform(), General, "Buffer::APIMapAsync", "serial",
uint64_t(mLastUsageSerial));
GetDevice()->GetQueue()->TrackTask(std::move(request), mLastUsageSerial);
}
Future BufferBase::APIMapAsyncF(wgpu::MapMode mode,
size_t offset,
size_t size,
const BufferMapCallbackInfo& callbackInfo) {
// TODO(crbug.com/dawn/2052): Once we always return a future, change this to log to the instance
// (note, not raise a validation error to the device) and return the null future.
DAWN_ASSERT(callbackInfo.nextInChain == nullptr);
// Handle the defaulting of size required by WebGPU, even if in webgpu_cpp.h it is not
// possible to default the function argument (because there is the callback later in the
// argument list)
if ((size == wgpu::kWholeMapSize) && (offset <= mSize)) {
size = mSize - offset;
}
auto earlyStatus = [&]() -> std::optional<wgpu::BufferMapAsyncStatus> {
if (mState == BufferState::PendingMap) {
return wgpu::BufferMapAsyncStatus::MappingAlreadyPending;
}
WGPUBufferMapAsyncStatus status;
if (GetDevice()->ConsumedError(ValidateMapAsync(mode, offset, size, &status),
"calling %s.MapAsync(%s, %u, %u, ...).", this, mode, offset,
size)) {
return static_cast<wgpu::BufferMapAsyncStatus>(status);
}
if (GetDevice()->ConsumedError(MapAsyncImpl(mode, offset, size))) {
return wgpu::BufferMapAsyncStatus::DeviceLost;
}
return std::nullopt;
}();
Ref<EventManager::TrackedEvent> event;
if (earlyStatus) {
event = AcquireRef(new MapAsyncEvent(GetDevice(), callbackInfo, *earlyStatus));
} else {
mMapMode = mode;
mMapOffset = offset;
mMapSize = size;
mState = BufferState::PendingMap;
mPendingMapEvent =
AcquireRef(new MapAsyncEvent(GetDevice(), this, callbackInfo, mLastUsageSerial));
event = mPendingMapEvent;
}
FutureID futureID =
GetInstance()->GetEventManager()->TrackEvent(callbackInfo.mode, std::move(event));
return {futureID};
}
void* BufferBase::APIGetMappedRange(size_t offset, size_t size) {
return GetMappedRange(offset, size, true);
}
const void* BufferBase::APIGetConstMappedRange(size_t offset, size_t size) {
return GetMappedRange(offset, size, false);
}
void* BufferBase::GetMappedRange(size_t offset, size_t size, bool writable) {
if (!CanGetMappedRange(writable, offset, size)) {
return nullptr;
}
if (mStagingBuffer != nullptr) {
return static_cast<uint8_t*>(mStagingBuffer->GetMappedPointer()) + offset;
}
if (mSize == 0) {
return &sZeroSizedMappingData;
}
uint8_t* start = static_cast<uint8_t*>(GetMappedPointer());
return start == nullptr ? nullptr : start + offset;
}
void BufferBase::APIDestroy() {
Destroy();
}
uint64_t BufferBase::APIGetSize() const {
return mSize;
}
MaybeError BufferBase::CopyFromStagingBuffer() {
DAWN_ASSERT(mStagingBuffer != nullptr && mSize != 0);
DAWN_TRY(
GetDevice()->CopyFromStagingToBuffer(mStagingBuffer.Get(), 0, this, 0, GetAllocatedSize()));
DynamicUploader* uploader = GetDevice()->GetDynamicUploader();
uploader->ReleaseStagingBuffer(std::move(mStagingBuffer));
return {};
}
void BufferBase::APIUnmap() {
if (GetDevice()->ConsumedError(ValidateUnmap(), "calling %s.Unmap().", this)) {
return;
}
DAWN_UNUSED(GetDevice()->ConsumedError(Unmap(), "calling %s.Unmap().", this));
}
MaybeError BufferBase::Unmap() {
if (mState == BufferState::Destroyed) {
return {};
}
// Make sure writes are now visibile to the GPU if we used a staging buffer.
if (mState == BufferState::MappedAtCreation && mStagingBuffer != nullptr) {
DAWN_TRY(CopyFromStagingBuffer());
}
UnmapInternal(WGPUBufferMapAsyncStatus_UnmappedBeforeCallback);
return {};
}
void BufferBase::UnmapInternal(WGPUBufferMapAsyncStatus callbackStatus) {
// Unmaps resources on the backend.
if (mState == BufferState::PendingMap) {
// TODO(crbug.com/dawn/831): in order to be thread safe, mutation of the
// state and pending map event needs to be atomic w.r.t. MapAsyncEvent::Complete.
Ref<MapAsyncEvent> pendingMapEvent = std::move(mPendingMapEvent);
if (pendingMapEvent != nullptr) {
pendingMapEvent->UnmapEarly(static_cast<wgpu::BufferMapAsyncStatus>(callbackStatus));
} else {
GetDevice()->GetCallbackTaskManager()->AddCallbackTask(
PrepareMappingCallback(mLastMapID, callbackStatus));
}
UnmapImpl();
} else if (mState == BufferState::Mapped) {
UnmapImpl();
} else if (mState == BufferState::MappedAtCreation) {
if (!IsError() && mSize != 0 && IsCPUWritableAtCreation()) {
UnmapImpl();
}
}
mState = BufferState::Unmapped;
}
MaybeError BufferBase::ValidateMapAsync(wgpu::MapMode mode,
size_t offset,
size_t size,
WGPUBufferMapAsyncStatus* status) const {
*status = WGPUBufferMapAsyncStatus_DeviceLost;
DAWN_TRY(GetDevice()->ValidateIsAlive());
*status = WGPUBufferMapAsyncStatus_ValidationError;
DAWN_TRY(GetDevice()->ValidateObject(this));
DAWN_INVALID_IF(uint64_t(offset) > mSize,
"Mapping offset (%u) is larger than the size (%u) of %s.", offset, mSize, this);
DAWN_INVALID_IF(offset % 8 != 0, "Offset (%u) must be a multiple of 8.", offset);
DAWN_INVALID_IF(size % 4 != 0, "Size (%u) must be a multiple of 4.", size);
DAWN_INVALID_IF(uint64_t(size) > mSize - uint64_t(offset),
"Mapping range (offset:%u, size: %u) doesn't fit in the size (%u) of %s.",
offset, size, mSize, this);
switch (mState) {
case BufferState::Mapped:
case BufferState::MappedAtCreation:
return DAWN_VALIDATION_ERROR("%s is already mapped.", this);
case BufferState::PendingMap:
DAWN_UNREACHABLE();
case BufferState::Destroyed:
return DAWN_VALIDATION_ERROR("%s is destroyed.", this);
case BufferState::HostMappedPersistent:
return DAWN_VALIDATION_ERROR("Host-mapped %s cannot be mapped again.", this);
case BufferState::Unmapped:
break;
}
bool isReadMode = mode & wgpu::MapMode::Read;
bool isWriteMode = mode & wgpu::MapMode::Write;
DAWN_INVALID_IF(!(isReadMode ^ isWriteMode), "Map mode (%s) is not one of %s or %s.", mode,
wgpu::MapMode::Write, wgpu::MapMode::Read);
if (mode & wgpu::MapMode::Read) {
DAWN_INVALID_IF(!(mUsage & wgpu::BufferUsage::MapRead),
"The buffer usages (%s) do not contain %s.", mUsage,
wgpu::BufferUsage::MapRead);
} else {
DAWN_ASSERT(mode & wgpu::MapMode::Write);
DAWN_INVALID_IF(!(mUsage & wgpu::BufferUsage::MapWrite),
"The buffer usages (%s) do not contain %s.", mUsage,
wgpu::BufferUsage::MapWrite);
}
*status = WGPUBufferMapAsyncStatus_Success;
return {};
}
bool BufferBase::CanGetMappedRange(bool writable, size_t offset, size_t size) const {
if (offset % 8 != 0 || offset < mMapOffset || offset > mSize) {
return false;
}
size_t rangeSize = size == WGPU_WHOLE_MAP_SIZE ? mSize - offset : size;
if (rangeSize % 4 != 0 || rangeSize > mMapSize) {
return false;
}
size_t offsetInMappedRange = offset - mMapOffset;
if (offsetInMappedRange > mMapSize - rangeSize) {
return false;
}
// Note that:
//
// - We don't check that the device is alive because the application can ask for the
// mapped pointer before it knows, and even Dawn knows, that the device was lost, and
// still needs to work properly.
// - We don't check that the object is alive because we need to return mapped pointers
// for error buffers too.
switch (mState) {
// It is never valid to call GetMappedRange on a host-mapped buffer.
// TODO(crbug.com/dawn/2018): consider returning the same pointer here.
case BufferState::HostMappedPersistent:
return false;
// Writeable Buffer::GetMappedRange is always allowed when mapped at creation.
case BufferState::MappedAtCreation:
return true;
case BufferState::Mapped:
DAWN_ASSERT(bool{mMapMode & wgpu::MapMode::Read} ^
bool{mMapMode & wgpu::MapMode::Write});
return !writable || (mMapMode & wgpu::MapMode::Write);
case BufferState::PendingMap:
case BufferState::Unmapped:
case BufferState::Destroyed:
return false;
}
DAWN_UNREACHABLE();
}
MaybeError BufferBase::ValidateUnmap() const {
DAWN_TRY(GetDevice()->ValidateIsAlive());
DAWN_INVALID_IF(mState == BufferState::HostMappedPersistent,
"Persistently mapped buffer cannot be unmapped.");
return {};
}
void BufferBase::CallbackOnMapRequestCompleted(MapRequestID mapID,
WGPUBufferMapAsyncStatus status) {
{
// This is called from a callback, and no lock will be held by default. Hence, we need to
// lock the mutex now because this will modify the buffer's states.
auto deviceLock(GetDevice()->GetScopedLock());
if (mapID == mLastMapID && status == WGPUBufferMapAsyncStatus_Success &&
mState == BufferState::PendingMap) {
mState = BufferState::Mapped;
}
}
auto cb = PrepareMappingCallback(mapID, status);
cb();
}
bool BufferBase::NeedsInitialization() const {
return !mIsDataInitialized && GetDevice()->IsToggleEnabled(Toggle::LazyClearResourceOnFirstUse);
}
bool BufferBase::IsDataInitialized() const {
return mIsDataInitialized;
}
void BufferBase::SetIsDataInitialized() {
mIsDataInitialized = true;
}
void BufferBase::MarkUsedInPendingCommands() {
ExecutionSerial serial = GetDevice()->GetPendingCommandSerial();
DAWN_ASSERT(serial >= mLastUsageSerial);
mLastUsageSerial = serial;
}
bool BufferBase::IsFullBufferRange(uint64_t offset, uint64_t size) const {
return offset == 0 && size == GetSize();
}
} // namespace dawn::native