| // Copyright 2020 The Dawn & Tint Authors |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // 1. Redistributions of source code must retain the above copyright notice, this |
| // list of conditions and the following disclaimer. |
| // |
| // 2. Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // |
| // 3. Neither the name of the copyright holder nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "src/tint/utils/strconv/float_to_string.h" |
| |
| #include <math.h> |
| #include <cstring> |
| #include <limits> |
| |
| #include "gtest/gtest.h" |
| #include "src/tint/utils/memory/bitcast.h" |
| |
| namespace tint::strconv { |
| namespace { |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // FloatToString // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| TEST(FloatToStringTest, Zero) { |
| EXPECT_EQ(FloatToString(0.0f), "0.0"); |
| } |
| |
| TEST(FloatToStringTest, One) { |
| EXPECT_EQ(FloatToString(1.0f), "1.0"); |
| } |
| |
| TEST(FloatToStringTest, MinusOne) { |
| EXPECT_EQ(FloatToString(-1.0f), "-1.0"); |
| } |
| |
| TEST(FloatToStringTest, Billion) { |
| EXPECT_EQ(FloatToString(1e9f), "1000000000.0"); |
| } |
| |
| TEST(FloatToStringTest, Small) { |
| EXPECT_NE(FloatToString(std::numeric_limits<float>::epsilon()), "0.0"); |
| } |
| |
| TEST(FloatToStringTest, Highest) { |
| const auto highest = std::numeric_limits<float>::max(); |
| const auto expected_highest = 340282346638528859811704183484516925440.0f; |
| if (highest < expected_highest || highest > expected_highest) { |
| GTEST_SKIP() << "std::numeric_limits<float>::max() is not as expected for " |
| "this target"; |
| } |
| EXPECT_EQ(FloatToString(std::numeric_limits<float>::max()), |
| "340282346638528859811704183484516925440.0"); |
| } |
| |
| TEST(FloatToStringTest, Lowest) { |
| // Some compilers complain if you test floating point numbers for equality. |
| // So say it via two inequalities. |
| const auto lowest = std::numeric_limits<float>::lowest(); |
| const auto expected_lowest = -340282346638528859811704183484516925440.0f; |
| if (lowest < expected_lowest || lowest > expected_lowest) { |
| GTEST_SKIP() << "std::numeric_limits<float>::lowest() is not as expected for " |
| "this target"; |
| } |
| EXPECT_EQ(FloatToString(std::numeric_limits<float>::lowest()), |
| "-340282346638528859811704183484516925440.0"); |
| } |
| |
| TEST(FloatToStringTest, Precision) { |
| EXPECT_EQ(FloatToString(1e-8f), "0.00000000999999993923"); |
| EXPECT_EQ(FloatToString(1e-9f), "0.00000000099999997172"); |
| EXPECT_EQ(FloatToString(1e-10f), "0.00000000010000000134"); |
| EXPECT_EQ(FloatToString(1e-20f), "0.00000000000000000001"); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // FloatToBitPreservingString // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| TEST(FloatToBitPreservingStringTest, Zero) { |
| EXPECT_EQ(FloatToBitPreservingString(0.0f), "0.0"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, NegativeZero) { |
| EXPECT_EQ(FloatToBitPreservingString(-0.0f), "-0.0"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, One) { |
| EXPECT_EQ(FloatToBitPreservingString(1.0f), "1.0"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, MinusOne) { |
| EXPECT_EQ(FloatToBitPreservingString(-1.0f), "-1.0"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, Billion) { |
| EXPECT_EQ(FloatToBitPreservingString(1e9f), "1000000000.0"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, Small) { |
| EXPECT_NE(FloatToBitPreservingString(std::numeric_limits<float>::epsilon()), "0.0"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, Highest) { |
| const auto highest = std::numeric_limits<float>::max(); |
| const auto expected_highest = 340282346638528859811704183484516925440.0f; |
| if (highest < expected_highest || highest > expected_highest) { |
| GTEST_SKIP() << "std::numeric_limits<float>::max() is not as expected for " |
| "this target"; |
| } |
| EXPECT_EQ(FloatToBitPreservingString(std::numeric_limits<float>::max()), |
| "340282346638528859811704183484516925440.0"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, Lowest) { |
| // Some compilers complain if you test floating point numbers for equality. |
| // So say it via two inequalities. |
| const auto lowest = std::numeric_limits<float>::lowest(); |
| const auto expected_lowest = -340282346638528859811704183484516925440.0f; |
| if (lowest < expected_lowest || lowest > expected_lowest) { |
| GTEST_SKIP() << "std::numeric_limits<float>::lowest() is not as expected for " |
| "this target"; |
| } |
| EXPECT_EQ(FloatToBitPreservingString(std::numeric_limits<float>::lowest()), |
| "-340282346638528859811704183484516925440.0"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, SmallestDenormal) { |
| EXPECT_EQ(FloatToBitPreservingString(0x1p-149f), "0x1p-149"); |
| EXPECT_EQ(FloatToBitPreservingString(-0x1p-149f), "-0x1p-149"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, BiggerDenormal) { |
| EXPECT_EQ(FloatToBitPreservingString(0x1p-148f), "0x1p-148"); |
| EXPECT_EQ(FloatToBitPreservingString(-0x1p-148f), "-0x1p-148"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, LargestDenormal) { |
| static_assert(0x0.fffffep-126f == 0x1.fffffcp-127f); |
| EXPECT_EQ(FloatToBitPreservingString(0x0.fffffep-126f), "0x1.fffffcp-127"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, Subnormal_cafebe) { |
| EXPECT_EQ(FloatToBitPreservingString(0x1.2bfaf8p-127f), "0x1.2bfaf8p-127"); |
| EXPECT_EQ(FloatToBitPreservingString(-0x1.2bfaf8p-127f), "-0x1.2bfaf8p-127"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, Subnormal_aaaaa) { |
| EXPECT_EQ(FloatToBitPreservingString(0x1.55554p-130f), "0x1.55554p-130"); |
| EXPECT_EQ(FloatToBitPreservingString(-0x1.55554p-130f), "-0x1.55554p-130"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, Infinity) { |
| EXPECT_EQ(FloatToBitPreservingString(INFINITY), "0x1p+128"); |
| EXPECT_EQ(FloatToBitPreservingString(-INFINITY), "-0x1p+128"); |
| } |
| |
| TEST(FloatToBitPreservingStringTest, NaN) { |
| // TODO(crbug.com/tint/1714): On x86, this bitcast will set bit 22 (the highest mantissa bit) to |
| // 1, regardless of the bit value in the integer. This is likely due to IEEE 754's |
| // recommendation that that the highest mantissa bit differentiates quiet NaNs from signalling |
| // NaNs. On x86, float return values usually go via the FPU which can transform the signalling |
| // NaN bit (0) to quiet NaN (1). As NaN floating point numbers can be silently modified by the |
| // architecture, and the signalling bit is architecture defined, this test may fail on other |
| // architectures. |
| auto nan = tint::Bitcast<float>(0x7fc0beef); |
| EXPECT_EQ(FloatToBitPreservingString(nan), "0x1.817ddep+128"); |
| EXPECT_EQ(FloatToBitPreservingString(-nan), "-0x1.817ddep+128"); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // DoubleToString // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| TEST(DoubleToStringTest, Zero) { |
| EXPECT_EQ(DoubleToString(0.000000000), "0.0"); |
| } |
| |
| TEST(DoubleToStringTest, One) { |
| EXPECT_EQ(DoubleToString(1.000000000), "1.0"); |
| } |
| |
| TEST(DoubleToStringTest, MinusOne) { |
| EXPECT_EQ(DoubleToString(-1.000000000), "-1.0"); |
| } |
| |
| TEST(DoubleToStringTest, Billion) { |
| EXPECT_EQ(DoubleToString(1e9), "1000000000.0"); |
| } |
| |
| TEST(DoubleToStringTest, Small) { |
| EXPECT_NE(DoubleToString(std::numeric_limits<double>::epsilon()), "0.0"); |
| } |
| |
| TEST(DoubleToStringTest, Highest) { |
| const auto highest = std::numeric_limits<double>::max(); |
| const auto expected_highest = 1.797693134862315708e+308; |
| if (highest < expected_highest || highest > expected_highest) { |
| GTEST_SKIP() << "std::numeric_limits<double>::max() is not as expected for " |
| "this target"; |
| } |
| EXPECT_EQ(DoubleToString(std::numeric_limits<double>::max()), |
| "179769313486231570814527423731704356798070567525844996598917476803157260780028538760" |
| "589558632766878171540458953514382464234321326889464182768467546703537516986049910576" |
| "551282076245490090389328944075868508455133942304583236903222948165808559332123348274" |
| "797826204144723168738177180919299881250404026184124858368.0"); |
| } |
| |
| TEST(DoubleToStringTest, Lowest) { |
| // Some compilers complain if you test floating point numbers for equality. |
| // So say it via two inequalities. |
| const auto lowest = std::numeric_limits<double>::lowest(); |
| const auto expected_lowest = -1.797693134862315708e+308; |
| if (lowest < expected_lowest || lowest > expected_lowest) { |
| GTEST_SKIP() << "std::numeric_limits<double>::lowest() is not as expected for " |
| "this target"; |
| } |
| EXPECT_EQ(DoubleToString(std::numeric_limits<double>::lowest()), |
| "-17976931348623157081452742373170435679807056752584499659891747680315726078002853876" |
| "058955863276687817154045895351438246423432132688946418276846754670353751698604991057" |
| "655128207624549009038932894407586850845513394230458323690322294816580855933212334827" |
| "4797826204144723168738177180919299881250404026184124858368.0"); |
| } |
| |
| TEST(DoubleToStringTest, Precision) { |
| EXPECT_EQ(DoubleToString(1e-8), "0.00000001"); |
| EXPECT_EQ(DoubleToString(1e-9), "0.000000001"); |
| EXPECT_EQ(DoubleToString(1e-10), "0.0000000001"); |
| EXPECT_EQ(DoubleToString(1e-15), "0.000000000000001"); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // DoubleToBitPreservingString // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| TEST(DoubleToBitPreservingStringTest, Zero) { |
| EXPECT_EQ(DoubleToBitPreservingString(0.0), "0.0"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, NegativeZero) { |
| EXPECT_EQ(DoubleToBitPreservingString(-0.0), "-0.0"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, One) { |
| EXPECT_EQ(DoubleToBitPreservingString(1.0), "1.0"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, MinusOne) { |
| EXPECT_EQ(DoubleToBitPreservingString(-1.0), "-1.0"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, Billion) { |
| EXPECT_EQ(DoubleToBitPreservingString(1e9), "1000000000.0"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, Small) { |
| EXPECT_NE(DoubleToBitPreservingString(std::numeric_limits<double>::epsilon()), "0.0"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, Highest) { |
| const auto highest = std::numeric_limits<double>::max(); |
| const auto expected_highest = 1.797693134862315708e+308; |
| if (highest < expected_highest || highest > expected_highest) { |
| GTEST_SKIP() << "std::numeric_limits<float>::max() is not as expected for " |
| "this target"; |
| } |
| EXPECT_EQ(DoubleToBitPreservingString(std::numeric_limits<double>::max()), |
| "179769313486231570814527423731704356798070567525844996598917476803157260780028538760" |
| "589558632766878171540458953514382464234321326889464182768467546703537516986049910576" |
| "551282076245490090389328944075868508455133942304583236903222948165808559332123348274" |
| "797826204144723168738177180919299881250404026184124858368.0"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, Lowest) { |
| // Some compilers complain if you test floating point numbers for equality. |
| // So say it via two inequalities. |
| const auto lowest = std::numeric_limits<double>::lowest(); |
| const auto expected_lowest = -1.797693134862315708e+308; |
| if (lowest < expected_lowest || lowest > expected_lowest) { |
| GTEST_SKIP() << "std::numeric_limits<float>::lowest() is not as expected for " |
| "this target"; |
| } |
| EXPECT_EQ(DoubleToBitPreservingString(std::numeric_limits<double>::lowest()), |
| "-17976931348623157081452742373170435679807056752584499659891747680315726078002853876" |
| "058955863276687817154045895351438246423432132688946418276846754670353751698604991057" |
| "655128207624549009038932894407586850845513394230458323690322294816580855933212334827" |
| "4797826204144723168738177180919299881250404026184124858368.0"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, SmallestDenormal) { |
| EXPECT_EQ(DoubleToBitPreservingString(0x1p-1074), "0x1p-1074"); |
| EXPECT_EQ(DoubleToBitPreservingString(-0x1p-1074), "-0x1p-1074"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, BiggerDenormal) { |
| EXPECT_EQ(DoubleToBitPreservingString(0x1p-1073), "0x1p-1073"); |
| EXPECT_EQ(DoubleToBitPreservingString(-0x1p-1073), "-0x1p-1073"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, LargestDenormal) { |
| static_assert(0x0.fffffffffffffp-1022 == 0x1.ffffffffffffep-1023); |
| EXPECT_EQ(DoubleToBitPreservingString(0x0.fffffffffffffp-1022), "0x1.ffffffffffffep-1023"); |
| EXPECT_EQ(DoubleToBitPreservingString(-0x0.fffffffffffffp-1022), "-0x1.ffffffffffffep-1023"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, Subnormal_cafef00dbeef) { |
| EXPECT_EQ(DoubleToBitPreservingString(0x1.cafef00dbeefp-1023), "0x1.cafef00dbeefp-1023"); |
| EXPECT_EQ(DoubleToBitPreservingString(-0x1.cafef00dbeefp-1023), "-0x1.cafef00dbeefp-1023"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, Subnormal_aaaaaaaaaaaaap) { |
| static_assert(0x0.aaaaaaaaaaaaap-1023 == 0x1.5555555555554p-1024); |
| EXPECT_EQ(DoubleToBitPreservingString(0x0.aaaaaaaaaaaaap-1023), "0x1.5555555555554p-1024"); |
| EXPECT_EQ(DoubleToBitPreservingString(-0x0.aaaaaaaaaaaaap-1023), "-0x1.5555555555554p-1024"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, Infinity) { |
| EXPECT_EQ(DoubleToBitPreservingString(static_cast<double>(INFINITY)), "0x1p+1024"); |
| EXPECT_EQ(DoubleToBitPreservingString(static_cast<double>(-INFINITY)), "-0x1p+1024"); |
| } |
| |
| TEST(DoubleToBitPreservingStringTest, NaN) { |
| auto nan = tint::Bitcast<double>(0x7ff8cafef00dbeefull); |
| EXPECT_EQ(DoubleToBitPreservingString(static_cast<double>(nan)), "0x1.8cafef00dbeefp+1024"); |
| EXPECT_EQ(DoubleToBitPreservingString(static_cast<double>(-nan)), "-0x1.8cafef00dbeefp+1024"); |
| } |
| |
| } // namespace |
| } // namespace tint::strconv |