| #include <metal_stdlib> |
| |
| using namespace metal; |
| |
| template<typename T, int N, int M> |
| inline vec<T, M> operator*(matrix<T, N, M> lhs, packed_vec<T, N> rhs) { |
| return lhs * vec<T, N>(rhs); |
| } |
| |
| template<typename T, int N, int M> |
| inline vec<T, N> operator*(packed_vec<T, M> lhs, matrix<T, N, M> rhs) { |
| return vec<T, M>(lhs) * rhs; |
| } |
| |
| struct LightData { |
| /* 0x0000 */ float4 position; |
| /* 0x0010 */ packed_float3 color; |
| /* 0x001c */ float radius; |
| }; |
| struct LightsBuffer { |
| /* 0x0000 */ LightData lights[1]; |
| }; |
| struct tint_array_wrapper { |
| /* 0x0000 */ uint arr[64]; |
| }; |
| struct TileLightIdData { |
| /* 0x0000 */ atomic_uint count; |
| /* 0x0004 */ tint_array_wrapper lightId; |
| }; |
| struct tint_array_wrapper_1 { |
| /* 0x0000 */ TileLightIdData arr[4]; |
| }; |
| struct Tiles { |
| /* 0x0000 */ tint_array_wrapper_1 data; |
| }; |
| struct Config { |
| /* 0x0000 */ uint numLights; |
| /* 0x0004 */ uint numTiles; |
| /* 0x0008 */ uint tileCountX; |
| /* 0x000c */ uint tileCountY; |
| /* 0x0010 */ uint numTileLightSlot; |
| /* 0x0014 */ uint tileSize; |
| }; |
| struct Uniforms { |
| /* 0x0000 */ float4 min; |
| /* 0x0010 */ float4 max; |
| /* 0x0020 */ float4x4 viewMatrix; |
| /* 0x0060 */ float4x4 projectionMatrix; |
| /* 0x00a0 */ float4 fullScreenSize; |
| }; |
| struct tint_array_wrapper_2 { |
| float4 arr[6]; |
| }; |
| |
| void tint_symbol_inner(uint3 GlobalInvocationID, const constant Config* const tint_symbol_1, device LightsBuffer* const tint_symbol_2, const constant Uniforms* const tint_symbol_3, device Tiles* const tint_symbol_4) { |
| uint index = GlobalInvocationID[0]; |
| if ((index >= (*(tint_symbol_1)).numLights)) { |
| return; |
| } |
| (*(tint_symbol_2)).lights[index].position[1] = (((*(tint_symbol_2)).lights[index].position[1] - 0.100000001f) + (0.001f * (float(index) - (64.0f * floor((float(index) / 64.0f)))))); |
| if (((*(tint_symbol_2)).lights[index].position[1] < (*(tint_symbol_3)).min[1])) { |
| (*(tint_symbol_2)).lights[index].position[1] = (*(tint_symbol_3)).max[1]; |
| } |
| float4x4 M = (*(tint_symbol_3)).projectionMatrix; |
| float viewNear = (-(M[3][2]) / (-1.0f + M[2][2])); |
| float viewFar = (-(M[3][2]) / (1.0f + M[2][2])); |
| float4 lightPos = (*(tint_symbol_2)).lights[index].position; |
| lightPos = ((*(tint_symbol_3)).viewMatrix * lightPos); |
| lightPos = (lightPos / lightPos[3]); |
| float lightRadius = (*(tint_symbol_2)).lights[index].radius; |
| float4 boxMin = (lightPos - float4(float3(lightRadius), 0.0f)); |
| float4 boxMax = (lightPos + float4(float3(lightRadius), 0.0f)); |
| tint_array_wrapper_2 frustumPlanes = {}; |
| frustumPlanes.arr[4] = float4(0.0f, 0.0f, -1.0f, viewNear); |
| frustumPlanes.arr[5] = float4(0.0f, 0.0f, 1.0f, -(viewFar)); |
| int const TILE_SIZE = 16; |
| int const TILE_COUNT_X = 2; |
| int const TILE_COUNT_Y = 2; |
| for(int y_1 = 0; (y_1 < TILE_COUNT_Y); y_1 = as_type<int>((as_type<uint>(y_1) + as_type<uint>(1)))) { |
| for(int x_1 = 0; (x_1 < TILE_COUNT_X); x_1 = as_type<int>((as_type<uint>(x_1) + as_type<uint>(1)))) { |
| int2 tilePixel0Idx = int2(as_type<int>((as_type<uint>(x_1) * as_type<uint>(TILE_SIZE))), as_type<int>((as_type<uint>(y_1) * as_type<uint>(TILE_SIZE)))); |
| float2 floorCoord = (((2.0f * float2(tilePixel0Idx)) / float4((*(tint_symbol_3)).fullScreenSize).xy) - float2(1.0f)); |
| float2 ceilCoord = (((2.0f * float2(as_type<int2>((as_type<uint2>(tilePixel0Idx) + as_type<uint2>(int2(TILE_SIZE)))))) / float4((*(tint_symbol_3)).fullScreenSize).xy) - float2(1.0f)); |
| float2 viewFloorCoord = float2((((-(viewNear) * floorCoord[0]) - (M[2][0] * viewNear)) / M[0][0]), (((-(viewNear) * floorCoord[1]) - (M[2][1] * viewNear)) / M[1][1])); |
| float2 viewCeilCoord = float2((((-(viewNear) * ceilCoord[0]) - (M[2][0] * viewNear)) / M[0][0]), (((-(viewNear) * ceilCoord[1]) - (M[2][1] * viewNear)) / M[1][1])); |
| frustumPlanes.arr[0] = float4(1.0f, 0.0f, (-(viewFloorCoord[0]) / viewNear), 0.0f); |
| frustumPlanes.arr[1] = float4(-1.0f, 0.0f, (viewCeilCoord[0] / viewNear), 0.0f); |
| frustumPlanes.arr[2] = float4(0.0f, 1.0f, (-(viewFloorCoord[1]) / viewNear), 0.0f); |
| frustumPlanes.arr[3] = float4(0.0f, -1.0f, (viewCeilCoord[1] / viewNear), 0.0f); |
| float dp = 0.0f; |
| for(uint i = 0u; (i < 6u); i = (i + 1u)) { |
| float4 p = 0.0f; |
| if ((frustumPlanes.arr[i][0] > 0.0f)) { |
| p[0] = boxMax[0]; |
| } else { |
| p[0] = boxMin[0]; |
| } |
| if ((frustumPlanes.arr[i][1] > 0.0f)) { |
| p[1] = boxMax[1]; |
| } else { |
| p[1] = boxMin[1]; |
| } |
| if ((frustumPlanes.arr[i][2] > 0.0f)) { |
| p[2] = boxMax[2]; |
| } else { |
| p[2] = boxMin[2]; |
| } |
| p[3] = 1.0f; |
| dp = (dp + fmin(0.0f, dot(p, frustumPlanes.arr[i]))); |
| } |
| if ((dp >= 0.0f)) { |
| uint tileId = uint(as_type<int>((as_type<uint>(x_1) + as_type<uint>(as_type<int>((as_type<uint>(y_1) * as_type<uint>(TILE_COUNT_X))))))); |
| if (((tileId < 0u) || (tileId >= (*(tint_symbol_1)).numTiles))) { |
| continue; |
| } |
| uint offset = atomic_fetch_add_explicit(&((*(tint_symbol_4)).data.arr[tileId].count), 1u, memory_order_relaxed); |
| if ((offset >= (*(tint_symbol_1)).numTileLightSlot)) { |
| continue; |
| } |
| (*(tint_symbol_4)).data.arr[tileId].lightId.arr[offset] = GlobalInvocationID[0]; |
| } |
| } |
| } |
| } |
| |
| kernel void tint_symbol(const constant Config* tint_symbol_5 [[buffer(0)]], device LightsBuffer* tint_symbol_6 [[buffer(2)]], const constant Uniforms* tint_symbol_7 [[buffer(1)]], device Tiles* tint_symbol_8 [[buffer(3)]], uint3 GlobalInvocationID [[thread_position_in_grid]]) { |
| tint_symbol_inner(GlobalInvocationID, tint_symbol_5, tint_symbol_6, tint_symbol_7, tint_symbol_8); |
| return; |
| } |
| |