| // Copyright 2017 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "dawn/native/Device.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <mutex> |
| #include <utility> |
| |
| #include "absl/container/flat_hash_set.h" |
| #include "dawn/common/Log.h" |
| #include "dawn/common/Version_autogen.h" |
| #include "dawn/native/AsyncTask.h" |
| #include "dawn/native/AttachmentState.h" |
| #include "dawn/native/BindGroup.h" |
| #include "dawn/native/BindGroupLayout.h" |
| #include "dawn/native/BlitBufferToDepthStencil.h" |
| #include "dawn/native/BlobCache.h" |
| #include "dawn/native/Buffer.h" |
| #include "dawn/native/ChainUtils.h" |
| #include "dawn/native/CommandBuffer.h" |
| #include "dawn/native/CommandEncoder.h" |
| #include "dawn/native/CompilationMessages.h" |
| #include "dawn/native/CreatePipelineAsyncTask.h" |
| #include "dawn/native/DynamicUploader.h" |
| #include "dawn/native/ErrorData.h" |
| #include "dawn/native/ErrorInjector.h" |
| #include "dawn/native/ErrorScope.h" |
| #include "dawn/native/ExternalTexture.h" |
| #include "dawn/native/Instance.h" |
| #include "dawn/native/InternalPipelineStore.h" |
| #include "dawn/native/ObjectType_autogen.h" |
| #include "dawn/native/PhysicalDevice.h" |
| #include "dawn/native/PipelineCache.h" |
| #include "dawn/native/QuerySet.h" |
| #include "dawn/native/Queue.h" |
| #include "dawn/native/RenderBundleEncoder.h" |
| #include "dawn/native/RenderPipeline.h" |
| #include "dawn/native/Sampler.h" |
| #include "dawn/native/SharedBufferMemory.h" |
| #include "dawn/native/SharedFence.h" |
| #include "dawn/native/SharedTextureMemory.h" |
| #include "dawn/native/Surface.h" |
| #include "dawn/native/SwapChain.h" |
| #include "dawn/native/Texture.h" |
| #include "dawn/native/ValidationUtils_autogen.h" |
| #include "dawn/native/utils/WGPUHelpers.h" |
| #include "dawn/platform/DawnPlatform.h" |
| #include "dawn/platform/metrics/HistogramMacros.h" |
| #include "dawn/platform/tracing/TraceEvent.h" |
| #include "partition_alloc/pointers/raw_ptr.h" |
| |
| namespace dawn::native { |
| |
| // DeviceBase sub-structures |
| |
| struct DeviceBase::Caches { |
| ContentLessObjectCache<AttachmentState> attachmentStates; |
| ContentLessObjectCache<BindGroupLayoutInternalBase> bindGroupLayouts; |
| ContentLessObjectCache<ComputePipelineBase> computePipelines; |
| ContentLessObjectCache<PipelineLayoutBase> pipelineLayouts; |
| ContentLessObjectCache<RenderPipelineBase> renderPipelines; |
| ContentLessObjectCache<SamplerBase> samplers; |
| ContentLessObjectCache<ShaderModuleBase> shaderModules; |
| }; |
| |
| // Tries to find an object in the cache, creating and inserting into the cache if not found. |
| template <typename RefCountedT, typename CreateFn> |
| auto GetOrCreate(ContentLessObjectCache<RefCountedT>& cache, |
| RefCountedT* blueprint, |
| CreateFn createFn) { |
| using ReturnType = decltype(createFn()); |
| |
| // If we find the blueprint in the cache we can just return it. |
| Ref<RefCountedT> result = cache.Find(blueprint); |
| if (result != nullptr) { |
| return ReturnType(result); |
| } |
| |
| using UnwrappedReturnType = typename detail::UnwrapResultOrError<ReturnType>::type; |
| static_assert(std::is_same_v<UnwrappedReturnType, Ref<RefCountedT>>, |
| "CreateFn should return an unwrapped type that is the same as Ref<RefCountedT>."); |
| |
| // Create the result and try inserting it. Note that inserts can race because the critical |
| // sections here is disjoint, hence the checks to verify whether this thread inserted. |
| if constexpr (!detail::IsResultOrError<ReturnType>::value) { |
| result = createFn(); |
| } else { |
| auto resultOrError = createFn(); |
| if (DAWN_UNLIKELY(resultOrError.IsError())) { |
| return ReturnType(std::move(resultOrError.AcquireError())); |
| } |
| result = resultOrError.AcquireSuccess(); |
| } |
| DAWN_ASSERT(result.Get() != nullptr); |
| |
| bool inserted = false; |
| std::tie(result, inserted) = cache.Insert(result.Get()); |
| return ReturnType(result); |
| } |
| |
| struct DeviceBase::DeprecationWarnings { |
| absl::flat_hash_set<std::string> emitted; |
| size_t count = 0; |
| }; |
| |
| namespace { |
| struct LoggingCallbackTask : CallbackTask { |
| public: |
| LoggingCallbackTask() = delete; |
| LoggingCallbackTask(wgpu::LoggingCallback loggingCallback, |
| WGPULoggingType loggingType, |
| const char* message, |
| void* userdata) |
| : mCallback(loggingCallback), |
| mLoggingType(loggingType), |
| mMessage(message), |
| mUserdata(userdata) { |
| // Since the FinishImpl() will be called in uncertain future in which time the message |
| // may already disposed, we must keep a local copy in the CallbackTask. |
| } |
| |
| private: |
| void FinishImpl() override { mCallback(mLoggingType, mMessage.c_str(), mUserdata); } |
| |
| void HandleShutDownImpl() override { |
| // Do the logging anyway |
| mCallback(mLoggingType, mMessage.c_str(), mUserdata); |
| } |
| |
| void HandleDeviceLossImpl() override { mCallback(mLoggingType, mMessage.c_str(), mUserdata); } |
| |
| // As all deferred callback tasks will be triggered before modifying the registered |
| // callback or shutting down, we are ensured that callback function and userdata pointer |
| // stored in tasks is valid when triggered. |
| wgpu::LoggingCallback mCallback; |
| WGPULoggingType mLoggingType; |
| std::string mMessage; |
| raw_ptr<void> mUserdata; |
| }; |
| } // anonymous namespace |
| |
| ResultOrError<Ref<PipelineLayoutBase>> ValidateLayoutAndGetComputePipelineDescriptorWithDefaults( |
| DeviceBase* device, |
| const ComputePipelineDescriptor& descriptor, |
| ComputePipelineDescriptor* outDescriptor) { |
| Ref<PipelineLayoutBase> layoutRef; |
| *outDescriptor = descriptor; |
| |
| if (outDescriptor->layout == nullptr) { |
| DAWN_TRY_ASSIGN(layoutRef, PipelineLayoutBase::CreateDefault( |
| device, {{ |
| SingleShaderStage::Compute, |
| outDescriptor->compute.module, |
| outDescriptor->compute.entryPoint, |
| outDescriptor->compute.constantCount, |
| outDescriptor->compute.constants, |
| }})); |
| outDescriptor->layout = layoutRef.Get(); |
| } |
| |
| return layoutRef; |
| } |
| |
| ResultOrError<Ref<PipelineLayoutBase>> ValidateLayoutAndGetRenderPipelineDescriptorWithDefaults( |
| DeviceBase* device, |
| const RenderPipelineDescriptor& descriptor, |
| RenderPipelineDescriptor* outDescriptor) { |
| Ref<PipelineLayoutBase> layoutRef; |
| *outDescriptor = descriptor; |
| |
| if (descriptor.layout == nullptr) { |
| // Ref will keep the pipeline layout alive until the end of the function where |
| // the pipeline will take another reference. |
| DAWN_TRY_ASSIGN(layoutRef, |
| PipelineLayoutBase::CreateDefault( |
| device, GetRenderStagesAndSetPlaceholderShader(device, &descriptor))); |
| outDescriptor->layout = layoutRef.Get(); |
| } |
| |
| return layoutRef; |
| } |
| |
| // DeviceBase |
| |
| DeviceBase::DeviceBase(AdapterBase* adapter, |
| const UnpackedPtr<DeviceDescriptor>& descriptor, |
| const TogglesState& deviceToggles) |
| : mAdapter(adapter), mToggles(deviceToggles), mNextPipelineCompatibilityToken(1) { |
| DAWN_ASSERT(descriptor); |
| |
| mDeviceLostCallback = descriptor->deviceLostCallback; |
| mDeviceLostUserdata = descriptor->deviceLostUserdata; |
| |
| AdapterProperties adapterProperties; |
| adapter->APIGetProperties(&adapterProperties); |
| |
| ApplyFeatures(descriptor); |
| |
| DawnCacheDeviceDescriptor cacheDesc = {}; |
| const auto* cacheDescIn = descriptor.Get<DawnCacheDeviceDescriptor>(); |
| if (cacheDescIn != nullptr) { |
| cacheDesc = *cacheDescIn; |
| } |
| |
| if (cacheDesc.loadDataFunction == nullptr && cacheDesc.storeDataFunction == nullptr && |
| cacheDesc.functionUserdata == nullptr && GetPlatform()->GetCachingInterface() != nullptr) { |
| // Populate cache functions and userdata from legacy cachingInterface. |
| cacheDesc.loadDataFunction = [](const void* key, size_t keySize, void* value, |
| size_t valueSize, void* userdata) { |
| auto* cachingInterface = static_cast<dawn::platform::CachingInterface*>(userdata); |
| return cachingInterface->LoadData(key, keySize, value, valueSize); |
| }; |
| cacheDesc.storeDataFunction = [](const void* key, size_t keySize, const void* value, |
| size_t valueSize, void* userdata) { |
| auto* cachingInterface = static_cast<dawn::platform::CachingInterface*>(userdata); |
| return cachingInterface->StoreData(key, keySize, value, valueSize); |
| }; |
| cacheDesc.functionUserdata = GetPlatform()->GetCachingInterface(); |
| } |
| |
| // Disable caching if the toggle is passed, or the WGSL writer is not enabled. |
| // TODO(crbug.com/dawn/1481): Shader caching currently has a dependency on the WGSL writer to |
| // generate cache keys. We can lift the dependency once we also cache frontend parsing, |
| // transformations, and reflection. |
| #if TINT_BUILD_WGSL_WRITER |
| if (IsToggleEnabled(Toggle::DisableBlobCache)) { |
| #else |
| { |
| #endif |
| cacheDesc.loadDataFunction = nullptr; |
| cacheDesc.storeDataFunction = nullptr; |
| cacheDesc.functionUserdata = nullptr; |
| } |
| mBlobCache = std::make_unique<BlobCache>(cacheDesc); |
| |
| if (descriptor->requiredLimits != nullptr) { |
| mLimits.v1 = |
| ReifyDefaultLimits(descriptor->requiredLimits->limits, adapter->GetFeatureLevel()); |
| } else { |
| GetDefaultLimits(&mLimits.v1, adapter->GetFeatureLevel()); |
| } |
| // Get experimentalSubgroupLimits from physical device |
| mLimits.experimentalSubgroupLimits = |
| GetPhysicalDevice()->GetLimits().experimentalSubgroupLimits; |
| |
| mFormatTable = BuildFormatTable(this); |
| |
| if (descriptor->label != nullptr && strlen(descriptor->label) != 0) { |
| mLabel = descriptor->label; |
| } |
| |
| mIsImmediateErrorHandlingEnabled = IsToggleEnabled(Toggle::EnableImmediateErrorHandling); |
| |
| // Record the cache key from the properties. Note that currently, if a new extension |
| // descriptor is added (and probably handled here), the cache key recording needs to be |
| // updated. |
| StreamIn(&mDeviceCacheKey, kDawnVersion, adapterProperties, mEnabledFeatures.featuresBitSet, |
| mToggles, cacheDesc); |
| } |
| |
| DeviceBase::DeviceBase() : mState(State::Alive), mToggles(ToggleStage::Device) { |
| GetDefaultLimits(&mLimits.v1, FeatureLevel::Core); |
| mFormatTable = BuildFormatTable(this); |
| } |
| |
| DeviceBase::~DeviceBase() { |
| // We need to explicitly release the Queue before we complete the destructor so that the |
| // Queue does not get destroyed after the Device. |
| mQueue = nullptr; |
| } |
| |
| MaybeError DeviceBase::Initialize(Ref<QueueBase> defaultQueue) { |
| mQueue = std::move(defaultQueue); |
| |
| SetWGSLExtensionAllowList(); |
| |
| #if defined(DAWN_ENABLE_ASSERTS) |
| mUncapturedErrorCallback = [](WGPUErrorType, char const*, void*) { |
| static bool calledOnce = false; |
| if (!calledOnce) { |
| calledOnce = true; |
| dawn::WarningLog() << "No Dawn device uncaptured error callback was set. This is " |
| "probably not intended. If you really want to ignore errors " |
| "and suppress this message, set the callback to null."; |
| } |
| }; |
| |
| if (!mDeviceLostCallback) { |
| mDeviceLostCallback = [](WGPUDeviceLostReason, char const*, void*) { |
| static bool calledOnce = false; |
| if (!calledOnce) { |
| calledOnce = true; |
| dawn::WarningLog() << "No Dawn device lost callback was set. This is probably not " |
| "intended. If you really want to ignore device lost " |
| "and suppress this message, set the callback to null."; |
| } |
| }; |
| } |
| #endif // DAWN_ENABLE_ASSERTS |
| |
| mCaches = std::make_unique<DeviceBase::Caches>(); |
| mErrorScopeStack = std::make_unique<ErrorScopeStack>(); |
| mDynamicUploader = std::make_unique<DynamicUploader>(this); |
| mCallbackTaskManager = AcquireRef(new CallbackTaskManager()); |
| mDeprecationWarnings = std::make_unique<DeprecationWarnings>(); |
| mInternalPipelineStore = std::make_unique<InternalPipelineStore>(this); |
| |
| DAWN_ASSERT(GetPlatform() != nullptr); |
| mWorkerTaskPool = GetPlatform()->CreateWorkerTaskPool(); |
| mAsyncTaskManager = std::make_unique<AsyncTaskManager>(mWorkerTaskPool.get()); |
| |
| // Starting from now the backend can start doing reentrant calls so the device is marked as |
| // alive. |
| mState = State::Alive; |
| |
| DAWN_TRY_ASSIGN(mEmptyBindGroupLayout, CreateEmptyBindGroupLayout()); |
| DAWN_TRY_ASSIGN(mEmptyPipelineLayout, CreateEmptyPipelineLayout()); |
| |
| // If placeholder fragment shader module is needed, initialize it |
| if (IsToggleEnabled(Toggle::UsePlaceholderFragmentInVertexOnlyPipeline)) { |
| // The empty fragment shader, used as a work around for vertex-only render pipeline |
| constexpr char kEmptyFragmentShader[] = R"( |
| @fragment fn fs_empty_main() {} |
| )"; |
| ShaderModuleDescriptor descriptor; |
| ShaderModuleWGSLDescriptor wgslDesc; |
| wgslDesc.code = kEmptyFragmentShader; |
| descriptor.nextInChain = &wgslDesc; |
| |
| DAWN_TRY_ASSIGN(mInternalPipelineStore->placeholderFragmentShader, |
| CreateShaderModule(&descriptor)); |
| } |
| |
| if (HasFeature(Feature::ImplicitDeviceSynchronization)) { |
| mMutex = AcquireRef(new Mutex); |
| } else { |
| mMutex = nullptr; |
| } |
| |
| // mAdapter is not set for mock test devices. |
| // TODO(crbug.com/dawn/1702): using a mock adapter could avoid the null checking. |
| if (mAdapter != nullptr) { |
| mAdapter->GetPhysicalDevice()->GetInstance()->AddDevice(this); |
| } |
| |
| return {}; |
| } |
| |
| void DeviceBase::WillDropLastExternalRef() { |
| { |
| // This will be invoked by API side, so we need to lock. |
| // Note: we cannot hold the lock when flushing the callbacks so have to limit the scope of |
| // the lock. |
| auto deviceLock(GetScopedLock()); |
| |
| // DeviceBase uses RefCountedWithExternalCount to break refcycles. |
| // |
| // DeviceBase holds multiple Refs to various API objects (pipelines, buffers, etc.) which |
| // are used to implement various device-level facilities. These objects are cached on the |
| // device, so we want to keep them around instead of making transient allocations. However, |
| // many of the objects also hold a Ref<Device> back to their parent device. |
| // |
| // In order to break this cycle and prevent leaks, when the application drops the last |
| // external ref and WillDropLastExternalRef is called, the device clears out any member refs |
| // to API objects that hold back-refs to the device - thus breaking any reference cycles. |
| // |
| // Currently, this is done by calling Destroy on the device to cease all in-flight work and |
| // drop references to internal objects. We may want to lift this in the future, but it would |
| // make things more complex because there might be pending tasks which hold a ref back to |
| // the device - either directly or indirectly. We would need to ensure those tasks don't |
| // create new reference cycles, and we would need to continuously try draining the pending |
| // tasks to clear out all remaining refs. |
| Destroy(); |
| } |
| |
| // Flush last remaining callback tasks. |
| do { |
| FlushCallbackTaskQueue(); |
| } while (!mCallbackTaskManager->IsEmpty()); |
| |
| auto deviceLock(GetScopedLock()); |
| // Drop the device's reference to the queue. Because the application dropped the last external |
| // references, they can no longer get the queue from APIGetQueue(). |
| mQueue = nullptr; |
| |
| // Reset callbacks since after dropping the last external reference, the application may have |
| // freed any device-scope memory needed to run the callback. |
| mUncapturedErrorCallback = [](WGPUErrorType, char const* message, void*) { |
| dawn::WarningLog() << "Uncaptured error after last external device reference dropped.\n" |
| << message; |
| }; |
| mUncapturedErrorUserdata = nullptr; |
| |
| mDeviceLostCallback = [](WGPUDeviceLostReason, char const* message, void*) { |
| dawn::WarningLog() << "Device lost after last external device reference dropped.\n" |
| << message; |
| }; |
| mDeviceLostUserdata = nullptr; |
| |
| // mAdapter is not set for mock test devices. |
| // TODO(crbug.com/dawn/1702): using a mock adapter could avoid the null checking. |
| if (mAdapter != nullptr) { |
| mAdapter->GetPhysicalDevice()->GetInstance()->RemoveDevice(this); |
| |
| // Once last external ref dropped, all callbacks should be forwarded to Instance's callback |
| // queue instead. |
| mCallbackTaskManager = |
| mAdapter->GetPhysicalDevice()->GetInstance()->GetCallbackTaskManager(); |
| } |
| } |
| |
| void DeviceBase::DestroyObjects() { |
| // List of object types in reverse "dependency" order so we can iterate and delete the |
| // objects safely. We define dependent here such that if B has a ref to A, then B depends on |
| // A. We therefore try to destroy B before destroying A. Note that this only considers the |
| // immediate frontend dependencies, while backend objects could add complications and extra |
| // dependencies. |
| // |
| // Note that AttachmentState is not an ApiObject so it cannot be eagerly destroyed. However, |
| // since AttachmentStates are cached by the device, objects that hold references to |
| // AttachmentStates should make sure to un-ref them in their Destroy operation so that we |
| // can destroy the frontend cache. |
| |
| // clang-format off |
| static constexpr std::array<ObjectType, 20> kObjectTypeDependencyOrder = { |
| ObjectType::ComputePassEncoder, |
| ObjectType::RenderPassEncoder, |
| ObjectType::RenderBundleEncoder, |
| ObjectType::RenderBundle, |
| ObjectType::CommandEncoder, |
| ObjectType::CommandBuffer, |
| ObjectType::RenderPipeline, |
| ObjectType::ComputePipeline, |
| ObjectType::PipelineLayout, |
| ObjectType::SwapChain, |
| ObjectType::BindGroup, |
| ObjectType::BindGroupLayout, |
| ObjectType::ShaderModule, |
| ObjectType::SharedTextureMemory, |
| ObjectType::SharedFence, |
| ObjectType::ExternalTexture, |
| ObjectType::Texture, // Note that Textures own the TextureViews. |
| ObjectType::QuerySet, |
| ObjectType::Sampler, |
| ObjectType::Buffer, |
| }; |
| // clang-format on |
| |
| for (ObjectType type : kObjectTypeDependencyOrder) { |
| mObjectLists[type].Destroy(); |
| } |
| } |
| |
| void DeviceBase::Destroy() { |
| // Skip if we are already destroyed. |
| if (mState == State::Destroyed) { |
| return; |
| } |
| |
| // This function may be called re-entrantly inside APITick(). Tick triggers callbacks |
| // inside which the application may destroy the device. Thus, we should be careful not |
| // to delete objects that are needed inside Tick after callbacks have been called. |
| // - mCallbackTaskManager is not deleted since we flush the callback queue at the end |
| // of Tick(). Note: that flush should always be empty since all callbacks are drained |
| // inside Destroy() so there should be no outstanding tasks holding objects alive. |
| // - Similiarly, mAsyncTaskManager is not deleted since we use it to return a status |
| // from Tick() whether or not there is any more pending work. |
| |
| // Skip handling device facilities if they haven't even been created (or failed doing so) |
| if (mState != State::BeingCreated) { |
| // The device is being destroyed so it will be lost, call the application callback. |
| if (mDeviceLostCallback != nullptr) { |
| mCallbackTaskManager->AddCallbackTask( |
| std::bind(mDeviceLostCallback, WGPUDeviceLostReason_Destroyed, |
| "Device was destroyed.", mDeviceLostUserdata)); |
| mDeviceLostCallback = nullptr; |
| } |
| |
| // Call all the callbacks immediately as the device is about to shut down. |
| // TODO(crbug.com/dawn/826): Cancel the tasks that are in flight if possible. |
| mAsyncTaskManager->WaitAllPendingTasks(); |
| mCallbackTaskManager->HandleShutDown(); |
| } |
| |
| // Disconnect the device, depending on which state we are currently in. |
| switch (mState) { |
| case State::BeingCreated: |
| // The GPU timeline was never started so we don't have to wait. |
| break; |
| |
| case State::Alive: |
| // Alive is the only state which can have GPU work happening. Wait for all of it to |
| // complete before proceeding with destruction. |
| // Ignore errors so that we can continue with destruction |
| IgnoreErrors(mQueue->WaitForIdleForDestruction()); |
| mQueue->AssumeCommandsComplete(); |
| break; |
| |
| case State::BeingDisconnected: |
| // Getting disconnected is a transient state happening in a single API call so there |
| // is always an external reference keeping the Device alive, which means the |
| // destructor cannot run while BeingDisconnected. |
| DAWN_UNREACHABLE(); |
| break; |
| |
| case State::Disconnected: |
| break; |
| |
| case State::Destroyed: |
| // If we are already destroyed we should've skipped this work entirely. |
| DAWN_UNREACHABLE(); |
| break; |
| } |
| |
| if (mState != State::BeingCreated) { |
| // The GPU timeline is finished. |
| DAWN_ASSERT(mQueue->GetCompletedCommandSerial() == mQueue->GetLastSubmittedCommandSerial()); |
| |
| // Finish destroying all objects owned by the device and tick the queue-related tasks |
| // since they should be complete. This must be done before DestroyImpl() it may |
| // relinquish resources that will be freed by backends in the DestroyImpl() call. |
| DestroyObjects(); |
| mQueue->Tick(mQueue->GetCompletedCommandSerial()); |
| // Call TickImpl once last time to clean up resources |
| // Ignore errors so that we can continue with destruction |
| IgnoreErrors(TickImpl()); |
| } |
| |
| // At this point GPU operations are always finished, so we are in the disconnected state. |
| // Note that currently this state change is required because some of the backend |
| // implementations of DestroyImpl checks that we are disconnected before doing work. |
| mState = State::Disconnected; |
| |
| mDynamicUploader = nullptr; |
| mEmptyBindGroupLayout = nullptr; |
| mEmptyPipelineLayout = nullptr; |
| mInternalPipelineStore = nullptr; |
| mExternalTexturePlaceholderView = nullptr; |
| |
| // Note: mQueue is not released here since the application may still get it after calling |
| // Destroy() via APIGetQueue. |
| if (mQueue != nullptr) { |
| mQueue->AssumeCommandsComplete(); |
| mQueue->Destroy(); |
| } |
| |
| // Now that the GPU timeline is empty, destroy the backend device. |
| DestroyImpl(); |
| |
| mCaches = nullptr; |
| mState = State::Destroyed; |
| } |
| |
| void DeviceBase::APIDestroy() { |
| Destroy(); |
| } |
| |
| void DeviceBase::HandleError(std::unique_ptr<ErrorData> error, |
| InternalErrorType additionalAllowedErrors, |
| WGPUDeviceLostReason lostReason) { |
| AppendDebugLayerMessages(error.get()); |
| |
| InternalErrorType type = error->GetType(); |
| if (type != InternalErrorType::Validation) { |
| // D3D device can provide additional device removed reason. We would |
| // like to query and log the the device removed reason if the error is |
| // not validation error. |
| AppendDeviceLostMessage(error.get()); |
| } |
| |
| InternalErrorType allowedErrors = |
| InternalErrorType::Validation | InternalErrorType::DeviceLost | additionalAllowedErrors; |
| |
| if (type == InternalErrorType::DeviceLost) { |
| mState = State::Disconnected; |
| |
| // If the ErrorInjector is enabled, then the device loss might be fake and the device |
| // still be executing commands. Force a wait for idle in this case, with State being |
| // Disconnected so we can detect this case in WaitForIdleForDestruction. |
| if (ErrorInjectorEnabled()) { |
| IgnoreErrors(mQueue->WaitForIdleForDestruction()); |
| } |
| |
| // A real device lost happened. Set the state to disconnected as the device cannot be |
| // used. Also tags all commands as completed since the device stopped running. |
| mQueue->AssumeCommandsComplete(); |
| } else if (!(allowedErrors & type)) { |
| // If we receive an error which we did not explicitly allow, assume the backend can't |
| // recover and proceed with device destruction. We first wait for all previous commands to |
| // be completed so that backend objects can be freed immediately, before handling the loss. |
| error->AppendContext("handling unexpected error type %s when allowed errors are %s.", type, |
| allowedErrors); |
| |
| // Move away from the Alive state so that the application cannot use this device |
| // anymore. |
| // TODO(crbug.com/dawn/831): Do we need atomics for this to become visible to other |
| // threads in a multithreaded scenario? |
| mState = State::BeingDisconnected; |
| |
| // Ignore errors so that we can continue with destruction |
| // Assume all commands are complete after WaitForIdleForDestruction (because they were) |
| IgnoreErrors(mQueue->WaitForIdleForDestruction()); |
| IgnoreErrors(TickImpl()); |
| mQueue->AssumeCommandsComplete(); |
| mState = State::Disconnected; |
| |
| // Now everything is as if the device was lost. |
| type = InternalErrorType::DeviceLost; |
| } |
| |
| const std::string messageStr = error->GetFormattedMessage(); |
| if (type == InternalErrorType::DeviceLost) { |
| // The device was lost, schedule the application callback's execution. |
| // Note: we don't invoke the callbacks directly here because it could cause re-entrances -> |
| // possible deadlock. |
| if (mDeviceLostCallback != nullptr) { |
| mCallbackTaskManager->AddCallbackTask([callback = mDeviceLostCallback, lostReason, |
| messageStr, userdata = mDeviceLostUserdata] { |
| callback(lostReason, messageStr.c_str(), userdata); |
| }); |
| mDeviceLostCallback = nullptr; |
| } |
| |
| mQueue->HandleDeviceLoss(); |
| |
| // TODO(crbug.com/dawn/826): Cancel the tasks that are in flight if possible. |
| mAsyncTaskManager->WaitAllPendingTasks(); |
| mCallbackTaskManager->HandleDeviceLoss(); |
| |
| // Still forward device loss errors to the error scopes so they all reject. |
| mErrorScopeStack->HandleError(ToWGPUErrorType(type), messageStr); |
| } else { |
| // Pass the error to the error scope stack and call the uncaptured error callback |
| // if it isn't handled. DeviceLost is not handled here because it should be |
| // handled by the lost callback. |
| bool captured = mErrorScopeStack->HandleError(ToWGPUErrorType(type), messageStr); |
| if (!captured) { |
| // Only call the uncaptured error callback if the device is alive. After the |
| // device is lost, the uncaptured error callback should cease firing. |
| if (mUncapturedErrorCallback != nullptr && mState == State::Alive) { |
| mUncapturedErrorCallback(static_cast<WGPUErrorType>(ToWGPUErrorType(type)), |
| messageStr.c_str(), mUncapturedErrorUserdata); |
| } |
| } |
| } |
| } |
| |
| void DeviceBase::ConsumeError(std::unique_ptr<ErrorData> error, |
| InternalErrorType additionalAllowedErrors) { |
| DAWN_ASSERT(error != nullptr); |
| HandleError(std::move(error), additionalAllowedErrors); |
| } |
| |
| void DeviceBase::APISetLoggingCallback(wgpu::LoggingCallback callback, void* userdata) { |
| std::lock_guard<std::shared_mutex> lock(mLoggingMutex); |
| mLoggingCallback = callback; |
| mLoggingUserdata = userdata; |
| } |
| |
| void DeviceBase::APISetUncapturedErrorCallback(wgpu::ErrorCallback callback, void* userdata) { |
| // The registered callback function and userdata pointer are stored and used by deferred |
| // callback tasks, and after setting a different callback (especially in the case of |
| // resetting) the resources pointed by such pointer may be freed. Flush all deferred |
| // callback tasks to guarantee we are never going to use the previous callback after |
| // this call. |
| FlushCallbackTaskQueue(); |
| auto deviceLock(GetScopedLock()); |
| // Clearing the callback and userdata is allowed because in Chromium they should be cleared |
| // after Dawn device is destroyed and before Dawn wire server is destroyed. |
| if (callback == nullptr) { |
| mUncapturedErrorCallback = nullptr; |
| mUncapturedErrorUserdata = nullptr; |
| return; |
| } |
| if (IsLost()) { |
| return; |
| } |
| mUncapturedErrorCallback = callback; |
| mUncapturedErrorUserdata = userdata; |
| } |
| |
| void DeviceBase::APISetDeviceLostCallback(wgpu::DeviceLostCallback callback, void* userdata) { |
| // TODO(chromium:1234617): Add a deprecation warning. |
| |
| // The registered callback function and userdata pointer are stored and used by deferred |
| // callback tasks, and after setting a different callback (especially in the case of |
| // resetting) the resources pointed by such pointer may be freed. Flush all deferred |
| // callback tasks to guarantee we are never going to use the previous callback after |
| // this call. |
| FlushCallbackTaskQueue(); |
| auto deviceLock(GetScopedLock()); |
| // Clearing the callback and userdata is allowed because in Chromium they should be cleared |
| // after Dawn device is destroyed and before Dawn wire server is destroyed. |
| if (callback == nullptr) { |
| mDeviceLostCallback = nullptr; |
| mDeviceLostUserdata = nullptr; |
| return; |
| } |
| if (IsLost()) { |
| return; |
| } |
| mDeviceLostCallback = callback; |
| mDeviceLostUserdata = userdata; |
| } |
| |
| void DeviceBase::APIPushErrorScope(wgpu::ErrorFilter filter) { |
| if (ConsumedError(ValidateErrorFilter(filter))) { |
| return; |
| } |
| mErrorScopeStack->Push(filter); |
| } |
| |
| void DeviceBase::APIPopErrorScope(wgpu::ErrorCallback callback, void* userdata) { |
| static wgpu::ErrorCallback kDefaultCallback = [](WGPUErrorType, char const*, void*) {}; |
| |
| PopErrorScopeCallbackInfo callbackInfo = {}; |
| callbackInfo.mode = wgpu::CallbackMode::AllowProcessEvents; |
| callbackInfo.oldCallback = callback != nullptr ? callback : kDefaultCallback; |
| callbackInfo.userdata = userdata; |
| APIPopErrorScopeF(callbackInfo); |
| } |
| |
| Future DeviceBase::APIPopErrorScopeF(const PopErrorScopeCallbackInfo& callbackInfo) { |
| struct PopErrorScopeEvent final : public EventManager::TrackedEvent { |
| // TODO(crbug.com/dawn/2021) Remove the old callback type. |
| WGPUPopErrorScopeCallback mCallback; |
| WGPUErrorCallback mOldCallback; |
| void* mUserdata; |
| std::optional<ErrorScope> mScope; |
| |
| PopErrorScopeEvent(const PopErrorScopeCallbackInfo& callbackInfo, |
| std::optional<ErrorScope>&& scope) |
| : TrackedEvent(callbackInfo.mode, TrackedEvent::Completed{}), |
| mCallback(callbackInfo.callback), |
| mOldCallback(callbackInfo.oldCallback), |
| mUserdata(callbackInfo.userdata), |
| mScope(scope) { |
| // Exactly 1 callback should be set. |
| DAWN_ASSERT((mCallback != nullptr && mOldCallback == nullptr) || |
| (mCallback == nullptr && mOldCallback != nullptr)); |
| } |
| |
| ~PopErrorScopeEvent() override { EnsureComplete(EventCompletionType::Shutdown); } |
| |
| void Complete(EventCompletionType completionType) override { |
| WGPUPopErrorScopeStatus status = completionType == EventCompletionType::Ready |
| ? WGPUPopErrorScopeStatus_Success |
| : WGPUPopErrorScopeStatus_InstanceDropped; |
| WGPUErrorType type; |
| const char* message; |
| if (mScope) { |
| type = static_cast<WGPUErrorType>(mScope->GetErrorType()); |
| message = mScope->GetErrorMessage().c_str(); |
| } else { |
| type = WGPUErrorType_Unknown; |
| message = "No error scopes to pop"; |
| } |
| |
| if (mCallback) { |
| mCallback(status, type, message, mUserdata); |
| } else { |
| mOldCallback(type, message, mUserdata); |
| } |
| } |
| }; |
| |
| std::optional<ErrorScope> scope; |
| { |
| // TODO(crbug.com/dawn/831) Manually acquire device lock instead of relying on code-gen for |
| // re-entrancy. |
| auto deviceLock(GetScopedLock()); |
| |
| if (IsLost()) { |
| scope = ErrorScope(wgpu::ErrorType::DeviceLost, "GPU device disconnected"); |
| } else if (!mErrorScopeStack->Empty()) { |
| scope = mErrorScopeStack->Pop(); |
| } |
| } |
| |
| FutureID futureID = GetInstance()->GetEventManager()->TrackEvent( |
| AcquireRef(new PopErrorScopeEvent(callbackInfo, std::move(scope)))); |
| return {futureID}; |
| } |
| |
| BlobCache* DeviceBase::GetBlobCache() const { |
| return mBlobCache.get(); |
| } |
| |
| Blob DeviceBase::LoadCachedBlob(const CacheKey& key) { |
| return GetBlobCache()->Load(key); |
| } |
| |
| void DeviceBase::StoreCachedBlob(const CacheKey& key, const Blob& blob) { |
| if (!blob.Empty()) { |
| GetBlobCache()->Store(key, blob); |
| } |
| } |
| |
| MaybeError DeviceBase::ValidateObject(const ApiObjectBase* object) const { |
| DAWN_ASSERT(object != nullptr); |
| DAWN_INVALID_IF(object->GetDevice() != this, |
| "%s is associated with %s, and cannot be used with %s.", object, |
| object->GetDevice(), this); |
| |
| // TODO(dawn:563): Preserve labels for error objects. |
| DAWN_INVALID_IF(object->IsError(), "%s is invalid.", object); |
| |
| return {}; |
| } |
| |
| MaybeError DeviceBase::ValidateIsAlive() const { |
| DAWN_INVALID_IF(mState != State::Alive, "%s is lost.", this); |
| return {}; |
| } |
| |
| void DeviceBase::APIForceLoss(wgpu::DeviceLostReason reason, const char* message) { |
| if (mState != State::Alive) { |
| return; |
| } |
| // Note that since we are passing None as the allowedErrors, an additional message will be |
| // appended noting that the error was unexpected. Since this call is for testing only it is not |
| // too important, but useful for users to understand where the extra message is coming from. |
| HandleError(DAWN_INTERNAL_ERROR(message), InternalErrorType::None, ToAPI(reason)); |
| } |
| |
| DeviceBase::State DeviceBase::GetState() const { |
| return mState; |
| } |
| |
| bool DeviceBase::IsLost() const { |
| DAWN_ASSERT(mState != State::BeingCreated); |
| return mState != State::Alive; |
| } |
| |
| ApiObjectList* DeviceBase::GetObjectTrackingList(ObjectType type) { |
| return &mObjectLists[type]; |
| } |
| |
| InstanceBase* DeviceBase::GetInstance() const { |
| return mAdapter->GetPhysicalDevice()->GetInstance(); |
| } |
| |
| AdapterBase* DeviceBase::GetAdapter() const { |
| return mAdapter.Get(); |
| } |
| |
| PhysicalDeviceBase* DeviceBase::GetPhysicalDevice() const { |
| return mAdapter->GetPhysicalDevice(); |
| } |
| |
| dawn::platform::Platform* DeviceBase::GetPlatform() const { |
| return GetPhysicalDevice()->GetInstance()->GetPlatform(); |
| } |
| |
| InternalPipelineStore* DeviceBase::GetInternalPipelineStore() { |
| return mInternalPipelineStore.get(); |
| } |
| |
| bool DeviceBase::HasPendingTasks() { |
| return mAsyncTaskManager->HasPendingTasks() || !mCallbackTaskManager->IsEmpty(); |
| } |
| |
| bool DeviceBase::IsDeviceIdle() { |
| if (HasPendingTasks()) { |
| return false; |
| } |
| return !mQueue->HasScheduledCommands(); |
| } |
| |
| ResultOrError<const Format*> DeviceBase::GetInternalFormat(wgpu::TextureFormat format) const { |
| FormatIndex index = ComputeFormatIndex(format); |
| DAWN_INVALID_IF(index >= mFormatTable.size(), "Unknown texture format %s.", format); |
| |
| const Format* internalFormat = &mFormatTable[index]; |
| DAWN_INVALID_IF(!internalFormat->IsSupported(), "Unsupported texture format %s, reason: %s.", |
| format, internalFormat->unsupportedReason); |
| |
| return internalFormat; |
| } |
| |
| const Format& DeviceBase::GetValidInternalFormat(wgpu::TextureFormat format) const { |
| FormatIndex index = ComputeFormatIndex(format); |
| DAWN_ASSERT(index < mFormatTable.size()); |
| DAWN_ASSERT(mFormatTable[index].IsSupported()); |
| return mFormatTable[index]; |
| } |
| |
| const Format& DeviceBase::GetValidInternalFormat(FormatIndex index) const { |
| DAWN_ASSERT(index < mFormatTable.size()); |
| DAWN_ASSERT(mFormatTable[index].IsSupported()); |
| return mFormatTable[index]; |
| } |
| |
| std::vector<const Format*> DeviceBase::GetCompatibleViewFormats(const Format& format) const { |
| wgpu::TextureFormat viewFormat = |
| format.format == format.baseFormat ? format.baseViewFormat : format.baseFormat; |
| if (viewFormat == wgpu::TextureFormat::Undefined) { |
| return {}; |
| } |
| const Format& f = mFormatTable[ComputeFormatIndex(viewFormat)]; |
| if (!f.IsSupported()) { |
| return {}; |
| } |
| return {&f}; |
| } |
| |
| ResultOrError<Ref<BindGroupLayoutBase>> DeviceBase::GetOrCreateBindGroupLayout( |
| const BindGroupLayoutDescriptor* descriptor, |
| PipelineCompatibilityToken pipelineCompatibilityToken) { |
| BindGroupLayoutInternalBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice); |
| |
| const size_t blueprintHash = blueprint.ComputeContentHash(); |
| blueprint.SetContentHash(blueprintHash); |
| |
| Ref<BindGroupLayoutInternalBase> internal; |
| DAWN_TRY_ASSIGN(internal, GetOrCreate(mCaches->bindGroupLayouts, &blueprint, |
| [&]() -> ResultOrError<Ref<BindGroupLayoutInternalBase>> { |
| Ref<BindGroupLayoutInternalBase> result; |
| DAWN_TRY_ASSIGN( |
| result, CreateBindGroupLayoutImpl(descriptor)); |
| result->SetContentHash(blueprintHash); |
| return result; |
| })); |
| return AcquireRef( |
| new BindGroupLayoutBase(this, descriptor->label, internal, pipelineCompatibilityToken)); |
| } |
| |
| // Private function used at initialization |
| ResultOrError<Ref<BindGroupLayoutBase>> DeviceBase::CreateEmptyBindGroupLayout() { |
| BindGroupLayoutDescriptor desc = {}; |
| desc.entryCount = 0; |
| desc.entries = nullptr; |
| |
| return GetOrCreateBindGroupLayout(&desc); |
| } |
| |
| ResultOrError<Ref<PipelineLayoutBase>> DeviceBase::CreateEmptyPipelineLayout() { |
| PipelineLayoutDescriptor desc = {}; |
| desc.bindGroupLayoutCount = 0; |
| desc.bindGroupLayouts = nullptr; |
| |
| return GetOrCreatePipelineLayout(Unpack(&desc)); |
| } |
| |
| BindGroupLayoutBase* DeviceBase::GetEmptyBindGroupLayout() { |
| DAWN_ASSERT(mEmptyBindGroupLayout != nullptr); |
| return mEmptyBindGroupLayout.Get(); |
| } |
| |
| PipelineLayoutBase* DeviceBase::GetEmptyPipelineLayout() { |
| DAWN_ASSERT(mEmptyPipelineLayout != nullptr); |
| return mEmptyPipelineLayout.Get(); |
| } |
| |
| Ref<ComputePipelineBase> DeviceBase::GetCachedComputePipeline( |
| ComputePipelineBase* uninitializedComputePipeline) { |
| return mCaches->computePipelines.Find(uninitializedComputePipeline); |
| } |
| |
| Ref<RenderPipelineBase> DeviceBase::GetCachedRenderPipeline( |
| RenderPipelineBase* uninitializedRenderPipeline) { |
| return mCaches->renderPipelines.Find(uninitializedRenderPipeline); |
| } |
| |
| Ref<ComputePipelineBase> DeviceBase::AddOrGetCachedComputePipeline( |
| Ref<ComputePipelineBase> computePipeline) { |
| auto [pipeline, _] = mCaches->computePipelines.Insert(computePipeline.Get()); |
| return std::move(pipeline); |
| } |
| |
| Ref<RenderPipelineBase> DeviceBase::AddOrGetCachedRenderPipeline( |
| Ref<RenderPipelineBase> renderPipeline) { |
| auto [pipeline, _] = mCaches->renderPipelines.Insert(renderPipeline.Get()); |
| return std::move(pipeline); |
| } |
| |
| ResultOrError<Ref<TextureViewBase>> DeviceBase::CreateImplicitMSAARenderTextureViewFor( |
| const TextureViewBase* singleSampledTextureView, |
| uint32_t sampleCount) { |
| DAWN_ASSERT(IsLockedByCurrentThreadIfNeeded()); |
| |
| TextureDescriptor desc = {}; |
| desc.dimension = wgpu::TextureDimension::e2D; |
| desc.format = singleSampledTextureView->GetFormat().format; |
| desc.size = {singleSampledTextureView->GetSingleSubresourceVirtualSize().width, |
| singleSampledTextureView->GetSingleSubresourceVirtualSize().height, 1}; |
| desc.sampleCount = sampleCount; |
| desc.usage = wgpu::TextureUsage::RenderAttachment; |
| if (HasFeature(Feature::TransientAttachments)) { |
| desc.usage = desc.usage | wgpu::TextureUsage::TransientAttachment; |
| } |
| |
| Ref<TextureBase> msaaTexture; |
| Ref<TextureViewBase> msaaTextureView; |
| |
| DAWN_TRY_ASSIGN(msaaTexture, CreateTexture(&desc)); |
| |
| DAWN_TRY_ASSIGN(msaaTextureView, msaaTexture->CreateView()); |
| |
| return std::move(msaaTextureView); |
| } |
| |
| ResultOrError<Ref<TextureViewBase>> |
| DeviceBase::GetOrCreatePlaceholderTextureViewForExternalTexture() { |
| if (!mExternalTexturePlaceholderView.Get()) { |
| Ref<TextureBase> externalTexturePlaceholder; |
| TextureDescriptor textureDesc; |
| textureDesc.dimension = wgpu::TextureDimension::e2D; |
| textureDesc.format = wgpu::TextureFormat::RGBA8Unorm; |
| textureDesc.label = "Dawn_External_Texture_Placeholder_Texture"; |
| textureDesc.size = {1, 1, 1}; |
| textureDesc.usage = wgpu::TextureUsage::TextureBinding; |
| |
| DAWN_TRY_ASSIGN(externalTexturePlaceholder, CreateTexture(&textureDesc)); |
| |
| TextureViewDescriptor textureViewDesc; |
| textureViewDesc.arrayLayerCount = 1; |
| textureViewDesc.aspect = wgpu::TextureAspect::All; |
| textureViewDesc.baseArrayLayer = 0; |
| textureViewDesc.dimension = wgpu::TextureViewDimension::e2D; |
| textureViewDesc.format = wgpu::TextureFormat::RGBA8Unorm; |
| textureViewDesc.label = "Dawn_External_Texture_Placeholder_Texture_View"; |
| textureViewDesc.mipLevelCount = 1; |
| |
| DAWN_TRY_ASSIGN(mExternalTexturePlaceholderView, |
| CreateTextureView(externalTexturePlaceholder.Get(), &textureViewDesc)); |
| } |
| |
| return mExternalTexturePlaceholderView; |
| } |
| |
| ResultOrError<Ref<PipelineLayoutBase>> DeviceBase::GetOrCreatePipelineLayout( |
| const UnpackedPtr<PipelineLayoutDescriptor>& descriptor) { |
| PipelineLayoutBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice); |
| |
| const size_t blueprintHash = blueprint.ComputeContentHash(); |
| blueprint.SetContentHash(blueprintHash); |
| |
| return GetOrCreate(mCaches->pipelineLayouts, &blueprint, |
| [&]() -> ResultOrError<Ref<PipelineLayoutBase>> { |
| Ref<PipelineLayoutBase> result; |
| DAWN_TRY_ASSIGN(result, CreatePipelineLayoutImpl(descriptor)); |
| result->SetContentHash(blueprintHash); |
| return result; |
| }); |
| } |
| |
| ResultOrError<Ref<SamplerBase>> DeviceBase::GetOrCreateSampler( |
| const SamplerDescriptor* descriptor) { |
| SamplerBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice); |
| |
| const size_t blueprintHash = blueprint.ComputeContentHash(); |
| blueprint.SetContentHash(blueprintHash); |
| |
| return GetOrCreate(mCaches->samplers, &blueprint, [&]() -> ResultOrError<Ref<SamplerBase>> { |
| Ref<SamplerBase> result; |
| DAWN_TRY_ASSIGN(result, CreateSamplerImpl(descriptor)); |
| result->SetContentHash(blueprintHash); |
| return result; |
| }); |
| } |
| |
| ResultOrError<Ref<ShaderModuleBase>> DeviceBase::GetOrCreateShaderModule( |
| const UnpackedPtr<ShaderModuleDescriptor>& descriptor, |
| ShaderModuleParseResult* parseResult, |
| std::unique_ptr<OwnedCompilationMessages>* compilationMessages) { |
| DAWN_ASSERT(parseResult != nullptr); |
| |
| ShaderModuleBase blueprint(this, descriptor, ApiObjectBase::kUntrackedByDevice); |
| |
| const size_t blueprintHash = blueprint.ComputeContentHash(); |
| blueprint.SetContentHash(blueprintHash); |
| |
| return GetOrCreate( |
| mCaches->shaderModules, &blueprint, [&]() -> ResultOrError<Ref<ShaderModuleBase>> { |
| auto* unownedMessages = compilationMessages ? compilationMessages->get() : nullptr; |
| if (!parseResult->HasParsedShader()) { |
| // We skip the parse on creation if validation isn't enabled which let's us quickly |
| // lookup in the cache without validating and parsing. We need the parsed module |
| // now. |
| DAWN_ASSERT(!IsValidationEnabled()); |
| DAWN_TRY( |
| ValidateAndParseShaderModule(this, descriptor, parseResult, unownedMessages)); |
| } |
| |
| auto resultOrError = [&]() -> ResultOrError<Ref<ShaderModuleBase>> { |
| SCOPED_DAWN_HISTOGRAM_TIMER_MICROS(GetPlatform(), "CreateShaderModuleUS"); |
| return CreateShaderModuleImpl(descriptor, parseResult, unownedMessages); |
| }(); |
| DAWN_HISTOGRAM_BOOLEAN(GetPlatform(), "CreateShaderModuleSuccess", |
| resultOrError.IsSuccess()); |
| |
| Ref<ShaderModuleBase> result; |
| DAWN_TRY_ASSIGN(result, std::move(resultOrError)); |
| result->SetContentHash(blueprintHash); |
| // Inject compilation messages now, as another thread may get a cache hit and query them |
| // immediately after insert into the cache. |
| if (compilationMessages) { |
| result->InjectCompilationMessages(std::move(*compilationMessages)); |
| } |
| return result; |
| }); |
| } |
| |
| Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState(AttachmentState* blueprint) { |
| return GetOrCreate(mCaches->attachmentStates, blueprint, [&]() -> Ref<AttachmentState> { |
| return AcquireRef(new AttachmentState(*blueprint)); |
| }); |
| } |
| |
| Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState( |
| const RenderBundleEncoderDescriptor* descriptor) { |
| AttachmentState blueprint(this, descriptor); |
| return GetOrCreateAttachmentState(&blueprint); |
| } |
| |
| Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState( |
| const UnpackedPtr<RenderPipelineDescriptor>& descriptor, |
| const PipelineLayoutBase* layout) { |
| AttachmentState blueprint(this, descriptor, layout); |
| return GetOrCreateAttachmentState(&blueprint); |
| } |
| |
| Ref<AttachmentState> DeviceBase::GetOrCreateAttachmentState( |
| const UnpackedPtr<RenderPassDescriptor>& descriptor) { |
| AttachmentState blueprint(this, descriptor); |
| return GetOrCreateAttachmentState(&blueprint); |
| } |
| |
| Ref<PipelineCacheBase> DeviceBase::GetOrCreatePipelineCache(const CacheKey& key) { |
| return GetOrCreatePipelineCacheImpl(key); |
| } |
| |
| // Object creation API methods |
| |
| BindGroupBase* DeviceBase::APICreateBindGroup(const BindGroupDescriptor* descriptor) { |
| Ref<BindGroupBase> result; |
| if (ConsumedError(CreateBindGroup(descriptor), &result, "calling %s.CreateBindGroup(%s).", this, |
| descriptor)) { |
| return ReturnToAPI( |
| BindGroupBase::MakeError(this, descriptor ? descriptor->label : nullptr)); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| BindGroupLayoutBase* DeviceBase::APICreateBindGroupLayout( |
| const BindGroupLayoutDescriptor* descriptor) { |
| Ref<BindGroupLayoutBase> result; |
| if (ConsumedError(CreateBindGroupLayout(descriptor), &result, |
| "calling %s.CreateBindGroupLayout(%s).", this, descriptor)) { |
| return ReturnToAPI( |
| BindGroupLayoutBase::MakeError(this, descriptor ? descriptor->label : nullptr)); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| BufferBase* DeviceBase::APICreateBuffer(const BufferDescriptor* descriptor) { |
| // Search for the host mapped pointer extension struct. If it is present, we will |
| // try to create the buffer without taking the global device-lock. If creation fails, |
| // we'll acquire the device lock and do normal error handling. |
| bool hasHostMapped = false; |
| for (const auto* chain = descriptor->nextInChain; chain != nullptr; |
| chain = chain->nextInChain) { |
| if (chain->sType == wgpu::SType::BufferHostMappedPointer) { |
| hasHostMapped = true; |
| break; |
| } |
| } |
| |
| std::optional<ResultOrError<Ref<BufferBase>>> resultOrError; |
| if (hasHostMapped) { |
| // Buffer creation from host-mapped pointer does not need the device lock. |
| resultOrError = CreateBuffer(descriptor); |
| if (resultOrError->IsSuccess()) { |
| return ReturnToAPI(resultOrError->AcquireSuccess()); |
| } |
| // Error case continues below, and will acquire the device lock for |
| // thread-safe error handling. |
| // TODO(dawn:1662): Make error handling thread-safe. |
| } |
| |
| auto deviceLock(GetScopedLock()); |
| if (!hasHostMapped) { |
| resultOrError = CreateBuffer(descriptor); |
| } |
| Ref<BufferBase> result; |
| if (ConsumedError(std::move(*resultOrError), &result, InternalErrorType::OutOfMemory, |
| "calling %s.CreateBuffer(%s).", this, descriptor)) { |
| DAWN_ASSERT(result == nullptr); |
| result = BufferBase::MakeError(this, descriptor); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| |
| CommandEncoder* DeviceBase::APICreateCommandEncoder(const CommandEncoderDescriptor* descriptor) { |
| Ref<CommandEncoder> result; |
| if (ConsumedError(CreateCommandEncoder(descriptor), &result, |
| "calling %s.CreateCommandEncoder(%s).", this, descriptor)) { |
| result = CommandEncoder::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| ComputePipelineBase* DeviceBase::APICreateComputePipeline( |
| const ComputePipelineDescriptor* descriptor) { |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateComputePipeline", "label", |
| utils::GetLabelForTrace(descriptor->label)); |
| |
| auto resultOrError = CreateComputePipeline(descriptor); |
| if (resultOrError.IsSuccess()) { |
| return ReturnToAPI(resultOrError.AcquireSuccess()); |
| } |
| |
| // Acquire the device lock for error handling. |
| // TODO(dawn:1662): Make error handling thread-safe. |
| auto deviceLock(GetScopedLock()); |
| Ref<ComputePipelineBase> result; |
| if (ConsumedError(std::move(resultOrError), &result, InternalErrorType::Internal, |
| "calling %s.CreateComputePipeline(%s).", this, descriptor)) { |
| result = ComputePipelineBase::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| void DeviceBase::APICreateComputePipelineAsync(const ComputePipelineDescriptor* descriptor, |
| WGPUCreateComputePipelineAsyncCallback callback, |
| void* userdata) { |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateComputePipelineAsync", "label", |
| utils::GetLabelForTrace(descriptor->label)); |
| |
| auto resultOrError = CreateUninitializedComputePipeline(descriptor); |
| // Enqueue the callback directly when an error has been found in the front-end |
| // validation. |
| if (resultOrError.IsError()) { |
| AddComputePipelineAsyncCallbackTask(resultOrError.AcquireError(), descriptor->label, |
| callback, userdata); |
| return; |
| } |
| |
| Ref<ComputePipelineBase> uninitializedComputePipeline = resultOrError.AcquireSuccess(); |
| |
| // Call the callback directly when we can get a cached compute pipeline object. |
| Ref<ComputePipelineBase> cachedComputePipeline = |
| GetCachedComputePipeline(uninitializedComputePipeline.Get()); |
| if (cachedComputePipeline.Get() != nullptr) { |
| mCallbackTaskManager->AddCallbackTask( |
| std::bind(callback, WGPUCreatePipelineAsyncStatus_Success, |
| ToAPI(ReturnToAPI(std::move(cachedComputePipeline))), "", userdata)); |
| } else { |
| // Otherwise we will create the pipeline object in InitializeComputePipelineAsyncImpl(), |
| // where the pipeline object may be initialized asynchronously and the result will be |
| // saved to mCreatePipelineAsyncTracker. |
| InitializeComputePipelineAsyncImpl(std::move(uninitializedComputePipeline), callback, |
| userdata); |
| } |
| } |
| Future DeviceBase::APICreateComputePipelineAsyncF( |
| const ComputePipelineDescriptor* descriptor, |
| const CreateComputePipelineAsyncCallbackInfo& callbackInfo) { |
| // TODO(dawn:1987) Implement this. |
| DAWN_CHECK(false); |
| } |
| PipelineLayoutBase* DeviceBase::APICreatePipelineLayout( |
| const PipelineLayoutDescriptor* descriptor) { |
| Ref<PipelineLayoutBase> result; |
| if (ConsumedError(CreatePipelineLayout(descriptor), &result, |
| "calling %s.CreatePipelineLayout(%s).", this, descriptor)) { |
| result = PipelineLayoutBase::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| QuerySetBase* DeviceBase::APICreateQuerySet(const QuerySetDescriptor* descriptor) { |
| Ref<QuerySetBase> result; |
| if (ConsumedError(CreateQuerySet(descriptor), &result, InternalErrorType::OutOfMemory, |
| "calling %s.CreateQuerySet(%s).", this, descriptor)) { |
| result = QuerySetBase::MakeError(this, descriptor); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| SamplerBase* DeviceBase::APICreateSampler(const SamplerDescriptor* descriptor) { |
| Ref<SamplerBase> result; |
| if (ConsumedError(CreateSampler(descriptor), &result, "calling %s.CreateSampler(%s).", this, |
| descriptor)) { |
| result = SamplerBase::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| void DeviceBase::APICreateRenderPipelineAsync(const RenderPipelineDescriptor* descriptor, |
| WGPUCreateRenderPipelineAsyncCallback callback, |
| void* userdata) { |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateRenderPipelineAsync", "label", |
| utils::GetLabelForTrace(descriptor->label)); |
| |
| auto resultOrError = CreateUninitializedRenderPipeline(descriptor); |
| |
| // Enqueue the callback directly when an error has been found in the front-end |
| // validation. |
| if (resultOrError.IsError()) { |
| AddRenderPipelineAsyncCallbackTask(resultOrError.AcquireError(), descriptor->label, |
| callback, userdata); |
| return; |
| } |
| |
| Ref<RenderPipelineBase> uninitializedRenderPipeline = resultOrError.AcquireSuccess(); |
| |
| // Call the callback directly when we can get a cached render pipeline object. |
| Ref<RenderPipelineBase> cachedRenderPipeline = |
| GetCachedRenderPipeline(uninitializedRenderPipeline.Get()); |
| if (cachedRenderPipeline != nullptr) { |
| mCallbackTaskManager->AddCallbackTask( |
| std::bind(callback, WGPUCreatePipelineAsyncStatus_Success, |
| ToAPI(ReturnToAPI(std::move(cachedRenderPipeline))), "", userdata)); |
| } else { |
| // Otherwise we will create the pipeline object in InitializeRenderPipelineAsyncImpl(), |
| // where the pipeline object may be initialized asynchronously and the result will be |
| // saved to mCreatePipelineAsyncTracker. |
| InitializeRenderPipelineAsyncImpl(std::move(uninitializedRenderPipeline), callback, |
| userdata); |
| } |
| } |
| Future DeviceBase::APICreateRenderPipelineAsyncF( |
| const RenderPipelineDescriptor* descriptor, |
| const CreateRenderPipelineAsyncCallbackInfo& callbackInfo) { |
| // TODO(dawn:1987) Implement this. |
| DAWN_CHECK(false); |
| } |
| RenderBundleEncoder* DeviceBase::APICreateRenderBundleEncoder( |
| const RenderBundleEncoderDescriptor* descriptor) { |
| Ref<RenderBundleEncoder> result; |
| if (ConsumedError(CreateRenderBundleEncoder(descriptor), &result, |
| "calling %s.CreateRenderBundleEncoder(%s).", this, descriptor)) { |
| result = RenderBundleEncoder::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| RenderPipelineBase* DeviceBase::APICreateRenderPipeline( |
| const RenderPipelineDescriptor* descriptor) { |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateRenderPipeline", "label", |
| utils::GetLabelForTrace(descriptor->label)); |
| |
| auto resultOrError = CreateRenderPipeline(descriptor); |
| if (resultOrError.IsSuccess()) { |
| return ReturnToAPI(resultOrError.AcquireSuccess()); |
| } |
| |
| // Acquire the device lock for error handling. |
| // TODO(dawn:1662): Make error handling thread-safe. |
| auto deviceLock(GetScopedLock()); |
| Ref<RenderPipelineBase> result; |
| if (ConsumedError(std::move(resultOrError), &result, InternalErrorType::Internal, |
| "calling %s.CreateRenderPipeline(%s).", this, descriptor)) { |
| result = RenderPipelineBase::MakeError(this, descriptor ? descriptor->label : nullptr); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| ShaderModuleBase* DeviceBase::APICreateShaderModule(const ShaderModuleDescriptor* descriptor) { |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APICreateShaderModule", "label", |
| utils::GetLabelForTrace(descriptor->label)); |
| |
| std::unique_ptr<OwnedCompilationMessages> compilationMessages( |
| std::make_unique<OwnedCompilationMessages>()); |
| auto resultOrError = CreateShaderModule(descriptor, &compilationMessages); |
| if (resultOrError.IsSuccess()) { |
| Ref<ShaderModuleBase> result = resultOrError.AcquireSuccess(); |
| EmitCompilationLog(result.Get()); |
| return ReturnToAPI(std::move(result)); |
| } |
| |
| // Acquire the device lock for error handling. |
| auto deviceLock(GetScopedLock()); |
| Ref<ShaderModuleBase> result; |
| if (ConsumedError(std::move(resultOrError), &result, "calling %s.CreateShaderModule(%s).", this, |
| descriptor)) { |
| DAWN_ASSERT(result == nullptr); |
| result = ShaderModuleBase::MakeError(this, descriptor ? descriptor->label : nullptr); |
| // Emit Tint errors and warnings for the error shader module. |
| // Also move the compilation messages to the shader module so the application can later |
| // retrieve it with GetCompilationInfo. |
| result->InjectCompilationMessages(std::move(compilationMessages)); |
| } |
| EmitCompilationLog(result.Get()); |
| return ReturnToAPI(std::move(result)); |
| } |
| |
| ShaderModuleBase* DeviceBase::APICreateErrorShaderModule(const ShaderModuleDescriptor* descriptor, |
| const char* errorMessage) { |
| Ref<ShaderModuleBase> result = |
| ShaderModuleBase::MakeError(this, descriptor ? descriptor->label : nullptr); |
| std::unique_ptr<OwnedCompilationMessages> compilationMessages( |
| std::make_unique<OwnedCompilationMessages>()); |
| compilationMessages->AddUnanchoredMessage(errorMessage, wgpu::CompilationMessageType::Error); |
| result->InjectCompilationMessages(std::move(compilationMessages)); |
| EmitCompilationLog(result.Get()); |
| |
| std::unique_ptr<ErrorData> errorData = |
| DAWN_VALIDATION_ERROR("Error in calling %s.CreateShaderModule(%s).", this, descriptor); |
| ConsumeError(std::move(errorData)); |
| |
| return ReturnToAPI(std::move(result)); |
| } |
| SwapChainBase* DeviceBase::APICreateSwapChain(Surface* surface, |
| const SwapChainDescriptor* descriptor) { |
| Ref<SwapChainBase> result; |
| if (ConsumedError(CreateSwapChain(surface, descriptor), &result, |
| "calling %s.CreateSwapChain(%s).", this, descriptor)) { |
| result = SwapChainBase::MakeError(this, descriptor); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| TextureBase* DeviceBase::APICreateTexture(const TextureDescriptor* descriptor) { |
| Ref<TextureBase> result; |
| if (ConsumedError(CreateTexture(descriptor), &result, InternalErrorType::OutOfMemory, |
| "calling %s.CreateTexture(%s).", this, descriptor)) { |
| result = TextureBase::MakeError(this, descriptor); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| |
| wgpu::TextureUsage DeviceBase::APIGetSupportedSurfaceUsage(Surface* surface) { |
| wgpu::TextureUsage result; |
| if (ConsumedError(GetSupportedSurfaceUsage(surface), &result, |
| "calling %s.GetSupportedSurfaceUsage().", this)) { |
| return wgpu::TextureUsage::None; |
| } |
| return result; |
| } |
| |
| // For Dawn Wire |
| |
| BufferBase* DeviceBase::APICreateErrorBuffer(const BufferDescriptor* desc) { |
| UnpackedPtr<BufferDescriptor> unpacked; |
| if (!ConsumedError(ValidateBufferDescriptor(this, desc), &unpacked, |
| InternalErrorType::OutOfMemory, "calling %s.CreateBuffer(%s).", this, |
| desc)) { |
| auto* clientErrorInfo = unpacked.Get<DawnBufferDescriptorErrorInfoFromWireClient>(); |
| if (clientErrorInfo != nullptr && clientErrorInfo->outOfMemory) { |
| HandleError(DAWN_OUT_OF_MEMORY_ERROR("Failed to allocate memory for buffer mapping"), |
| InternalErrorType::OutOfMemory); |
| } |
| } |
| |
| // Set the size of the error buffer to 0 as this function is called only when an OOM happens at |
| // the client side. |
| BufferDescriptor fakeDescriptor = *desc; |
| fakeDescriptor.size = 0; |
| return ReturnToAPI(BufferBase::MakeError(this, &fakeDescriptor)); |
| } |
| |
| ExternalTextureBase* DeviceBase::APICreateErrorExternalTexture() { |
| return ReturnToAPI(ExternalTextureBase::MakeError(this)); |
| } |
| |
| TextureBase* DeviceBase::APICreateErrorTexture(const TextureDescriptor* desc) { |
| return ReturnToAPI(TextureBase::MakeError(this, desc)); |
| } |
| |
| // Other Device API methods |
| |
| // Returns true if future ticking is needed. |
| bool DeviceBase::APITick() { |
| // TODO(dawn:1987) Add deprecation warning when Instance.ProcessEvents no longer calls this. |
| |
| // Tick may trigger callbacks which drop a ref to the device itself. Hold a Ref to ourselves |
| // to avoid deleting |this| in the middle of this function call. |
| Ref<DeviceBase> self(this); |
| bool tickError; |
| { |
| // Note: we cannot hold the lock when flushing the callbacks so have to limit the scope of |
| // the lock here. |
| auto deviceLock(GetScopedLock()); |
| tickError = ConsumedError(Tick()); |
| } |
| |
| // We have to check callback tasks in every APITick because it is not related to any global |
| // serials. |
| FlushCallbackTaskQueue(); |
| |
| if (tickError) { |
| return false; |
| } |
| |
| auto deviceLock(GetScopedLock()); |
| // We don't throw an error when device is lost. This allows pending callbacks to be |
| // executed even after the Device is lost/destroyed. |
| if (IsLost()) { |
| return HasPendingTasks(); |
| } |
| |
| TRACE_EVENT1(GetPlatform(), General, "DeviceBase::APITick::IsDeviceIdle", "isDeviceIdle", |
| IsDeviceIdle()); |
| |
| return !IsDeviceIdle(); |
| } |
| |
| MaybeError DeviceBase::Tick() { |
| if (IsLost() || !mQueue->HasScheduledCommands()) { |
| return {}; |
| } |
| |
| // To avoid overly ticking, we only want to tick when: |
| // 1. the last submitted serial has moved beyond the completed serial |
| // 2. or the backend still has pending commands to submit. |
| DAWN_TRY(mQueue->CheckPassedSerials()); |
| DAWN_TRY(TickImpl()); |
| |
| // TODO(crbug.com/dawn/833): decouple TickImpl from updating the serial so that we can |
| // tick the dynamic uploader before the backend resource allocators. This would allow |
| // reclaiming resources one tick earlier. |
| mDynamicUploader->Deallocate(mQueue->GetCompletedCommandSerial()); |
| mQueue->Tick(mQueue->GetCompletedCommandSerial()); |
| |
| return {}; |
| } |
| |
| AdapterBase* DeviceBase::APIGetAdapter() { |
| mAdapter->APIReference(); |
| return mAdapter.Get(); |
| } |
| |
| QueueBase* DeviceBase::APIGetQueue() { |
| // Backends gave the primary queue during initialization. |
| DAWN_ASSERT(mQueue != nullptr); |
| auto queue = mQueue; |
| return ReturnToAPI(std::move(queue)); |
| } |
| |
| ExternalTextureBase* DeviceBase::APICreateExternalTexture( |
| const ExternalTextureDescriptor* descriptor) { |
| Ref<ExternalTextureBase> result; |
| if (ConsumedError(CreateExternalTextureImpl(descriptor), &result, |
| "calling %s.CreateExternalTexture(%s).", this, descriptor)) { |
| result = ExternalTextureBase::MakeError(this); |
| } |
| |
| return ReturnToAPI(std::move(result)); |
| } |
| |
| SharedBufferMemoryBase* DeviceBase::APIImportSharedBufferMemory( |
| const SharedBufferMemoryDescriptor* descriptor) { |
| Ref<SharedBufferMemoryBase> result = nullptr; |
| if (ConsumedError( |
| [&]() -> ResultOrError<Ref<SharedBufferMemoryBase>> { |
| DAWN_TRY(ValidateIsAlive()); |
| return ImportSharedBufferMemoryImpl(descriptor); |
| }(), |
| &result, "calling %s.ImportSharedBufferMemory(%s).", this, descriptor)) { |
| return SharedBufferMemoryBase::MakeError(this, descriptor); |
| } |
| return result.Detach(); |
| } |
| |
| ResultOrError<Ref<SharedBufferMemoryBase>> DeviceBase::ImportSharedBufferMemoryImpl( |
| const SharedBufferMemoryDescriptor* descriptor) { |
| return DAWN_UNIMPLEMENTED_ERROR("Not implemented"); |
| } |
| |
| SharedTextureMemoryBase* DeviceBase::APIImportSharedTextureMemory( |
| const SharedTextureMemoryDescriptor* descriptor) { |
| Ref<SharedTextureMemoryBase> result; |
| if (ConsumedError( |
| [&]() -> ResultOrError<Ref<SharedTextureMemoryBase>> { |
| DAWN_TRY(ValidateIsAlive()); |
| return ImportSharedTextureMemoryImpl(descriptor); |
| }(), |
| &result, "calling %s.ImportSharedTextureMemory(%s).", this, descriptor)) { |
| result = SharedTextureMemoryBase::MakeError(this, descriptor); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| |
| ResultOrError<Ref<SharedTextureMemoryBase>> DeviceBase::ImportSharedTextureMemoryImpl( |
| const SharedTextureMemoryDescriptor* descriptor) { |
| return DAWN_UNIMPLEMENTED_ERROR("Not implemented"); |
| } |
| |
| SharedFenceBase* DeviceBase::APIImportSharedFence(const SharedFenceDescriptor* descriptor) { |
| Ref<SharedFenceBase> result; |
| if (ConsumedError( |
| [&]() -> ResultOrError<Ref<SharedFenceBase>> { |
| DAWN_TRY(ValidateIsAlive()); |
| return ImportSharedFenceImpl(descriptor); |
| }(), |
| &result, "calling %s.ImportSharedFence(%s).", this, descriptor)) { |
| result = SharedFenceBase::MakeError(this, descriptor); |
| } |
| return ReturnToAPI(std::move(result)); |
| } |
| |
| ResultOrError<Ref<SharedFenceBase>> DeviceBase::ImportSharedFenceImpl( |
| const SharedFenceDescriptor* descriptor) { |
| return DAWN_UNIMPLEMENTED_ERROR("Not implemented"); |
| } |
| |
| void DeviceBase::ApplyFeatures(const UnpackedPtr<DeviceDescriptor>& deviceDescriptor) { |
| DAWN_ASSERT(deviceDescriptor); |
| // Validate all required features with device toggles. |
| DAWN_ASSERT(GetPhysicalDevice()->SupportsAllRequiredFeatures( |
| {deviceDescriptor->requiredFeatures, deviceDescriptor->requiredFeatureCount}, mToggles)); |
| |
| for (uint32_t i = 0; i < deviceDescriptor->requiredFeatureCount; ++i) { |
| mEnabledFeatures.EnableFeature(deviceDescriptor->requiredFeatures[i]); |
| } |
| } |
| |
| bool DeviceBase::HasFeature(Feature feature) const { |
| return mEnabledFeatures.IsEnabled(feature); |
| } |
| |
| void DeviceBase::SetWGSLExtensionAllowList() { |
| // Set the WGSL extensions and language features allow list based on device's enabled features |
| // and other properties. |
| if (mEnabledFeatures.IsEnabled(Feature::ShaderF16)) { |
| mWGSLAllowedFeatures.extensions.insert(tint::wgsl::Extension::kF16); |
| } |
| if (mEnabledFeatures.IsEnabled(Feature::ChromiumExperimentalSubgroups)) { |
| mWGSLAllowedFeatures.extensions.insert( |
| tint::wgsl::Extension::kChromiumExperimentalSubgroups); |
| } |
| if (IsToggleEnabled(Toggle::AllowUnsafeAPIs)) { |
| mWGSLAllowedFeatures.extensions.insert( |
| tint::wgsl::Extension::kChromiumDisableUniformityAnalysis); |
| mWGSLAllowedFeatures.extensions.insert(tint::wgsl::Extension::kChromiumInternalGraphite); |
| } |
| if (mEnabledFeatures.IsEnabled(Feature::DualSourceBlending)) { |
| mWGSLAllowedFeatures.extensions.insert( |
| tint::wgsl::Extension::kChromiumInternalDualSourceBlending); |
| } |
| if (mEnabledFeatures.IsEnabled(Feature::PixelLocalStorageNonCoherent) || |
| mEnabledFeatures.IsEnabled(Feature::PixelLocalStorageCoherent)) { |
| mWGSLAllowedFeatures.extensions.insert( |
| tint::wgsl::Extension::kChromiumExperimentalPixelLocal); |
| } |
| if (mEnabledFeatures.IsEnabled(Feature::FramebufferFetch)) { |
| mWGSLAllowedFeatures.extensions.insert( |
| tint::wgsl::Extension::kChromiumExperimentalFramebufferFetch); |
| } |
| |
| // Language features are enabled instance-wide. |
| // mAdapter is not set for mock test devices. |
| // TODO(crbug.com/dawn/1702): using a mock adapter and instance could avoid the null checking. |
| if (mAdapter != nullptr) { |
| mWGSLAllowedFeatures.features = GetInstance()->GetAllowedWGSLLanguageFeatures(); |
| } |
| } |
| |
| const tint::wgsl::AllowedFeatures& DeviceBase::GetWGSLAllowedFeatures() const { |
| return mWGSLAllowedFeatures; |
| } |
| |
| bool DeviceBase::IsValidationEnabled() const { |
| return !IsToggleEnabled(Toggle::SkipValidation); |
| } |
| |
| bool DeviceBase::IsRobustnessEnabled() const { |
| return !IsToggleEnabled(Toggle::DisableRobustness); |
| } |
| |
| bool DeviceBase::IsCompatibilityMode() const { |
| return mAdapter != nullptr && mAdapter->GetFeatureLevel() == FeatureLevel::Compatibility; |
| } |
| |
| bool DeviceBase::IsImmediateErrorHandlingEnabled() const { |
| return mIsImmediateErrorHandlingEnabled; |
| } |
| |
| size_t DeviceBase::GetLazyClearCountForTesting() { |
| return mLazyClearCountForTesting; |
| } |
| |
| void DeviceBase::IncrementLazyClearCountForTesting() { |
| ++mLazyClearCountForTesting; |
| } |
| |
| size_t DeviceBase::GetDeprecationWarningCountForTesting() { |
| return mDeprecationWarnings->count; |
| } |
| |
| void DeviceBase::EmitDeprecationWarning(const std::string& message) { |
| mDeprecationWarnings->count++; |
| if (mDeprecationWarnings->emitted.insert(message).second) { |
| dawn::WarningLog() << message; |
| } |
| } |
| |
| void DeviceBase::EmitWarningOnce(const std::string& message) { |
| if (mWarnings.insert(message).second) { |
| this->EmitLog(WGPULoggingType_Warning, message.c_str()); |
| } |
| } |
| |
| void DeviceBase::EmitCompilationLog(const ShaderModuleBase* module) { |
| const OwnedCompilationMessages* messages = module->GetCompilationMessages(); |
| if (!messages->HasWarningsOrErrors()) { |
| return; |
| } |
| |
| // Limit the number of compilation error emitted to avoid spamming the devtools console hard. |
| constexpr uint32_t kCompilationLogSpamLimit = 20; |
| if (mEmittedCompilationLogCount.load(std::memory_order_acquire) > kCompilationLogSpamLimit) { |
| return; |
| } |
| |
| if (mEmittedCompilationLogCount.fetch_add(1, std::memory_order_acq_rel) == |
| kCompilationLogSpamLimit - 1) { |
| // Note: if there are multiple threads emitting logs, this may not actually be the exact |
| // last message. This is probably not a huge problem since this message will be emitted |
| // somewhere near the end. |
| return EmitLog(WGPULoggingType_Warning, |
| "Reached the WGSL compilation log warning limit. To see all the compilation " |
| "logs, query them directly on the ShaderModule objects."); |
| } |
| |
| // Emit the formatted Tint errors and warnings. |
| std::ostringstream t; |
| t << absl::StrFormat("Compilation log for %s:", module); |
| for (const auto& pMessage : messages->GetFormattedTintMessages()) { |
| t << "\n" << pMessage; |
| } |
| |
| EmitLog(WGPULoggingType_Warning, t.str().c_str()); |
| } |
| |
| void DeviceBase::EmitLog(const char* message) { |
| this->EmitLog(WGPULoggingType_Info, message); |
| } |
| |
| void DeviceBase::EmitLog(WGPULoggingType loggingType, const char* message) { |
| // Acquire a shared lock. This allows multiple threads to emit logs, |
| // or even logs to be emitted re-entrantly. It will block if there is a call |
| // to SetLoggingCallback. Applications should not call SetLoggingCallback inside |
| // the logging callback or they will deadlock. |
| std::shared_lock<std::shared_mutex> lock(mLoggingMutex); |
| if (mLoggingCallback) { |
| mLoggingCallback(loggingType, message, mLoggingUserdata); |
| } |
| } |
| |
| bool DeviceBase::APIGetLimits(SupportedLimits* limits) const { |
| DAWN_ASSERT(limits != nullptr); |
| InstanceBase* instance = GetPhysicalDevice()->GetInstance(); |
| |
| UnpackedPtr<SupportedLimits> unpacked; |
| if (instance->ConsumedError(ValidateAndUnpack(limits), &unpacked)) { |
| return false; |
| } |
| |
| limits->limits = mLimits.v1; |
| |
| if (auto* subgroupLimits = unpacked.Get<DawnExperimentalSubgroupLimits>()) { |
| if (!mToggles.IsEnabled(Toggle::AllowUnsafeAPIs)) { |
| // If AllowUnsafeAPIs is not enabled, return the default-initialized |
| // DawnExperimentalSubgroupLimits object, where minSubgroupSize and |
| // maxSubgroupSize are WGPU_LIMIT_U32_UNDEFINED. |
| *subgroupLimits = DawnExperimentalSubgroupLimits{}; |
| } else { |
| *subgroupLimits = mLimits.experimentalSubgroupLimits; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool DeviceBase::APIHasFeature(wgpu::FeatureName feature) const { |
| return mEnabledFeatures.IsEnabled(feature); |
| } |
| |
| size_t DeviceBase::APIEnumerateFeatures(wgpu::FeatureName* features) const { |
| return mEnabledFeatures.EnumerateFeatures(features); |
| } |
| |
| void DeviceBase::APIInjectError(wgpu::ErrorType type, const char* message) { |
| if (ConsumedError(ValidateErrorType(type))) { |
| return; |
| } |
| |
| // This method should only be used to make error scope reject. For DeviceLost there is the |
| // LoseForTesting function that can be used instead. |
| if (type != wgpu::ErrorType::Validation && type != wgpu::ErrorType::OutOfMemory) { |
| HandleError( |
| DAWN_VALIDATION_ERROR("Invalid injected error, must be Validation or OutOfMemory")); |
| return; |
| } |
| |
| HandleError(DAWN_MAKE_ERROR(FromWGPUErrorType(type), message), InternalErrorType::OutOfMemory); |
| } |
| |
| void DeviceBase::APIValidateTextureDescriptor(const TextureDescriptor* descriptorOrig) { |
| AllowMultiPlanarTextureFormat allowMultiPlanar; |
| if (HasFeature(Feature::MultiPlanarFormatExtendedUsages)) { |
| allowMultiPlanar = AllowMultiPlanarTextureFormat::Yes; |
| } else { |
| allowMultiPlanar = AllowMultiPlanarTextureFormat::No; |
| } |
| |
| TextureDescriptor rawDescriptor = descriptorOrig->WithTrivialFrontendDefaults(); |
| |
| UnpackedPtr<TextureDescriptor> unpacked; |
| if (!ConsumedError(ValidateAndUnpack(&rawDescriptor), &unpacked)) { |
| [[maybe_unused]] bool hadError = |
| ConsumedError(ValidateTextureDescriptor(this, unpacked, allowMultiPlanar)); |
| } |
| } |
| |
| QueueBase* DeviceBase::GetQueue() const { |
| DAWN_ASSERT(mQueue != nullptr); |
| return mQueue.Get(); |
| } |
| |
| // Implementation details of object creation |
| |
| ResultOrError<Ref<BindGroupBase>> DeviceBase::CreateBindGroup(const BindGroupDescriptor* descriptor, |
| UsageValidationMode mode) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateBindGroupDescriptor(this, descriptor, mode), |
| "validating %s against %s", descriptor, descriptor->layout); |
| } |
| return CreateBindGroupImpl(descriptor); |
| } |
| |
| ResultOrError<Ref<BindGroupLayoutBase>> DeviceBase::CreateBindGroupLayout( |
| const BindGroupLayoutDescriptor* descriptor, |
| bool allowInternalBinding) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateBindGroupLayoutDescriptor(this, descriptor, allowInternalBinding), |
| "validating %s", descriptor); |
| } |
| return GetOrCreateBindGroupLayout(descriptor); |
| } |
| |
| ResultOrError<Ref<BufferBase>> DeviceBase::CreateBuffer(const BufferDescriptor* rawDescriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| UnpackedPtr<BufferDescriptor> descriptor; |
| if (IsValidationEnabled()) { |
| DAWN_TRY_ASSIGN(descriptor, ValidateBufferDescriptor(this, rawDescriptor)); |
| } else { |
| descriptor = Unpack(rawDescriptor); |
| } |
| |
| Ref<BufferBase> buffer; |
| DAWN_TRY_ASSIGN(buffer, CreateBufferImpl(descriptor)); |
| |
| if (descriptor->mappedAtCreation) { |
| DAWN_TRY(buffer->MapAtCreation()); |
| } |
| |
| return std::move(buffer); |
| } |
| |
| ResultOrError<Ref<ComputePipelineBase>> DeviceBase::CreateComputePipeline( |
| const ComputePipelineDescriptor* descriptor) { |
| // If a pipeline layout is not specified, we cannot use cached pipelines. |
| bool useCache = descriptor->layout != nullptr; |
| |
| Ref<ComputePipelineBase> uninitializedComputePipeline; |
| DAWN_TRY_ASSIGN(uninitializedComputePipeline, CreateUninitializedComputePipeline(descriptor)); |
| |
| if (useCache) { |
| Ref<ComputePipelineBase> cachedComputePipeline = |
| GetCachedComputePipeline(uninitializedComputePipeline.Get()); |
| if (cachedComputePipeline.Get() != nullptr) { |
| return cachedComputePipeline; |
| } |
| } |
| |
| MaybeError maybeError; |
| { |
| SCOPED_DAWN_HISTOGRAM_TIMER_MICROS(GetPlatform(), "CreateComputePipelineUS"); |
| maybeError = uninitializedComputePipeline->Initialize(); |
| } |
| DAWN_HISTOGRAM_BOOLEAN(GetPlatform(), "CreateComputePipelineSuccess", maybeError.IsSuccess()); |
| |
| DAWN_TRY(std::move(maybeError)); |
| return useCache ? AddOrGetCachedComputePipeline(std::move(uninitializedComputePipeline)) |
| : std::move(uninitializedComputePipeline); |
| } |
| |
| ResultOrError<Ref<CommandEncoder>> DeviceBase::CreateCommandEncoder( |
| const CommandEncoderDescriptor* descriptor) { |
| const CommandEncoderDescriptor defaultDescriptor = {}; |
| if (descriptor == nullptr) { |
| descriptor = &defaultDescriptor; |
| } |
| |
| DAWN_TRY(ValidateIsAlive()); |
| UnpackedPtr<CommandEncoderDescriptor> unpacked; |
| if (IsValidationEnabled()) { |
| DAWN_TRY_ASSIGN(unpacked, ValidateCommandEncoderDescriptor(this, descriptor)); |
| } else { |
| unpacked = Unpack(descriptor); |
| } |
| return CommandEncoder::Create(this, unpacked); |
| } |
| |
| // Overwritten on the backends to return pipeline caches if supported. |
| Ref<PipelineCacheBase> DeviceBase::GetOrCreatePipelineCacheImpl(const CacheKey& key) { |
| DAWN_UNREACHABLE(); |
| } |
| |
| ResultOrError<Ref<ComputePipelineBase>> DeviceBase::CreateUninitializedComputePipeline( |
| const ComputePipelineDescriptor* descriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY(ValidateComputePipelineDescriptor(this, descriptor)); |
| } |
| |
| Ref<PipelineLayoutBase> layoutRef; |
| ComputePipelineDescriptor appliedDescriptor; |
| DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetComputePipelineDescriptorWithDefaults( |
| this, *descriptor, &appliedDescriptor)); |
| |
| return CreateUninitializedComputePipelineImpl(Unpack(&appliedDescriptor)); |
| } |
| |
| // This function is overwritten with the async version on the backends that supports |
| // initializing compute pipelines asynchronously. |
| void DeviceBase::InitializeComputePipelineAsyncImpl(Ref<ComputePipelineBase> computePipeline, |
| WGPUCreateComputePipelineAsyncCallback callback, |
| void* userdata) { |
| MaybeError maybeError; |
| { |
| SCOPED_DAWN_HISTOGRAM_TIMER_MICROS(GetPlatform(), "CreateComputePipelineUS"); |
| maybeError = computePipeline->Initialize(); |
| } |
| DAWN_HISTOGRAM_BOOLEAN(GetPlatform(), "CreateComputePipelineSuccess", maybeError.IsSuccess()); |
| |
| if (maybeError.IsError()) { |
| AddComputePipelineAsyncCallbackTask( |
| maybeError.AcquireError(), computePipeline->GetLabel().c_str(), callback, userdata); |
| } else { |
| AddComputePipelineAsyncCallbackTask(std::move(computePipeline), callback, userdata); |
| } |
| } |
| |
| // This function is overwritten with the async version on the backends |
| // that supports initializing render pipeline asynchronously |
| void DeviceBase::InitializeRenderPipelineAsyncImpl(Ref<RenderPipelineBase> renderPipeline, |
| WGPUCreateRenderPipelineAsyncCallback callback, |
| void* userdata) { |
| MaybeError maybeError; |
| { |
| SCOPED_DAWN_HISTOGRAM_TIMER_MICROS(GetPlatform(), "CreateRenderPipelineUS"); |
| maybeError = renderPipeline->Initialize(); |
| } |
| DAWN_HISTOGRAM_BOOLEAN(GetPlatform(), "CreateRenderPipelineSuccess", maybeError.IsSuccess()); |
| |
| if (maybeError.IsError()) { |
| AddRenderPipelineAsyncCallbackTask(maybeError.AcquireError(), |
| renderPipeline->GetLabel().c_str(), callback, userdata); |
| } else { |
| AddRenderPipelineAsyncCallbackTask(std::move(renderPipeline), callback, userdata); |
| } |
| } |
| |
| ResultOrError<Ref<PipelineLayoutBase>> DeviceBase::CreatePipelineLayout( |
| const PipelineLayoutDescriptor* descriptor, |
| PipelineCompatibilityToken pipelineCompatibilityToken) { |
| DAWN_TRY(ValidateIsAlive()); |
| UnpackedPtr<PipelineLayoutDescriptor> unpacked; |
| if (IsValidationEnabled()) { |
| DAWN_TRY_ASSIGN(unpacked, ValidatePipelineLayoutDescriptor(this, descriptor, |
| pipelineCompatibilityToken)); |
| } else { |
| unpacked = Unpack(descriptor); |
| } |
| |
| // When we are not creating explicit pipeline layouts, i.e. we are using 'auto', don't use the |
| // cache. |
| if (pipelineCompatibilityToken != kExplicitPCT) { |
| Ref<PipelineLayoutBase> result; |
| DAWN_TRY_ASSIGN(result, CreatePipelineLayoutImpl(unpacked)); |
| result->SetContentHash(result->ComputeContentHash()); |
| return result; |
| } |
| return GetOrCreatePipelineLayout(unpacked); |
| } |
| |
| ResultOrError<Ref<ExternalTextureBase>> DeviceBase::CreateExternalTextureImpl( |
| const ExternalTextureDescriptor* descriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateExternalTextureDescriptor(this, descriptor), "validating %s", |
| descriptor); |
| } |
| |
| return ExternalTextureBase::Create(this, descriptor); |
| } |
| |
| ResultOrError<Ref<QuerySetBase>> DeviceBase::CreateQuerySet(const QuerySetDescriptor* descriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateQuerySetDescriptor(this, descriptor), "validating %s", descriptor); |
| } |
| return CreateQuerySetImpl(descriptor); |
| } |
| |
| ResultOrError<Ref<RenderBundleEncoder>> DeviceBase::CreateRenderBundleEncoder( |
| const RenderBundleEncoderDescriptor* descriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateRenderBundleEncoderDescriptor(this, descriptor), |
| "validating render bundle encoder descriptor."); |
| } |
| return RenderBundleEncoder::Create(this, descriptor); |
| } |
| |
| ResultOrError<Ref<RenderPipelineBase>> DeviceBase::CreateRenderPipeline( |
| const RenderPipelineDescriptor* descriptor) { |
| // If a pipeline layout is not specified, we cannot use cached pipelines. |
| bool useCache = descriptor->layout != nullptr; |
| |
| Ref<RenderPipelineBase> uninitializedRenderPipeline; |
| DAWN_TRY_ASSIGN(uninitializedRenderPipeline, CreateUninitializedRenderPipeline(descriptor)); |
| |
| if (useCache) { |
| Ref<RenderPipelineBase> cachedRenderPipeline = |
| GetCachedRenderPipeline(uninitializedRenderPipeline.Get()); |
| if (cachedRenderPipeline != nullptr) { |
| return cachedRenderPipeline; |
| } |
| } |
| |
| MaybeError maybeError; |
| { |
| SCOPED_DAWN_HISTOGRAM_TIMER_MICROS(GetPlatform(), "CreateRenderPipelineUS"); |
| maybeError = uninitializedRenderPipeline->Initialize(); |
| } |
| DAWN_HISTOGRAM_BOOLEAN(GetPlatform(), "CreateRenderPipelineSuccess", maybeError.IsSuccess()); |
| |
| DAWN_TRY(std::move(maybeError)); |
| return useCache ? AddOrGetCachedRenderPipeline(std::move(uninitializedRenderPipeline)) |
| : std::move(uninitializedRenderPipeline); |
| } |
| |
| ResultOrError<Ref<RenderPipelineBase>> DeviceBase::CreateUninitializedRenderPipeline( |
| const RenderPipelineDescriptor* descriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY(ValidateRenderPipelineDescriptor(this, descriptor)); |
| |
| // Validation for kMaxBindGroupsPlusVertexBuffers is skipped because it is not necessary so |
| // far. |
| static_assert(kMaxBindGroups + kMaxVertexBuffers <= kMaxBindGroupsPlusVertexBuffers); |
| } |
| |
| // Ref will keep the pipeline layout alive until the end of the function where |
| // the pipeline will take another reference. |
| Ref<PipelineLayoutBase> layoutRef; |
| RenderPipelineDescriptor appliedDescriptor; |
| DAWN_TRY_ASSIGN(layoutRef, ValidateLayoutAndGetRenderPipelineDescriptorWithDefaults( |
| this, *descriptor, &appliedDescriptor)); |
| |
| return CreateUninitializedRenderPipelineImpl(Unpack(&appliedDescriptor)); |
| } |
| |
| ResultOrError<Ref<SamplerBase>> DeviceBase::CreateSampler(const SamplerDescriptor* descriptorOrig) { |
| DAWN_TRY(ValidateIsAlive()); |
| |
| SamplerDescriptor descriptor = {}; |
| if (descriptorOrig) { |
| descriptor = descriptorOrig->WithTrivialFrontendDefaults(); |
| } |
| |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateSamplerDescriptor(this, &descriptor), "validating %s", |
| &descriptor); |
| } |
| |
| return GetOrCreateSampler(&descriptor); |
| } |
| |
| ResultOrError<Ref<ShaderModuleBase>> DeviceBase::CreateShaderModule( |
| const ShaderModuleDescriptor* descriptor, |
| std::unique_ptr<OwnedCompilationMessages>* compilationMessages) { |
| DAWN_TRY(ValidateIsAlive()); |
| |
| // CreateShaderModule can be called from inside dawn_native. If that's the case handle the |
| // error directly in Dawn and no compilationMessages held in the shader module. It is ok as |
| // long as dawn_native don't use the compilationMessages of these internal shader modules. |
| ShaderModuleParseResult parseResult; |
| |
| UnpackedPtr<ShaderModuleDescriptor> unpacked; |
| if (IsValidationEnabled()) { |
| DAWN_TRY_ASSIGN_CONTEXT(unpacked, ValidateAndUnpack(descriptor), |
| "validating and unpacking %s", descriptor); |
| DAWN_TRY_CONTEXT(ValidateAndParseShaderModule( |
| this, unpacked, &parseResult, |
| compilationMessages ? compilationMessages->get() : nullptr), |
| "validating %s", descriptor); |
| } else { |
| unpacked = Unpack(descriptor); |
| } |
| |
| return GetOrCreateShaderModule(unpacked, &parseResult, compilationMessages); |
| } |
| |
| ResultOrError<Ref<SwapChainBase>> DeviceBase::CreateSwapChain( |
| Surface* surface, |
| const SwapChainDescriptor* descriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateSwapChainDescriptor(this, surface, descriptor), "validating %s", |
| descriptor); |
| } |
| |
| SwapChainBase* previousSwapChain = surface->GetAttachedSwapChain(); |
| ResultOrError<Ref<SwapChainBase>> maybeNewSwapChain = |
| CreateSwapChainImpl(surface, previousSwapChain, descriptor); |
| |
| if (previousSwapChain != nullptr) { |
| previousSwapChain->DetachFromSurface(); |
| } |
| |
| Ref<SwapChainBase> newSwapChain; |
| DAWN_TRY_ASSIGN(newSwapChain, std::move(maybeNewSwapChain)); |
| |
| newSwapChain->SetIsAttached(); |
| surface->SetAttachedSwapChain(newSwapChain.Get()); |
| return newSwapChain; |
| } |
| |
| ResultOrError<Ref<TextureBase>> DeviceBase::CreateTexture(const TextureDescriptor* descriptorOrig) { |
| DAWN_TRY(ValidateIsAlive()); |
| |
| TextureDescriptor rawDescriptor = descriptorOrig->WithTrivialFrontendDefaults(); |
| |
| UnpackedPtr<TextureDescriptor> descriptor; |
| if (IsValidationEnabled()) { |
| AllowMultiPlanarTextureFormat allowMultiPlanar; |
| if (HasFeature(Feature::MultiPlanarFormatExtendedUsages)) { |
| allowMultiPlanar = AllowMultiPlanarTextureFormat::Yes; |
| } else { |
| allowMultiPlanar = AllowMultiPlanarTextureFormat::No; |
| } |
| DAWN_TRY_ASSIGN_CONTEXT(descriptor, ValidateAndUnpack(&rawDescriptor), "validating %s.", |
| &rawDescriptor); |
| DAWN_TRY_CONTEXT(ValidateTextureDescriptor(this, descriptor, allowMultiPlanar), |
| "validating %s.", descriptor); |
| } else { |
| descriptor = Unpack(&rawDescriptor); |
| } |
| |
| return CreateTextureImpl(descriptor); |
| } |
| |
| ResultOrError<Ref<TextureViewBase>> DeviceBase::CreateTextureView( |
| TextureBase* texture, |
| const TextureViewDescriptor* descriptor) { |
| DAWN_TRY(ValidateIsAlive()); |
| DAWN_TRY(ValidateObject(texture)); |
| |
| TextureViewDescriptor desc; |
| DAWN_TRY_ASSIGN(desc, GetTextureViewDescriptorWithDefaults(texture, descriptor)); |
| |
| if (IsValidationEnabled()) { |
| DAWN_TRY_CONTEXT(ValidateTextureViewDescriptor(this, texture, &desc), |
| "validating %s against %s.", &desc, texture); |
| } |
| return CreateTextureViewImpl(texture, &desc); |
| } |
| |
| ResultOrError<wgpu::TextureUsage> DeviceBase::GetSupportedSurfaceUsage( |
| const Surface* surface) const { |
| DAWN_TRY(ValidateIsAlive()); |
| |
| if (IsValidationEnabled()) { |
| DAWN_INVALID_IF(!HasFeature(Feature::SurfaceCapabilities), "%s is not enabled.", |
| wgpu::FeatureName::SurfaceCapabilities); |
| } |
| |
| return GetSupportedSurfaceUsageImpl(surface); |
| } |
| |
| // Other implementation details |
| |
| DynamicUploader* DeviceBase::GetDynamicUploader() const { |
| return mDynamicUploader.get(); |
| } |
| |
| // The Toggle device facility |
| |
| std::vector<const char*> DeviceBase::GetTogglesUsed() const { |
| return mToggles.GetEnabledToggleNames(); |
| } |
| |
| bool DeviceBase::IsToggleEnabled(Toggle toggle) const { |
| return mToggles.IsEnabled(toggle); |
| } |
| |
| const TogglesState& DeviceBase::GetTogglesState() const { |
| return mToggles; |
| } |
| |
| void DeviceBase::ForceSetToggleForTesting(Toggle toggle, bool isEnabled) { |
| mToggles.ForceSet(toggle, isEnabled); |
| } |
| |
| void DeviceBase::FlushCallbackTaskQueue() { |
| // Callbacks might cause re-entrances. Mutex shouldn't be locked. So we expect there is no |
| // locked mutex before entering this method. |
| DAWN_ASSERT(mMutex == nullptr || !mMutex->IsLockedByCurrentThread()); |
| |
| Ref<CallbackTaskManager> callbackTaskManager; |
| |
| { |
| // This is a data race with the assignment to InstanceBase's callback queue manager in |
| // WillDropLastExternalRef(). Need to protect with a lock and keep the old |
| // mCallbackTaskManager alive. |
| // TODO(crbug.com/dawn/752): In future, all devices should use InstanceBase's callback queue |
| // manager from the start. So we won't need to care about data race at that point. |
| auto deviceLock(GetScopedLock()); |
| callbackTaskManager = mCallbackTaskManager; |
| } |
| |
| callbackTaskManager->Flush(); |
| } |
| |
| const CombinedLimits& DeviceBase::GetLimits() const { |
| return mLimits; |
| } |
| |
| AsyncTaskManager* DeviceBase::GetAsyncTaskManager() const { |
| return mAsyncTaskManager.get(); |
| } |
| |
| CallbackTaskManager* DeviceBase::GetCallbackTaskManager() const { |
| return mCallbackTaskManager.Get(); |
| } |
| |
| dawn::platform::WorkerTaskPool* DeviceBase::GetWorkerTaskPool() const { |
| return mWorkerTaskPool.get(); |
| } |
| |
| void DeviceBase::AddComputePipelineAsyncCallbackTask( |
| std::unique_ptr<ErrorData> error, |
| const char* label, |
| WGPUCreateComputePipelineAsyncCallback callback, |
| void* userdata) { |
| if (GetState() != State::Alive) { |
| // If the device is no longer alive, errors should not be reported anymore. |
| // Call the callback with an error pipeline. |
| return mCallbackTaskManager->AddCallbackTask( |
| [callback, pipeline = ComputePipelineBase::MakeError(this, label), userdata]() mutable { |
| callback(WGPUCreatePipelineAsyncStatus_Success, |
| ToAPI(ReturnToAPI(std::move(pipeline))), "", userdata); |
| }); |
| } |
| |
| WGPUCreatePipelineAsyncStatus status = CreatePipelineAsyncStatusFromErrorType(error->GetType()); |
| mCallbackTaskManager->AddCallbackTask( |
| [callback, message = error->GetFormattedMessage(), status, userdata]() { |
| callback(status, nullptr, message.c_str(), userdata); |
| }); |
| } |
| |
| void DeviceBase::AddComputePipelineAsyncCallbackTask( |
| Ref<ComputePipelineBase> pipeline, |
| WGPUCreateComputePipelineAsyncCallback callback, |
| void* userdata) { |
| mCallbackTaskManager->AddCallbackTask( |
| [callback, pipeline = std::move(pipeline), userdata]() mutable { |
| // TODO(dawn:529): call AddOrGetCachedComputePipeline() asynchronously in |
| // CreateComputePipelineAsyncTaskImpl::Run() when the front-end pipeline cache is |
| // thread-safe. |
| DAWN_ASSERT(pipeline != nullptr); |
| { |
| // This is called inside a callback, and no lock will be held by default so we |
| // have to lock now to protect the cache. Note: we don't lock inside |
| // AddOrGetCachedComputePipeline() to avoid deadlock because many places calling |
| // that method might already have the lock held. For example, |
| // APICreateComputePipeline() |
| DeviceBase* device = pipeline->GetDevice(); |
| auto deviceLock(device->GetScopedLock()); |
| if (device->GetState() == State::Alive) { |
| pipeline = device->AddOrGetCachedComputePipeline(std::move(pipeline)); |
| } |
| } |
| callback(WGPUCreatePipelineAsyncStatus_Success, ToAPI(ReturnToAPI(std::move(pipeline))), |
| "", userdata); |
| }); |
| } |
| |
| void DeviceBase::AddRenderPipelineAsyncCallbackTask(std::unique_ptr<ErrorData> error, |
| const char* label, |
| WGPUCreateRenderPipelineAsyncCallback callback, |
| void* userdata) { |
| if (GetState() != State::Alive) { |
| // If the device is no longer alive, errors should not be reported anymore. |
| // Call the callback with an error pipeline. |
| return mCallbackTaskManager->AddCallbackTask( |
| [callback, pipeline = RenderPipelineBase::MakeError(this, label), userdata]() mutable { |
| callback(WGPUCreatePipelineAsyncStatus_Success, |
| ToAPI(ReturnToAPI(std::move(pipeline))), "", userdata); |
| }); |
| } |
| |
| WGPUCreatePipelineAsyncStatus status = CreatePipelineAsyncStatusFromErrorType(error->GetType()); |
| mCallbackTaskManager->AddCallbackTask( |
| [callback, message = error->GetFormattedMessage(), status, userdata]() { |
| callback(status, nullptr, message.c_str(), userdata); |
| }); |
| } |
| |
| void DeviceBase::AddRenderPipelineAsyncCallbackTask(Ref<RenderPipelineBase> pipeline, |
| WGPUCreateRenderPipelineAsyncCallback callback, |
| void* userdata) { |
| mCallbackTaskManager->AddCallbackTask( |
| [callback, pipeline = std::move(pipeline), userdata]() mutable { |
| // TODO(dawn:529): call AddOrGetCachedRenderPipeline() asynchronously in |
| // CreateRenderPipelineAsyncTaskImpl::Run() when the front-end pipeline cache is |
| // thread-safe. |
| DAWN_ASSERT(pipeline != nullptr); |
| { |
| // This is called inside a callback, and no lock will be held by default so we have |
| // to lock now to protect the cache. |
| // Note: we don't lock inside AddOrGetCachedRenderPipeline() to avoid deadlock |
| // because many places calling that method might already have the lock held. For |
| // example, APICreateRenderPipeline() |
| DeviceBase* device = pipeline->GetDevice(); |
| auto deviceLock(device->GetScopedLock()); |
| if (device->GetState() == State::Alive) { |
| pipeline = device->AddOrGetCachedRenderPipeline(std::move(pipeline)); |
| } |
| } |
| callback(WGPUCreatePipelineAsyncStatus_Success, ToAPI(ReturnToAPI(std::move(pipeline))), |
| "", userdata); |
| }); |
| } |
| |
| PipelineCompatibilityToken DeviceBase::GetNextPipelineCompatibilityToken() { |
| return PipelineCompatibilityToken(mNextPipelineCompatibilityToken++); |
| } |
| |
| const CacheKey& DeviceBase::GetCacheKey() const { |
| return mDeviceCacheKey; |
| } |
| |
| const std::string& DeviceBase::GetLabel() const { |
| return mLabel; |
| } |
| |
| void DeviceBase::APISetLabel(const char* label) { |
| mLabel = label; |
| SetLabelImpl(); |
| } |
| |
| void DeviceBase::SetLabelImpl() {} |
| |
| bool DeviceBase::ShouldDuplicateNumWorkgroupsForDispatchIndirect( |
| ComputePipelineBase* computePipeline) const { |
| return false; |
| } |
| |
| bool DeviceBase::MayRequireDuplicationOfIndirectParameters() const { |
| return false; |
| } |
| |
| bool DeviceBase::ShouldDuplicateParametersForDrawIndirect( |
| const RenderPipelineBase* renderPipelineBase) const { |
| return false; |
| } |
| |
| bool DeviceBase::ShouldApplyIndexBufferOffsetToFirstIndex() const { |
| return false; |
| } |
| |
| bool DeviceBase::IsResolveTextureBlitWithDrawSupported() const { |
| return false; |
| } |
| |
| uint64_t DeviceBase::GetBufferCopyOffsetAlignmentForDepthStencil() const { |
| // For depth-stencil texture, buffer offset must be a multiple of 4, which is required |
| // by WebGPU and Vulkan SPEC. |
| return 4u; |
| } |
| |
| MaybeError DeviceBase::CopyFromStagingToBuffer(BufferBase* source, |
| uint64_t sourceOffset, |
| BufferBase* destination, |
| uint64_t destinationOffset, |
| uint64_t size) { |
| DAWN_TRY( |
| CopyFromStagingToBufferImpl(source, sourceOffset, destination, destinationOffset, size)); |
| if (GetDynamicUploader()->ShouldFlush()) { |
| mQueue->ForceEventualFlushOfCommands(); |
| } |
| return {}; |
| } |
| |
| MaybeError DeviceBase::CopyFromStagingToTexture(BufferBase* source, |
| const TextureDataLayout& src, |
| const TextureCopy& dst, |
| const Extent3D& copySizePixels) { |
| if (dst.aspect == Aspect::Depth && |
| IsToggleEnabled(Toggle::UseBlitForBufferToDepthTextureCopy)) { |
| DAWN_TRY_CONTEXT(BlitStagingBufferToDepth(this, source, src, dst, copySizePixels), |
| "copying from staging buffer to depth aspect of %s using blit workaround.", |
| dst.texture.Get()); |
| } else if (dst.aspect == Aspect::Stencil && |
| IsToggleEnabled(Toggle::UseBlitForBufferToStencilTextureCopy)) { |
| DAWN_TRY_CONTEXT( |
| BlitStagingBufferToStencil(this, source, src, dst, copySizePixels), |
| "copying from staging buffer to stencil aspect of %s using blit workaround.", |
| dst.texture.Get()); |
| } else { |
| DAWN_TRY(CopyFromStagingToTextureImpl(source, src, dst, copySizePixels)); |
| } |
| |
| if (GetDynamicUploader()->ShouldFlush()) { |
| mQueue->ForceEventualFlushOfCommands(); |
| } |
| return {}; |
| } |
| |
| Mutex::AutoLockAndHoldRef DeviceBase::GetScopedLockSafeForDelete() { |
| return Mutex::AutoLockAndHoldRef(mMutex); |
| } |
| |
| Mutex::AutoLock DeviceBase::GetScopedLock() { |
| return Mutex::AutoLock(mMutex.Get()); |
| } |
| |
| bool DeviceBase::IsLockedByCurrentThreadIfNeeded() const { |
| return mMutex == nullptr || mMutex->IsLockedByCurrentThread(); |
| } |
| |
| IgnoreLazyClearCountScope::IgnoreLazyClearCountScope(DeviceBase* device) |
| : mDevice(device), mLazyClearCountForTesting(device->mLazyClearCountForTesting) {} |
| |
| IgnoreLazyClearCountScope::~IgnoreLazyClearCountScope() { |
| mDevice->mLazyClearCountForTesting = mLazyClearCountForTesting; |
| } |
| |
| } // namespace dawn::native |