blob: a87b0fc8336b7a2e1b7431cca9f1550d35b35b9f [file] [log] [blame]
// Copyright 2024 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/core/fluent_types.h"
#include "src/tint/lang/hlsl/writer/helper_test.h"
#include "src/tint/utils/text/string_stream.h"
using namespace tint::core::number_suffixes; // NOLINT
using namespace tint::core::fluent_types; // NOLINT
namespace tint::hlsl::writer {
namespace {
struct BinaryData {
const char* result;
core::BinaryOp op;
};
inline std::ostream& operator<<(std::ostream& out, BinaryData data) {
StringStream str;
str << data.op;
out << str.str();
return out;
}
using HlslWriterBinaryU32Test = HlslWriterTestWithParam<BinaryData>;
TEST_P(HlslWriterBinaryU32Test, Emit) {
auto params = GetParam();
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* l = b.Let("left", b.Constant(1_u));
auto* r = b.Let("right", b.Constant(2_u));
auto* bin = b.Binary(params.op, ty.u32(), l, r);
b.Let("val", bin);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
uint left = 1u;
uint right = 2u;
uint val = )" + std::string(params.result) +
R"(;
}
)");
}
INSTANTIATE_TEST_SUITE_P(HlslWriterTest,
HlslWriterBinaryU32Test,
testing::Values(BinaryData{"(left + right)", core::BinaryOp::kAdd},
BinaryData{"(left - right)", core::BinaryOp::kSubtract},
BinaryData{"(left * right)", core::BinaryOp::kMultiply},
BinaryData{"(left & right)", core::BinaryOp::kAnd},
BinaryData{"(left | right)", core::BinaryOp::kOr},
BinaryData{"(left ^ right)", core::BinaryOp::kXor}));
TEST_F(HlslWriterTest, BinaryU32Div) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* l = b.Let("left", b.Constant(1_u));
auto* r = b.Let("right", b.Constant(2_u));
auto* bin = b.Binary(core::BinaryOp::kDivide, ty.u32(), l, r);
b.Let("val", bin);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
uint tint_div_u32(uint lhs, uint rhs) {
return (lhs / (((rhs == 0u)) ? (1u) : (rhs)));
}
[numthreads(1, 1, 1)]
void foo() {
uint left = 1u;
uint right = 2u;
uint val = tint_div_u32(left, right);
}
)");
}
TEST_F(HlslWriterTest, BinaryU32Mod) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* l = b.Let("left", b.Constant(1_u));
auto* r = b.Let("right", b.Constant(2_u));
auto* bin = b.Binary(core::BinaryOp::kModulo, ty.u32(), l, r);
b.Let("val", bin);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
uint tint_mod_u32(uint lhs, uint rhs) {
uint v = (((rhs == 0u)) ? (1u) : (rhs));
return (lhs - ((lhs / v) * v));
}
[numthreads(1, 1, 1)]
void foo() {
uint left = 1u;
uint right = 2u;
uint val = tint_mod_u32(left, right);
}
)");
}
TEST_F(HlslWriterTest, BinaryU32ShiftLeft) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* l = b.Let("left", b.Constant(1_u));
auto* r = b.Let("right", b.Constant(2_u));
auto* bin = b.Binary(core::BinaryOp::kShiftLeft, ty.u32(), l, r);
b.Let("val", bin);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
uint left = 1u;
uint right = 2u;
uint val = (left << (right & 31u));
}
)");
}
TEST_F(HlslWriterTest, BinaryU32ShiftRight) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* l = b.Let("left", b.Constant(1_u));
auto* r = b.Let("right", b.Constant(2_u));
auto* bin = b.Binary(core::BinaryOp::kShiftRight, ty.u32(), l, r);
b.Let("val", bin);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
uint left = 1u;
uint right = 2u;
uint val = (left >> (right & 31u));
}
)");
}
using HlslWriterBinaryBoolTest = HlslWriterTestWithParam<BinaryData>;
TEST_P(HlslWriterBinaryBoolTest, Emit) {
auto params = GetParam();
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* l = b.Let("left", b.Constant(1_u));
auto* r = b.Let("right", b.Constant(2_u));
auto* bin = b.Binary(params.op, ty.bool_(), l, r);
b.Let("val", bin);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
uint left = 1u;
uint right = 2u;
bool val = )" + std::string(params.result) +
R"(;
}
)");
}
INSTANTIATE_TEST_SUITE_P(
HlslWriterTest,
HlslWriterBinaryBoolTest,
testing::Values(BinaryData{"(left == right)", core::BinaryOp::kEqual},
BinaryData{"(left != right)", core::BinaryOp::kNotEqual},
BinaryData{"(left < right)", core::BinaryOp::kLessThan},
BinaryData{"(left > right)", core::BinaryOp::kGreaterThan},
BinaryData{"(left <= right)", core::BinaryOp::kLessThanEqual},
BinaryData{"(left >= right)", core::BinaryOp::kGreaterThanEqual}));
TEST_F(HlslWriterTest, BinaryF32Mod) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* left = b.Var("left", ty.ptr<core::AddressSpace::kFunction, f32>());
auto* right = b.Var("right", ty.ptr<core::AddressSpace::kFunction, f32>());
auto* l = b.Load(left);
auto* r = b.Load(right);
auto* expr1 = b.Binary(core::BinaryOp::kModulo, ty.f32(), l, r);
b.Let("val", expr1);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
float left = 0.0f;
float right = 0.0f;
float v = left;
float v_1 = right;
float v_2 = (v / v_1);
float v_3 = floor(v_2);
float val = ((v - (((v_2 < 0.0f)) ? (ceil(v_2)) : (v_3))) * v_1);
}
)");
}
TEST_F(HlslWriterTest, BinaryF16Mod) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* left = b.Var("left", ty.ptr<core::AddressSpace::kFunction, f16>());
auto* right = b.Var("right", ty.ptr<core::AddressSpace::kFunction, f16>());
auto* l = b.Load(left);
auto* r = b.Load(right);
auto* expr1 = b.Binary(core::BinaryOp::kModulo, ty.f16(), l, r);
b.Let("val", expr1);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
float16_t left = float16_t(0.0h);
float16_t right = float16_t(0.0h);
float16_t v = left;
float16_t v_1 = right;
float16_t v_2 = (v / v_1);
float16_t v_3 = floor(v_2);
float16_t val = ((v - (((v_2 < float16_t(0.0h))) ? (ceil(v_2)) : (v_3))) * v_1);
}
)");
}
TEST_F(HlslWriterTest, BinaryF32ModVec3) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* left = b.Var("left", ty.ptr(core::AddressSpace::kFunction, ty.vec3<f32>()));
auto* right = b.Var("right", ty.ptr(core::AddressSpace::kFunction, ty.vec3<f32>()));
auto* l = b.Load(left);
auto* r = b.Load(right);
auto* expr1 = b.Binary(core::BinaryOp::kModulo, ty.vec3<f32>(), l, r);
b.Let("val", expr1);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
float3 left = (0.0f).xxx;
float3 right = (0.0f).xxx;
float3 v = left;
float3 v_1 = right;
float3 v_2 = (v / v_1);
float3 v_3 = floor(v_2);
float3 val = ((v - (((v_2 < (0.0f).xxx)) ? (ceil(v_2)) : (v_3))) * v_1);
}
)");
}
TEST_F(HlslWriterTest, BinaryF16ModVec3) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* left = b.Var("left", ty.ptr(core::AddressSpace::kFunction, ty.vec3<f16>()));
auto* right = b.Var("right", ty.ptr(core::AddressSpace::kFunction, ty.vec3<f16>()));
auto* l = b.Load(left);
auto* r = b.Load(right);
auto* expr1 = b.Binary(core::BinaryOp::kModulo, ty.vec3<f16>(), l, r);
b.Let("val", expr1);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
vector<float16_t, 3> left = (float16_t(0.0h)).xxx;
vector<float16_t, 3> right = (float16_t(0.0h)).xxx;
vector<float16_t, 3> v = left;
vector<float16_t, 3> v_1 = right;
vector<float16_t, 3> v_2 = (v / v_1);
vector<float16_t, 3> v_3 = floor(v_2);
vector<float16_t, 3> val = ((v - (((v_2 < (float16_t(0.0h)).xxx)) ? (ceil(v_2)) : (v_3))) * v_1);
}
)");
}
TEST_F(HlslWriterTest, BinaryBoolAnd) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* left = b.Var("left", ty.ptr(core::AddressSpace::kFunction, ty.bool_()));
auto* right = b.Var("right", ty.ptr(core::AddressSpace::kFunction, ty.bool_()));
auto* l = b.Load(left);
auto* r = b.Load(right);
auto* expr1 = b.Binary(core::BinaryOp::kAnd, ty.bool_(), l, r);
b.Let("val", expr1);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
bool left = false;
bool right = false;
bool val = (left & right);
}
)");
}
TEST_F(HlslWriterTest, BinaryBoolOr) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* left = b.Var("left", ty.ptr(core::AddressSpace::kFunction, ty.bool_()));
auto* right = b.Var("right", ty.ptr(core::AddressSpace::kFunction, ty.bool_()));
auto* l = b.Load(left);
auto* r = b.Load(right);
auto* expr1 = b.Binary(core::BinaryOp::kOr, ty.bool_(), l, r);
b.Let("val", expr1);
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
bool left = false;
bool right = false;
bool val = (left | right);
}
)");
}
// TODO(dsinclair): Needs binary polyfill
TEST_F(HlslWriterTest, DISABLED_BinaryMulMatVec) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* x = b.Var("x", b.Zero<mat4x4<f32>>());
auto* y = b.Var("y", b.Zero<vec4<f32>>());
auto* l = b.Load(x);
auto* r = b.Load(y);
b.Var("c", b.Multiply(ty.vec4<f32>(), l, r));
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
float4x4 x = float4x4((0.0f).xxxx, (0.0f).xxxx, (0.0f).xxxx, (0.0f).xxxx);
float4 y = (0.0f).xxxx;
float4 c = mul(y, x);
}
)");
}
// TODO(dsinclair): Needs binary polyfill
TEST_F(HlslWriterTest, DISABLED_BinaryMulVecMat) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* x = b.Var("x", b.Zero<mat4x4<f32>>());
auto* y = b.Var("y", b.Zero<vec4<f32>>());
auto* l = b.Load(x);
auto* r = b.Load(y);
b.Var("c", b.Multiply(ty.vec4<f32>(), r, l));
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
float4x4 x = float4x4((0.0f).xxxx, (0.0f).xxxx, (0.0f).xxxx, (0.0f).xxxx);
float4 y = (0.0f).xxxx;
float4 c = mul(x, y);
}
)");
}
// TODO(dsinclair): Needs binary polyfill
TEST_F(HlslWriterTest, DISABLED_BinaryMulMatMat) {
auto* func = b.Function("foo", ty.void_(), core::ir::Function::PipelineStage::kCompute);
func->SetWorkgroupSize(1, 1, 1);
b.Append(func->Block(), [&] {
auto* x = b.Var("x", b.Zero<mat4x4<f32>>());
auto* y = b.Var("y", b.Zero<mat4x4<f32>>());
auto* l = b.Load(x);
auto* r = b.Load(y);
b.Var("c", b.Multiply(ty.mat4x4<f32>(), l, r));
b.Return(func);
});
ASSERT_TRUE(Generate()) << err_ << output_.hlsl;
EXPECT_EQ(output_.hlsl, R"(
[numthreads(1, 1, 1)]
void foo() {
float4x4 x = float4x4((0.0f).xxxx, (0.0f).xxxx, (0.0f).xxxx, (0.0f).xxxx);
float4x4 y = float4x4((0.0f).xxxx, (0.0f).xxxx, (0.0f).xxxx, (0.0f).xxxx);
float4 c = mul(y, x);
}
)");
}
} // namespace
} // namespace tint::hlsl::writer