| // Copyright 2017 The Dawn Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "dawn/native/Buffer.h" |
| |
| #include <cstdio> |
| #include <cstring> |
| #include <limits> |
| #include <string> |
| #include <utility> |
| |
| #include "dawn/common/Alloc.h" |
| #include "dawn/common/Assert.h" |
| #include "dawn/native/CallbackTaskManager.h" |
| #include "dawn/native/Commands.h" |
| #include "dawn/native/Device.h" |
| #include "dawn/native/DynamicUploader.h" |
| #include "dawn/native/ErrorData.h" |
| #include "dawn/native/ObjectType_autogen.h" |
| #include "dawn/native/Queue.h" |
| #include "dawn/native/ValidationUtils_autogen.h" |
| #include "dawn/platform/DawnPlatform.h" |
| #include "dawn/platform/tracing/TraceEvent.h" |
| |
| namespace dawn::native { |
| |
| namespace { |
| struct MapRequestTask : TrackTaskCallback { |
| MapRequestTask(dawn::platform::Platform* platform, Ref<BufferBase> buffer, MapRequestID id) |
| : TrackTaskCallback(platform), buffer(std::move(buffer)), id(id) {} |
| ~MapRequestTask() override = default; |
| |
| private: |
| void FinishImpl() override { |
| { |
| // This is called from a callback, and no lock will be held by default. Hence, we need |
| // to lock the mutex now because mSerial might be changed by another thread. |
| auto deviceLock(buffer->GetDevice()->GetScopedLock()); |
| ASSERT(mSerial != kMaxExecutionSerial); |
| TRACE_EVENT1(mPlatform, General, "Buffer::TaskInFlight::Finished", "serial", |
| uint64_t(mSerial)); |
| } |
| buffer->CallbackOnMapRequestCompleted(id, WGPUBufferMapAsyncStatus_Success); |
| } |
| void HandleDeviceLossImpl() override { |
| buffer->CallbackOnMapRequestCompleted(id, WGPUBufferMapAsyncStatus_DeviceLost); |
| } |
| void HandleShutDownImpl() override { |
| buffer->CallbackOnMapRequestCompleted(id, WGPUBufferMapAsyncStatus_DestroyedBeforeCallback); |
| } |
| |
| Ref<BufferBase> buffer; |
| MapRequestID id; |
| }; |
| |
| class ErrorBuffer final : public BufferBase { |
| public: |
| ErrorBuffer(DeviceBase* device, const BufferDescriptor* descriptor) |
| : BufferBase(device, descriptor, ObjectBase::kError) { |
| if (descriptor->mappedAtCreation) { |
| // Check that the size can be used to allocate an mFakeMappedData. A malloc(0) |
| // is invalid, and on 32bit systems we should avoid a narrowing conversion that |
| // would make size = 1 << 32 + 1 allocate one byte. |
| bool isValidSize = descriptor->size != 0 && |
| descriptor->size < uint64_t(std::numeric_limits<size_t>::max()); |
| |
| if (isValidSize) { |
| mFakeMappedData = |
| std::unique_ptr<uint8_t[]>(AllocNoThrow<uint8_t>(descriptor->size)); |
| } |
| // Since error buffers in this case may allocate memory, we need to track them |
| // for destruction on the device. |
| GetObjectTrackingList()->Track(this); |
| } |
| } |
| |
| private: |
| bool IsCPUWritableAtCreation() const override { UNREACHABLE(); } |
| |
| MaybeError MapAtCreationImpl() override { UNREACHABLE(); } |
| |
| MaybeError MapAsyncImpl(wgpu::MapMode mode, size_t offset, size_t size) override { |
| UNREACHABLE(); |
| } |
| |
| void* GetMappedPointer() override { return mFakeMappedData.get(); } |
| |
| void UnmapImpl() override { mFakeMappedData.reset(); } |
| |
| std::unique_ptr<uint8_t[]> mFakeMappedData; |
| }; |
| |
| // GetMappedRange on a zero-sized buffer returns a pointer to this value. |
| static uint32_t sZeroSizedMappingData = 0xCAFED00D; |
| |
| } // anonymous namespace |
| |
| MaybeError ValidateBufferDescriptor(DeviceBase* device, const BufferDescriptor* descriptor) { |
| DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr"); |
| DAWN_TRY(ValidateBufferUsage(descriptor->usage)); |
| |
| wgpu::BufferUsage usage = descriptor->usage; |
| |
| DAWN_INVALID_IF(usage == wgpu::BufferUsage::None, "Buffer usages must not be 0."); |
| |
| const wgpu::BufferUsage kMapWriteAllowedUsages = |
| wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc; |
| DAWN_INVALID_IF( |
| usage & wgpu::BufferUsage::MapWrite && !IsSubset(usage, kMapWriteAllowedUsages), |
| "Buffer usages (%s) is invalid. If a buffer usage contains %s the only other allowed " |
| "usage is %s.", |
| usage, wgpu::BufferUsage::MapWrite, wgpu::BufferUsage::CopySrc); |
| |
| const wgpu::BufferUsage kMapReadAllowedUsages = |
| wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst; |
| DAWN_INVALID_IF( |
| usage & wgpu::BufferUsage::MapRead && !IsSubset(usage, kMapReadAllowedUsages), |
| "Buffer usages (%s) is invalid. If a buffer usage contains %s the only other allowed " |
| "usage is %s.", |
| usage, wgpu::BufferUsage::MapRead, wgpu::BufferUsage::CopyDst); |
| |
| DAWN_INVALID_IF(descriptor->mappedAtCreation && descriptor->size % 4 != 0, |
| "Buffer is mapped at creation but its size (%u) is not a multiple of 4.", |
| descriptor->size); |
| |
| DAWN_INVALID_IF(descriptor->size > device->GetLimits().v1.maxBufferSize, |
| "Buffer size (%u) exceeds the max buffer size limit (%u).", descriptor->size, |
| device->GetLimits().v1.maxBufferSize); |
| |
| return {}; |
| } |
| |
| // Buffer |
| |
| BufferBase::BufferBase(DeviceBase* device, const BufferDescriptor* descriptor) |
| : ApiObjectBase(device, descriptor->label), |
| mSize(descriptor->size), |
| mUsage(descriptor->usage), |
| mState(BufferState::Unmapped) { |
| // Add readonly storage usage if the buffer has a storage usage. The validation rules in |
| // ValidateSyncScopeResourceUsage will make sure we don't use both at the same time. |
| if (mUsage & wgpu::BufferUsage::Storage) { |
| mUsage |= kReadOnlyStorageBuffer; |
| } |
| |
| // The query resolve buffer need to be used as a storage buffer in the internal compute |
| // pipeline which does timestamp uint conversion for timestamp query, it requires the buffer |
| // has Storage usage in the binding group. Implicitly add an InternalStorage usage which is |
| // only compatible with InternalStorageBuffer binding type in BGL. It shouldn't be |
| // compatible with StorageBuffer binding type and the query resolve buffer cannot be bound |
| // as storage buffer if it's created without Storage usage. |
| if (mUsage & wgpu::BufferUsage::QueryResolve) { |
| mUsage |= kInternalStorageBuffer; |
| } |
| |
| // We also add internal storage usage for Indirect buffers for some transformations before |
| // DispatchIndirect calls on the backend (e.g. validations, support of [[num_workgroups]] on |
| // D3D12), since these transformations involve binding them as storage buffers for use in a |
| // compute pass. |
| if (mUsage & wgpu::BufferUsage::Indirect) { |
| mUsage |= kInternalStorageBuffer; |
| } |
| |
| if (mUsage & wgpu::BufferUsage::CopyDst) { |
| if (device->IsToggleEnabled(Toggle::UseBlitForDepth16UnormTextureToBufferCopy) || |
| device->IsToggleEnabled(Toggle::UseBlitForDepth32FloatTextureToBufferCopy) || |
| device->IsToggleEnabled(Toggle::UseBlitForStencilTextureToBufferCopy) || |
| device->IsToggleEnabled(Toggle::UseBlitForSnormTextureToBufferCopy) || |
| device->IsToggleEnabled(Toggle::UseBlitForBGRA8UnormTextureToBufferCopy)) { |
| mUsage |= kInternalStorageBuffer; |
| } |
| } |
| |
| GetObjectTrackingList()->Track(this); |
| } |
| |
| BufferBase::BufferBase(DeviceBase* device, |
| const BufferDescriptor* descriptor, |
| ObjectBase::ErrorTag tag) |
| : ApiObjectBase(device, tag, descriptor->label), |
| mSize(descriptor->size), |
| mUsage(descriptor->usage), |
| mState(BufferState::Unmapped) { |
| if (descriptor->mappedAtCreation) { |
| mState = BufferState::MappedAtCreation; |
| mMapOffset = 0; |
| mMapSize = mSize; |
| } |
| } |
| |
| BufferBase::~BufferBase() { |
| ASSERT(mState == BufferState::Unmapped || mState == BufferState::Destroyed); |
| } |
| |
| void BufferBase::DestroyImpl() { |
| if (mState == BufferState::Mapped || mState == BufferState::PendingMap) { |
| UnmapInternal(WGPUBufferMapAsyncStatus_DestroyedBeforeCallback); |
| } else if (mState == BufferState::MappedAtCreation) { |
| if (mStagingBuffer != nullptr) { |
| mStagingBuffer = nullptr; |
| } else if (mSize != 0) { |
| UnmapInternal(WGPUBufferMapAsyncStatus_DestroyedBeforeCallback); |
| } |
| } |
| |
| mState = BufferState::Destroyed; |
| } |
| |
| // static |
| BufferBase* BufferBase::MakeError(DeviceBase* device, const BufferDescriptor* descriptor) { |
| return new ErrorBuffer(device, descriptor); |
| } |
| |
| ObjectType BufferBase::GetType() const { |
| return ObjectType::Buffer; |
| } |
| |
| uint64_t BufferBase::GetSize() const { |
| ASSERT(!IsError()); |
| return mSize; |
| } |
| |
| uint64_t BufferBase::GetAllocatedSize() const { |
| ASSERT(!IsError()); |
| // The backend must initialize this value. |
| ASSERT(mAllocatedSize != 0); |
| return mAllocatedSize; |
| } |
| |
| wgpu::BufferUsage BufferBase::GetUsage() const { |
| ASSERT(!IsError()); |
| return mUsage; |
| } |
| |
| wgpu::BufferUsage BufferBase::GetUsageExternalOnly() const { |
| ASSERT(!IsError()); |
| return GetUsage() & ~kAllInternalBufferUsages; |
| } |
| |
| wgpu::BufferUsage BufferBase::APIGetUsage() const { |
| return mUsage & ~kAllInternalBufferUsages; |
| } |
| |
| wgpu::BufferMapState BufferBase::APIGetMapState() const { |
| switch (mState) { |
| case BufferState::Mapped: |
| case BufferState::MappedAtCreation: |
| return wgpu::BufferMapState::Mapped; |
| case BufferState::PendingMap: |
| return wgpu::BufferMapState::Pending; |
| case BufferState::Unmapped: |
| case BufferState::Destroyed: |
| return wgpu::BufferMapState::Unmapped; |
| default: |
| UNREACHABLE(); |
| return wgpu::BufferMapState::Unmapped; |
| } |
| } |
| |
| MaybeError BufferBase::MapAtCreation() { |
| DAWN_TRY(MapAtCreationInternal()); |
| |
| void* ptr; |
| size_t size; |
| if (mSize == 0) { |
| return {}; |
| } else if (mStagingBuffer != nullptr) { |
| // If there is a staging buffer for initialization, clear its contents directly. |
| // It should be exactly as large as the buffer allocation. |
| ptr = mStagingBuffer->GetMappedPointer(); |
| size = mStagingBuffer->GetSize(); |
| ASSERT(size == GetAllocatedSize()); |
| } else { |
| // Otherwise, the buffer is directly mappable on the CPU. |
| ptr = GetMappedPointer(); |
| size = GetAllocatedSize(); |
| } |
| |
| DeviceBase* device = GetDevice(); |
| if (device->IsToggleEnabled(Toggle::LazyClearResourceOnFirstUse)) { |
| memset(ptr, uint8_t(0u), size); |
| SetIsDataInitialized(); |
| device->IncrementLazyClearCountForTesting(); |
| } else if (device->IsToggleEnabled(Toggle::NonzeroClearResourcesOnCreationForTesting)) { |
| memset(ptr, uint8_t(1u), size); |
| } |
| |
| return {}; |
| } |
| |
| MaybeError BufferBase::MapAtCreationInternal() { |
| ASSERT(!IsError()); |
| mMapOffset = 0; |
| mMapSize = mSize; |
| |
| // 0-sized buffers are not supposed to be written to. Return back any non-null pointer. |
| // Skip handling 0-sized buffers so we don't try to map them in the backend. |
| if (mSize != 0) { |
| // Mappable buffers don't use a staging buffer and are just as if mapped through |
| // MapAsync. |
| if (IsCPUWritableAtCreation()) { |
| DAWN_TRY(MapAtCreationImpl()); |
| } else { |
| // If any of these fail, the buffer will be deleted and replaced with an error |
| // buffer. The staging buffer is used to return mappable data to inititalize the |
| // buffer contents. Allocate one as large as the real buffer size so that every byte |
| // is initialized. |
| // TODO(crbug.com/dawn/828): Suballocate and reuse memory from a larger staging |
| // buffer so we don't create many small buffers. |
| BufferDescriptor stagingBufferDesc = {}; |
| stagingBufferDesc.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::MapWrite; |
| stagingBufferDesc.size = Align(GetAllocatedSize(), 4); |
| stagingBufferDesc.mappedAtCreation = true; |
| stagingBufferDesc.label = "Dawn_MappedAtCreationStaging"; |
| |
| IgnoreLazyClearCountScope scope(GetDevice()); |
| DAWN_TRY_ASSIGN(mStagingBuffer, GetDevice()->CreateBuffer(&stagingBufferDesc)); |
| } |
| } |
| |
| // Only set the state to mapped at creation if we did no fail any point in this helper. |
| // Otherwise, if we override the default unmapped state before succeeding to create a |
| // staging buffer, we will have issues when we try to destroy the buffer. |
| mState = BufferState::MappedAtCreation; |
| return {}; |
| } |
| |
| MaybeError BufferBase::ValidateCanUseOnQueueNow() const { |
| ASSERT(!IsError()); |
| |
| switch (mState) { |
| case BufferState::Destroyed: |
| return DAWN_VALIDATION_ERROR("%s used in submit while destroyed.", this); |
| case BufferState::Mapped: |
| case BufferState::MappedAtCreation: |
| return DAWN_VALIDATION_ERROR("%s used in submit while mapped.", this); |
| case BufferState::PendingMap: |
| return DAWN_VALIDATION_ERROR("%s used in submit while pending map.", this); |
| case BufferState::Unmapped: |
| return {}; |
| } |
| UNREACHABLE(); |
| } |
| |
| std::function<void()> BufferBase::PrepareMappingCallback(MapRequestID mapID, |
| WGPUBufferMapAsyncStatus status) { |
| ASSERT(!IsError()); |
| |
| if (mMapCallback != nullptr && mapID == mLastMapID) { |
| auto callback = std::move(mMapCallback); |
| auto userdata = std::move(mMapUserdata); |
| WGPUBufferMapAsyncStatus actualStatus; |
| if (GetDevice()->IsLost()) { |
| actualStatus = WGPUBufferMapAsyncStatus_DeviceLost; |
| } else { |
| actualStatus = status; |
| } |
| |
| // Tag the callback as fired before firing it, otherwise it could fire a second time if |
| // for example buffer.Unmap() is called before the MapRequestTask completes. |
| mMapCallback = nullptr; |
| mMapUserdata = nullptr; |
| |
| return std::bind(callback, actualStatus, userdata); |
| } |
| |
| return [] {}; |
| } |
| |
| void BufferBase::APIMapAsync(wgpu::MapMode mode, |
| size_t offset, |
| size_t size, |
| WGPUBufferMapCallback callback, |
| void* userdata) { |
| // Check for an existing pending map first because it just |
| // rejects the callback and doesn't produce a validation error. |
| if (mState == BufferState::PendingMap) { |
| if (callback) { |
| GetDevice()->GetCallbackTaskManager()->AddCallbackTask( |
| callback, WGPUBufferMapAsyncStatus_MappingAlreadyPending, userdata); |
| } |
| return; |
| } |
| |
| // Handle the defaulting of size required by WebGPU, even if in webgpu_cpp.h it is not |
| // possible to default the function argument (because there is the callback later in the |
| // argument list) |
| if ((size == wgpu::kWholeMapSize) && (offset <= mSize)) { |
| size = mSize - offset; |
| } |
| |
| WGPUBufferMapAsyncStatus status; |
| if (GetDevice()->ConsumedError(ValidateMapAsync(mode, offset, size, &status), |
| "calling %s.MapAsync(%s, %u, %u, ...).", this, mode, offset, |
| size)) { |
| if (callback) { |
| GetDevice()->GetCallbackTaskManager()->AddCallbackTask(callback, status, userdata); |
| } |
| return; |
| } |
| ASSERT(!IsError()); |
| |
| mLastMapID++; |
| mMapMode = mode; |
| mMapOffset = offset; |
| mMapSize = size; |
| mMapCallback = callback; |
| mMapUserdata = userdata; |
| mState = BufferState::PendingMap; |
| |
| if (GetDevice()->ConsumedError(MapAsyncImpl(mode, offset, size))) { |
| GetDevice()->GetCallbackTaskManager()->AddCallbackTask( |
| PrepareMappingCallback(mLastMapID, WGPUBufferMapAsyncStatus_DeviceLost)); |
| return; |
| } |
| std::unique_ptr<MapRequestTask> request = |
| std::make_unique<MapRequestTask>(GetDevice()->GetPlatform(), this, mLastMapID); |
| TRACE_EVENT1(GetDevice()->GetPlatform(), General, "Buffer::APIMapAsync", "serial", |
| uint64_t(mLastUsageSerial)); |
| GetDevice()->GetQueue()->TrackTask(std::move(request), mLastUsageSerial); |
| } |
| |
| void* BufferBase::APIGetMappedRange(size_t offset, size_t size) { |
| return GetMappedRange(offset, size, true); |
| } |
| |
| const void* BufferBase::APIGetConstMappedRange(size_t offset, size_t size) { |
| return GetMappedRange(offset, size, false); |
| } |
| |
| void* BufferBase::GetMappedRange(size_t offset, size_t size, bool writable) { |
| if (!CanGetMappedRange(writable, offset, size)) { |
| return nullptr; |
| } |
| |
| if (mStagingBuffer != nullptr) { |
| return static_cast<uint8_t*>(mStagingBuffer->GetMappedPointer()) + offset; |
| } |
| if (mSize == 0) { |
| return &sZeroSizedMappingData; |
| } |
| uint8_t* start = static_cast<uint8_t*>(GetMappedPointer()); |
| return start == nullptr ? nullptr : start + offset; |
| } |
| |
| void BufferBase::APIDestroy() { |
| Destroy(); |
| } |
| |
| uint64_t BufferBase::APIGetSize() const { |
| return mSize; |
| } |
| |
| MaybeError BufferBase::CopyFromStagingBuffer() { |
| ASSERT(mStagingBuffer != nullptr && mSize != 0); |
| |
| DAWN_TRY( |
| GetDevice()->CopyFromStagingToBuffer(mStagingBuffer.Get(), 0, this, 0, GetAllocatedSize())); |
| |
| DynamicUploader* uploader = GetDevice()->GetDynamicUploader(); |
| uploader->ReleaseStagingBuffer(std::move(mStagingBuffer)); |
| |
| return {}; |
| } |
| |
| void BufferBase::APIUnmap() { |
| if (GetDevice()->ConsumedError(ValidateUnmap(), "calling %s.Unmap().", this)) { |
| return; |
| } |
| DAWN_UNUSED(GetDevice()->ConsumedError(Unmap(), "calling %s.Unmap().", this)); |
| } |
| |
| MaybeError BufferBase::Unmap() { |
| if (mState == BufferState::Destroyed) { |
| return {}; |
| } |
| |
| // Make sure writes are now visibile to the GPU if we used a staging buffer. |
| if (mState == BufferState::MappedAtCreation && mStagingBuffer != nullptr) { |
| DAWN_TRY(CopyFromStagingBuffer()); |
| } |
| UnmapInternal(WGPUBufferMapAsyncStatus_UnmappedBeforeCallback); |
| return {}; |
| } |
| |
| void BufferBase::UnmapInternal(WGPUBufferMapAsyncStatus callbackStatus) { |
| // Unmaps resources on the backend. |
| if (mState == BufferState::PendingMap) { |
| GetDevice()->GetCallbackTaskManager()->AddCallbackTask( |
| PrepareMappingCallback(mLastMapID, callbackStatus)); |
| UnmapImpl(); |
| } else if (mState == BufferState::Mapped) { |
| UnmapImpl(); |
| } else if (mState == BufferState::MappedAtCreation) { |
| if (!IsError() && mSize != 0 && IsCPUWritableAtCreation()) { |
| UnmapImpl(); |
| } |
| } |
| |
| mState = BufferState::Unmapped; |
| } |
| |
| MaybeError BufferBase::ValidateMapAsync(wgpu::MapMode mode, |
| size_t offset, |
| size_t size, |
| WGPUBufferMapAsyncStatus* status) const { |
| *status = WGPUBufferMapAsyncStatus_DeviceLost; |
| DAWN_TRY(GetDevice()->ValidateIsAlive()); |
| |
| *status = WGPUBufferMapAsyncStatus_ValidationError; |
| DAWN_TRY(GetDevice()->ValidateObject(this)); |
| |
| DAWN_INVALID_IF(uint64_t(offset) > mSize, |
| "Mapping offset (%u) is larger than the size (%u) of %s.", offset, mSize, this); |
| |
| DAWN_INVALID_IF(offset % 8 != 0, "Offset (%u) must be a multiple of 8.", offset); |
| DAWN_INVALID_IF(size % 4 != 0, "Size (%u) must be a multiple of 4.", size); |
| |
| DAWN_INVALID_IF(uint64_t(size) > mSize - uint64_t(offset), |
| "Mapping range (offset:%u, size: %u) doesn't fit in the size (%u) of %s.", |
| offset, size, mSize, this); |
| |
| switch (mState) { |
| case BufferState::Mapped: |
| case BufferState::MappedAtCreation: |
| return DAWN_VALIDATION_ERROR("%s is already mapped.", this); |
| case BufferState::PendingMap: |
| UNREACHABLE(); |
| case BufferState::Destroyed: |
| return DAWN_VALIDATION_ERROR("%s is destroyed.", this); |
| case BufferState::Unmapped: |
| break; |
| } |
| |
| bool isReadMode = mode & wgpu::MapMode::Read; |
| bool isWriteMode = mode & wgpu::MapMode::Write; |
| DAWN_INVALID_IF(!(isReadMode ^ isWriteMode), "Map mode (%s) is not one of %s or %s.", mode, |
| wgpu::MapMode::Write, wgpu::MapMode::Read); |
| |
| if (mode & wgpu::MapMode::Read) { |
| DAWN_INVALID_IF(!(mUsage & wgpu::BufferUsage::MapRead), |
| "The buffer usages (%s) do not contain %s.", mUsage, |
| wgpu::BufferUsage::MapRead); |
| } else { |
| ASSERT(mode & wgpu::MapMode::Write); |
| DAWN_INVALID_IF(!(mUsage & wgpu::BufferUsage::MapWrite), |
| "The buffer usages (%s) do not contain %s.", mUsage, |
| wgpu::BufferUsage::MapWrite); |
| } |
| |
| *status = WGPUBufferMapAsyncStatus_Success; |
| return {}; |
| } |
| |
| bool BufferBase::CanGetMappedRange(bool writable, size_t offset, size_t size) const { |
| if (offset % 8 != 0 || offset < mMapOffset || offset > mSize) { |
| return false; |
| } |
| |
| size_t rangeSize = size == WGPU_WHOLE_MAP_SIZE ? mSize - offset : size; |
| |
| if (rangeSize % 4 != 0 || rangeSize > mMapSize) { |
| return false; |
| } |
| |
| size_t offsetInMappedRange = offset - mMapOffset; |
| if (offsetInMappedRange > mMapSize - rangeSize) { |
| return false; |
| } |
| |
| // Note that: |
| // |
| // - We don't check that the device is alive because the application can ask for the |
| // mapped pointer before it knows, and even Dawn knows, that the device was lost, and |
| // still needs to work properly. |
| // - We don't check that the object is alive because we need to return mapped pointers |
| // for error buffers too. |
| |
| switch (mState) { |
| // Writeable Buffer::GetMappedRange is always allowed when mapped at creation. |
| case BufferState::MappedAtCreation: |
| return true; |
| |
| case BufferState::Mapped: |
| ASSERT(bool{mMapMode & wgpu::MapMode::Read} ^ bool{mMapMode & wgpu::MapMode::Write}); |
| return !writable || (mMapMode & wgpu::MapMode::Write); |
| |
| case BufferState::PendingMap: |
| case BufferState::Unmapped: |
| case BufferState::Destroyed: |
| return false; |
| } |
| UNREACHABLE(); |
| } |
| |
| MaybeError BufferBase::ValidateUnmap() const { |
| DAWN_TRY(GetDevice()->ValidateIsAlive()); |
| return {}; |
| } |
| |
| void BufferBase::CallbackOnMapRequestCompleted(MapRequestID mapID, |
| WGPUBufferMapAsyncStatus status) { |
| { |
| // This is called from a callback, and no lock will be held by default. Hence, we need to |
| // lock the mutex now because this will modify the buffer's states. |
| auto deviceLock(GetDevice()->GetScopedLock()); |
| if (mapID == mLastMapID && status == WGPUBufferMapAsyncStatus_Success && |
| mState == BufferState::PendingMap) { |
| mState = BufferState::Mapped; |
| } |
| } |
| |
| auto cb = PrepareMappingCallback(mapID, status); |
| cb(); |
| } |
| |
| bool BufferBase::NeedsInitialization() const { |
| return !mIsDataInitialized && GetDevice()->IsToggleEnabled(Toggle::LazyClearResourceOnFirstUse); |
| } |
| |
| bool BufferBase::IsDataInitialized() const { |
| return mIsDataInitialized; |
| } |
| |
| void BufferBase::SetIsDataInitialized() { |
| mIsDataInitialized = true; |
| } |
| |
| void BufferBase::MarkUsedInPendingCommands() { |
| ExecutionSerial serial = GetDevice()->GetPendingCommandSerial(); |
| ASSERT(serial >= mLastUsageSerial); |
| mLastUsageSerial = serial; |
| } |
| |
| bool BufferBase::IsFullBufferRange(uint64_t offset, uint64_t size) const { |
| return offset == 0 && size == GetSize(); |
| } |
| |
| } // namespace dawn::native |