blob: 9effc28cc5dc48042ff822fe64b82f16b17d34a0 [file] [log] [blame]
// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package gen holds types and helpers for generating templated code from the
// intrinsic.def file.
//
// Used by tools/src/cmd/gen/main.go
package gen
import (
"fmt"
"strings"
"dawn.googlesource.com/dawn/tools/src/list"
"dawn.googlesource.com/dawn/tools/src/lut"
"dawn.googlesource.com/dawn/tools/src/tint/intrinsic/sem"
)
// IntrinsicTable holds data specific to the intrinsic_table.inl.tmpl template
type IntrinsicTable struct {
// The semantic info
Sem *sem.Sem
// TMatchers are all the sem.TemplateType, sem.Type and sem.TypeMatchers.
// These are all implemented by classes deriving from tint::TypeMatcher
TMatchers []sem.Named
TMatcherIndex map[sem.Named]int // [object -> index] in TMatcher
// NMatchers are all the sem.TemplateNumber and sem.EnumMatchers.
// These are all implemented by classes deriving from tint::NumberMatcher
NMatchers []sem.Named
NMatcherIndex map[sem.Named]int // [object -> index] in NMatchers
MatcherIndices []int // kMatcherIndices table content
TemplateTypes []TemplateType // kTemplateTypes table content
TemplateNumbers []TemplateNumber // kTemplateNumbers table content
Parameters []Parameter // kParameters table content
Overloads []Overload // kOverloads table content
Builtins []Intrinsic // kBuiltins table content
UnaryOperators []Intrinsic // kUnaryOperators table content
BinaryOperators []Intrinsic // kBinaryOperators table content
ConstructorsAndConverters []Intrinsic // kInitializersAndConverters table content
}
// TemplateType is used to create the C++ TemplateTypeInfo structure
type TemplateType struct {
// Name of the template type (e.g. 'T')
Name string
// Optional type matcher constraint.
// Either an index in Matchers::type, or -1
MatcherIndex int
}
// TemplateNumber is used to create the C++ TemplateNumberInfo structure
type TemplateNumber struct {
// Name of the template number (e.g. 'N')
Name string
// Optional type matcher constraint.
// Either an index in Matchers::type, or -1
MatcherIndex int
}
// Parameter is used to create the C++ ParameterInfo structure
type Parameter struct {
// The parameter usage (parameter name)
Usage string
// Index into IntrinsicTable.MatcherIndices, beginning the list of matchers
// required to match the parameter type. The matcher indices index
// into IntrinsicTable::TMatchers and / or IntrinsicTable::NMatchers.
// These indices are consumed by the matchers themselves.
// The first index is always a TypeMatcher.
MatcherIndicesOffset *int
}
// Overload is used to create the C++ OverloadInfo structure
type Overload struct {
// Total number of parameters for the overload
NumParameters int
// Total number of template types for the overload
NumTemplateTypes int
// Total number of template numbers for the overload
NumTemplateNumbers int
// Index to the first template type in IntrinsicTable.TemplateTypes
TemplateTypesOffset *int
// Index to the first template number in IntrinsicTable.TemplateNumbers
TemplateNumbersOffset *int
// Index to the first parameter in IntrinsicTable.Parameters
ParametersOffset *int
// Index into IntrinsicTable.MatcherIndices, beginning the list of matchers
// required to match the return type. The matcher indices index
// into IntrinsicTable::TMatchers and / or IntrinsicTable::NMatchers.
// These indices are consumed by the matchers themselves.
// The first index is always a TypeMatcher.
ReturnMatcherIndicesOffset *int
// StageUses describes the stages an overload can be used in
CanBeUsedInStage sem.StageUses
// True if the overload is marked as @must_use
MustUse bool
// True if the overload is marked as deprecated
IsDeprecated bool
// The kind of overload
Kind string
// The function name used to evaluate the overload at shader-creation time
ConstEvalFunction string
}
// Intrinsic is used to create the C++ IntrinsicInfo structure
type Intrinsic struct {
Name string
OverloadDescriptions []string
NumOverloads int
OverloadsOffset *int
}
// Helper for building the IntrinsicTable
type IntrinsicTableBuilder struct {
// The output of the builder
IntrinsicTable
// Lookup tables.
// These are packed (compressed) once all the entries have been added.
lut struct {
matcherIndices lut.LUT
templateTypes lut.LUT
templateNumbers lut.LUT
parameters lut.LUT
overloads lut.LUT
}
}
// Helper for building a single overload
type overloadBuilder struct {
*IntrinsicTableBuilder
// Maps TemplateParam to index in templateTypes
templateTypeIndex map[sem.TemplateParam]int
// Maps TemplateParam to index in templateNumbers
templateNumberIndex map[sem.TemplateParam]int
// Template types used by the overload
templateTypes []TemplateType
// Template numbers used by the overload
templateNumbers []TemplateNumber
// All parameters declared by the overload
parameters []Parameter
// Index into IntrinsicTable.MatcherIndices, beginning the list of matchers
// required to match the return type. The matcher indices index
// into IntrinsicTable::TMatchers and / or IntrinsicTable::NMatchers.
// These indices are consumed by the matchers themselves.
// The first index is always a TypeMatcher.
returnTypeMatcherIndicesOffset *int
}
// layoutMatchers assigns each of the TMatchers and NMatchers a unique index
// in the C++ Matchers::type and Matchers::number arrays, respectively.
func (b *IntrinsicTableBuilder) layoutMatchers(s *sem.Sem) {
// First MaxTemplateTypes of TMatchers are template types
b.TMatchers = make([]sem.Named, s.MaxTemplateTypes)
for _, m := range s.Types {
b.TMatcherIndex[m] = len(b.TMatchers)
b.TMatchers = append(b.TMatchers, m)
}
for _, m := range s.TypeMatchers {
b.TMatcherIndex[m] = len(b.TMatchers)
b.TMatchers = append(b.TMatchers, m)
}
// First MaxTemplateNumbers of NMatchers are template numbers
b.NMatchers = make([]sem.Named, s.MaxTemplateNumbers)
for _, m := range s.EnumMatchers {
b.NMatcherIndex[m] = len(b.NMatchers)
b.NMatchers = append(b.NMatchers, m)
}
}
// buildOverload constructs an Overload for a sem.Overload
func (b *IntrinsicTableBuilder) buildOverload(o *sem.Overload) (Overload, error) {
ob := overloadBuilder{
IntrinsicTableBuilder: b,
templateTypeIndex: map[sem.TemplateParam]int{},
templateNumberIndex: map[sem.TemplateParam]int{},
}
if err := ob.buildTemplateTypes(o); err != nil {
return Overload{}, err
}
if err := ob.buildTemplateNumbers(o); err != nil {
return Overload{}, err
}
if err := ob.buildParameters(o); err != nil {
return Overload{}, err
}
if err := ob.buildReturnType(o); err != nil {
return Overload{}, err
}
return Overload{
NumParameters: len(ob.parameters),
NumTemplateTypes: len(ob.templateTypes),
NumTemplateNumbers: len(ob.templateNumbers),
TemplateTypesOffset: b.lut.templateTypes.Add(ob.templateTypes),
TemplateNumbersOffset: b.lut.templateNumbers.Add(ob.templateNumbers),
ParametersOffset: b.lut.parameters.Add(ob.parameters),
ReturnMatcherIndicesOffset: ob.returnTypeMatcherIndicesOffset,
CanBeUsedInStage: o.CanBeUsedInStage,
MustUse: o.MustUse,
IsDeprecated: o.IsDeprecated,
Kind: string(o.Decl.Kind),
ConstEvalFunction: o.ConstEvalFunction,
}, nil
}
// buildTemplateTypes constructs the TemplateTypes used by the overload, populating
// b.templateTypes
func (b *overloadBuilder) buildTemplateTypes(o *sem.Overload) error {
b.templateTypes = make([]TemplateType, len(o.TemplateTypes))
for i, t := range o.TemplateTypes {
b.templateTypeIndex[t] = i
matcherIndex := -1
if t.Type != nil {
var err error
matcherIndex, err = b.matcherIndex(t.Type)
if err != nil {
return err
}
}
b.templateTypes[i] = TemplateType{
Name: t.Name,
MatcherIndex: matcherIndex,
}
}
return nil
}
// buildTemplateNumbers constructs the TemplateNumbers used by the overload, populating
// b.templateNumbers
func (b *overloadBuilder) buildTemplateNumbers(o *sem.Overload) error {
b.templateNumbers = make([]TemplateNumber, len(o.TemplateNumbers))
for i, t := range o.TemplateNumbers {
b.templateNumberIndex[t] = i
matcherIndex := -1
if e, ok := t.(*sem.TemplateEnumParam); ok && e.Matcher != nil {
var err error
matcherIndex, err = b.matcherIndex(e.Matcher)
if err != nil {
return err
}
}
b.templateNumbers[i] = TemplateNumber{
Name: t.GetName(),
MatcherIndex: matcherIndex,
}
}
return nil
}
// buildParameters constructs the Parameters used by the overload, populating
// b.parameters
func (b *overloadBuilder) buildParameters(o *sem.Overload) error {
b.parameters = make([]Parameter, len(o.Parameters))
for i, p := range o.Parameters {
indices, err := b.collectMatcherIndices(p.Type)
if err != nil {
return err
}
b.parameters[i] = Parameter{
Usage: p.Name,
MatcherIndicesOffset: b.lut.matcherIndices.Add(indices),
}
}
return nil
}
// buildParameters calculates the matcher indices required to match the
// overload's return type (if the overload has a return value), possibly
// populating b.returnTypeMatcherIndicesOffset
func (b *overloadBuilder) buildReturnType(o *sem.Overload) error {
if o.ReturnType != nil {
indices, err := b.collectMatcherIndices(*o.ReturnType)
if err != nil {
return err
}
b.returnTypeMatcherIndicesOffset = b.lut.matcherIndices.Add(indices)
}
return nil
}
// matcherIndex returns the index of TMatcher or NMatcher in
// IntrinsicTable.TMatcher or IntrinsicTable.NMatcher, respectively.
func (b *overloadBuilder) matcherIndex(n sem.Named) (int, error) {
switch n := n.(type) {
case *sem.Type, *sem.TypeMatcher:
if i, ok := b.TMatcherIndex[n]; ok {
return i, nil
}
return 0, fmt.Errorf("matcherIndex missing entry for %v %T", n.GetName(), n)
case *sem.TemplateTypeParam:
if i, ok := b.templateTypeIndex[n]; ok {
return i, nil
}
return 0, fmt.Errorf("templateTypeIndex missing entry for %v %T", n.Name, n)
case *sem.EnumMatcher:
if i, ok := b.NMatcherIndex[n]; ok {
return i, nil
}
return 0, fmt.Errorf("matcherIndex missing entry for %v %T", n.GetName(), n)
case *sem.TemplateEnumParam:
if i, ok := b.templateNumberIndex[n]; ok {
return i, nil
}
return 0, fmt.Errorf("templateNumberIndex missing entry for %v %T", n, n)
case *sem.TemplateNumberParam:
if i, ok := b.templateNumberIndex[n]; ok {
return i, nil
}
return 0, fmt.Errorf("templateNumberIndex missing entry for %v %T", n, n)
default:
return 0, fmt.Errorf("overload.matcherIndex() does not handle %v %T", n, n)
}
}
// collectMatcherIndices returns the full list of matcher indices required to
// match the fully-qualified-name. For names that have do not have templated
// arguments, collectMatcherIndices() will return a single TMatcher index.
// For names that do have templated arguments, collectMatcherIndices() returns
// a list of type matcher indices, starting with the target of the fully
// qualified name, then followed by each of the template arguments from left to
// right. Note that template arguments may themselves have template arguments,
// and so collectMatcherIndices() may call itself.
// The order of returned matcher indices is always the order of the fully
// qualified name as read from left to right.
// For example, calling collectMatcherIndices() for the fully qualified name:
//
// A<B<C, D>, E<F, G<H>, I>
//
// Would return the matcher indices:
//
// A, B, C, D, E, F, G, H, I
func (b *overloadBuilder) collectMatcherIndices(fqn sem.FullyQualifiedName) ([]int, error) {
idx, err := b.matcherIndex(fqn.Target)
if err != nil {
return nil, err
}
out := []int{idx}
for _, arg := range fqn.TemplateArguments {
indices, err := b.collectMatcherIndices(arg.(sem.FullyQualifiedName))
if err != nil {
return nil, err
}
out = append(out, indices...)
}
return out, nil
}
// BuildIntrinsicTable builds the IntrinsicTable from the semantic info
func BuildIntrinsicTable(s *sem.Sem) (*IntrinsicTable, error) {
b := IntrinsicTableBuilder{
IntrinsicTable: IntrinsicTable{
Sem: s,
TMatcherIndex: map[sem.Named]int{},
NMatcherIndex: map[sem.Named]int{},
},
}
b.lut.matcherIndices = lut.New(list.Wrap(&b.MatcherIndices))
b.lut.templateTypes = lut.New(list.Wrap(&b.TemplateTypes))
b.lut.templateNumbers = lut.New(list.Wrap(&b.TemplateNumbers))
b.lut.parameters = lut.New(list.Wrap(&b.Parameters))
b.lut.overloads = lut.New(list.Wrap(&b.Overloads))
b.layoutMatchers(s)
for _, intrinsics := range []struct {
in []*sem.Intrinsic
out *[]Intrinsic
}{
{s.Builtins, &b.Builtins},
{s.UnaryOperators, &b.UnaryOperators},
{s.BinaryOperators, &b.BinaryOperators},
{s.ConstructorsAndConverters, &b.ConstructorsAndConverters},
} {
out := make([]Intrinsic, len(intrinsics.in))
for i, f := range intrinsics.in {
overloads := make([]Overload, len(f.Overloads))
overloadDescriptions := make([]string, len(f.Overloads))
for i, o := range f.Overloads {
overloadDescriptions[i] = fmt.Sprint(o.Decl)
var err error
if overloads[i], err = b.buildOverload(o); err != nil {
return nil, err
}
}
out[i] = Intrinsic{
Name: f.Name,
OverloadDescriptions: overloadDescriptions,
NumOverloads: len(overloads),
OverloadsOffset: b.lut.overloads.Add(overloads),
}
}
*intrinsics.out = out
}
b.lut.matcherIndices.Compact()
b.lut.templateTypes.Compact()
b.lut.templateNumbers.Compact()
b.lut.parameters.Compact()
b.lut.overloads.Compact()
return &b.IntrinsicTable, nil
}
// SplitDisplayName splits displayName into parts, where text wrapped in {}
// braces are not quoted and the rest is quoted. This is used to help process
// the string value of the [[display()]] decoration. For example:
//
// SplitDisplayName("vec{N}<{T}>")
//
// would return the strings:
//
// [`"vec"`, `N`, `"<"`, `T`, `">"`]
func SplitDisplayName(displayName string) []string {
parts := []string{}
pending := strings.Builder{}
for _, r := range displayName {
switch r {
case '{':
if pending.Len() > 0 {
parts = append(parts, fmt.Sprintf(`"%v"`, pending.String()))
pending.Reset()
}
case '}':
if pending.Len() > 0 {
parts = append(parts, pending.String())
pending.Reset()
}
default:
pending.WriteRune(r)
}
}
if pending.Len() > 0 {
parts = append(parts, fmt.Sprintf(`"%v"`, pending.String()))
}
return parts
}
// ElementType returns the nested type for type represented by the fully qualified name.
// If the type is not a composite type, then the fully qualified name is returned
func ElementType(fqn sem.FullyQualifiedName) sem.FullyQualifiedName {
switch fqn.Target.GetName() {
case "vec2", "vec3", "vec4":
return fqn.TemplateArguments[0].(sem.FullyQualifiedName)
case "vec":
return fqn.TemplateArguments[1].(sem.FullyQualifiedName)
case "mat":
return fqn.TemplateArguments[2].(sem.FullyQualifiedName)
case "array":
return fqn.TemplateArguments[0].(sem.FullyQualifiedName)
}
return fqn
}
// DeepestElementType returns the inner most nested type for type represented by the
// fully qualified name.
func DeepestElementType(fqn sem.FullyQualifiedName) sem.FullyQualifiedName {
switch fqn.Target.GetName() {
case "vec2", "vec3", "vec4":
return fqn.TemplateArguments[0].(sem.FullyQualifiedName)
case "vec":
return fqn.TemplateArguments[1].(sem.FullyQualifiedName)
case "mat2x2", "mat2x3", "mat2x4",
"mat3x2", "mat3x3", "mat3x4",
"mat4x2", "mat4x3", "mat4x4":
return DeepestElementType(fqn.TemplateArguments[0].(sem.FullyQualifiedName))
case "mat":
return DeepestElementType(fqn.TemplateArguments[2].(sem.FullyQualifiedName))
case "array":
return DeepestElementType(fqn.TemplateArguments[0].(sem.FullyQualifiedName))
case "ptr":
return DeepestElementType(fqn.TemplateArguments[1].(sem.FullyQualifiedName))
}
return fqn
}
// IsAbstract returns true if the FullyQualifiedName refers to an abstract numeric type float.
// Use DeepestElementType if you want to include vector, matrices and arrays of abstract types.
func IsAbstract(fqn sem.FullyQualifiedName) bool {
switch fqn.Target.GetName() {
case "ia", "fa":
return true
}
return false
}
// IsDeclarable returns false if the FullyQualifiedName refers to an abstract
// numeric type, or if it starts with a leading underscore.
func IsDeclarable(fqn sem.FullyQualifiedName) bool {
return !IsAbstract(DeepestElementType(fqn)) && !strings.HasPrefix(fqn.Target.GetName(), "_")
}
// IsHostShareable returns true if the FullyQualifiedName refers to a type that is host-sharable.
// See https://www.w3.org/TR/WGSL/#host-shareable-types
func IsHostShareable(fqn sem.FullyQualifiedName) bool {
return IsDeclarable(fqn) && DeepestElementType(fqn).Target.GetName() != "bool"
}
// OverloadUsesF16 returns true if the overload uses the f16 type anywhere in the signature.
func OverloadUsesF16(overload sem.Overload) bool {
for _, param := range overload.Parameters {
if DeepestElementType(param.Type).Target.GetName() == "f16" {
return true
}
}
if ret := overload.ReturnType; ret != nil {
if DeepestElementType(*overload.ReturnType).Target.GetName() == "f16" {
return true
}
}
return false
}