blob: ce17abf9ce2f530a8a6c19201085cb316e057542 [file] [log] [blame]
// Copyright 2017 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/d3d12/DeviceD3D12.h"
#include "common/GPUInfo.h"
#include "dawn_native/DynamicUploader.h"
#include "dawn_native/Instance.h"
#include "dawn_native/d3d12/AdapterD3D12.h"
#include "dawn_native/d3d12/BackendD3D12.h"
#include "dawn_native/d3d12/BindGroupD3D12.h"
#include "dawn_native/d3d12/BindGroupLayoutD3D12.h"
#include "dawn_native/d3d12/CommandAllocatorManager.h"
#include "dawn_native/d3d12/CommandBufferD3D12.h"
#include "dawn_native/d3d12/ComputePipelineD3D12.h"
#include "dawn_native/d3d12/D3D11on12Util.h"
#include "dawn_native/d3d12/D3D12Error.h"
#include "dawn_native/d3d12/PipelineLayoutD3D12.h"
#include "dawn_native/d3d12/PlatformFunctions.h"
#include "dawn_native/d3d12/QuerySetD3D12.h"
#include "dawn_native/d3d12/QueueD3D12.h"
#include "dawn_native/d3d12/RenderPipelineD3D12.h"
#include "dawn_native/d3d12/ResidencyManagerD3D12.h"
#include "dawn_native/d3d12/ResourceAllocatorManagerD3D12.h"
#include "dawn_native/d3d12/SamplerD3D12.h"
#include "dawn_native/d3d12/SamplerHeapCacheD3D12.h"
#include "dawn_native/d3d12/ShaderModuleD3D12.h"
#include "dawn_native/d3d12/ShaderVisibleDescriptorAllocatorD3D12.h"
#include "dawn_native/d3d12/StagingBufferD3D12.h"
#include "dawn_native/d3d12/StagingDescriptorAllocatorD3D12.h"
#include "dawn_native/d3d12/SwapChainD3D12.h"
#include "dawn_native/d3d12/UtilsD3D12.h"
#include <sstream>
namespace dawn_native { namespace d3d12 {
// TODO(dawn:155): Figure out these values.
static constexpr uint16_t kShaderVisibleDescriptorHeapSize = 1024;
static constexpr uint8_t kAttachmentDescriptorHeapSize = 64;
// Value may change in the future to better accomodate large clears.
static constexpr uint64_t kZeroBufferSize = 1024 * 1024 * 4; // 4 Mb
static constexpr uint64_t kMaxDebugMessagesToPrint = 5;
// static
ResultOrError<Device*> Device::Create(Adapter* adapter,
const DawnDeviceDescriptor* descriptor) {
Ref<Device> device = AcquireRef(new Device(adapter, descriptor));
DAWN_TRY(device->Initialize());
return device.Detach();
}
MaybeError Device::Initialize() {
InitTogglesFromDriver();
mD3d12Device = ToBackend(GetAdapter())->GetDevice();
ASSERT(mD3d12Device != nullptr);
// Create device-global objects
D3D12_COMMAND_QUEUE_DESC queueDesc = {};
queueDesc.Flags = D3D12_COMMAND_QUEUE_FLAG_NONE;
queueDesc.Type = D3D12_COMMAND_LIST_TYPE_DIRECT;
DAWN_TRY(
CheckHRESULT(mD3d12Device->CreateCommandQueue(&queueDesc, IID_PPV_ARGS(&mCommandQueue)),
"D3D12 create command queue"));
if (IsFeatureEnabled(Feature::TimestampQuery)) {
// Get GPU timestamp counter frequency (in ticks/second). This fails if the specified
// command queue doesn't support timestamps. D3D12_COMMAND_LIST_TYPE_DIRECT queues
// always support timestamps except where there are bugs in Windows container and vGPU
// implementations.
uint64_t frequency;
DAWN_TRY(CheckHRESULT(mCommandQueue->GetTimestampFrequency(&frequency),
"D3D12 get timestamp frequency"));
// Calculate the period in nanoseconds by the frequency.
mTimestampPeriod = static_cast<float>(1e9) / frequency;
}
// If PIX is not attached, the QueryInterface fails. Hence, no need to check the return
// value.
mCommandQueue.As(&mD3d12SharingContract);
DAWN_TRY(
CheckHRESULT(mD3d12Device->CreateFence(uint64_t(GetLastSubmittedCommandSerial()),
D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&mFence)),
"D3D12 create fence"));
mFenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
ASSERT(mFenceEvent != nullptr);
// Initialize backend services
mCommandAllocatorManager = std::make_unique<CommandAllocatorManager>(this);
// Zero sized allocator is never requested and does not need to exist.
for (uint32_t countIndex = 0; countIndex < kNumViewDescriptorAllocators; countIndex++) {
mViewAllocators[countIndex + 1] = std::make_unique<StagingDescriptorAllocator>(
this, 1u << countIndex, kShaderVisibleDescriptorHeapSize,
D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);
}
for (uint32_t countIndex = 0; countIndex < kNumSamplerDescriptorAllocators; countIndex++) {
mSamplerAllocators[countIndex + 1] = std::make_unique<StagingDescriptorAllocator>(
this, 1u << countIndex, kShaderVisibleDescriptorHeapSize,
D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER);
}
mRenderTargetViewAllocator = std::make_unique<StagingDescriptorAllocator>(
this, 1, kAttachmentDescriptorHeapSize, D3D12_DESCRIPTOR_HEAP_TYPE_RTV);
mDepthStencilViewAllocator = std::make_unique<StagingDescriptorAllocator>(
this, 1, kAttachmentDescriptorHeapSize, D3D12_DESCRIPTOR_HEAP_TYPE_DSV);
mSamplerHeapCache = std::make_unique<SamplerHeapCache>(this);
mResidencyManager = std::make_unique<ResidencyManager>(this);
mResourceAllocatorManager = std::make_unique<ResourceAllocatorManager>(this);
// ShaderVisibleDescriptorAllocators use the ResidencyManager and must be initialized after.
DAWN_TRY_ASSIGN(
mSamplerShaderVisibleDescriptorAllocator,
ShaderVisibleDescriptorAllocator::Create(this, D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER));
DAWN_TRY_ASSIGN(
mViewShaderVisibleDescriptorAllocator,
ShaderVisibleDescriptorAllocator::Create(this, D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV));
// Initialize indirect commands
D3D12_INDIRECT_ARGUMENT_DESC argumentDesc = {};
argumentDesc.Type = D3D12_INDIRECT_ARGUMENT_TYPE_DISPATCH;
D3D12_COMMAND_SIGNATURE_DESC programDesc = {};
programDesc.ByteStride = 3 * sizeof(uint32_t);
programDesc.NumArgumentDescs = 1;
programDesc.pArgumentDescs = &argumentDesc;
GetD3D12Device()->CreateCommandSignature(&programDesc, NULL,
IID_PPV_ARGS(&mDispatchIndirectSignature));
argumentDesc.Type = D3D12_INDIRECT_ARGUMENT_TYPE_DRAW;
programDesc.ByteStride = 4 * sizeof(uint32_t);
GetD3D12Device()->CreateCommandSignature(&programDesc, NULL,
IID_PPV_ARGS(&mDrawIndirectSignature));
argumentDesc.Type = D3D12_INDIRECT_ARGUMENT_TYPE_DRAW_INDEXED;
programDesc.ByteStride = 5 * sizeof(uint32_t);
GetD3D12Device()->CreateCommandSignature(&programDesc, NULL,
IID_PPV_ARGS(&mDrawIndexedIndirectSignature));
DAWN_TRY(DeviceBase::Initialize(new Queue(this)));
// Device shouldn't be used until after DeviceBase::Initialize so we must wait until after
// device initialization to call NextSerial
DAWN_TRY(NextSerial());
// The environment can only use DXC when it's available. Override the decision if it is not
// applicable.
DAWN_TRY(ApplyUseDxcToggle());
DAWN_TRY(CreateZeroBuffer());
return {};
}
Device::~Device() {
Destroy();
}
ID3D12Device* Device::GetD3D12Device() const {
return mD3d12Device.Get();
}
ComPtr<ID3D12CommandQueue> Device::GetCommandQueue() const {
return mCommandQueue;
}
ID3D12SharingContract* Device::GetSharingContract() const {
return mD3d12SharingContract.Get();
}
ComPtr<ID3D12CommandSignature> Device::GetDispatchIndirectSignature() const {
return mDispatchIndirectSignature;
}
ComPtr<ID3D12CommandSignature> Device::GetDrawIndirectSignature() const {
return mDrawIndirectSignature;
}
ComPtr<ID3D12CommandSignature> Device::GetDrawIndexedIndirectSignature() const {
return mDrawIndexedIndirectSignature;
}
ComPtr<IDXGIFactory4> Device::GetFactory() const {
return ToBackend(GetAdapter())->GetBackend()->GetFactory();
}
MaybeError Device::ApplyUseDxcToggle() {
if (!ToBackend(GetAdapter())->GetBackend()->GetFunctions()->IsDXCAvailable()) {
ForceSetToggle(Toggle::UseDXC, false);
} else if (IsFeatureEnabled(Feature::ShaderFloat16)) {
// Currently we can only use DXC to compile HLSL shaders using float16.
ForceSetToggle(Toggle::UseDXC, true);
}
if (IsToggleEnabled(Toggle::UseDXC)) {
DAWN_TRY(ToBackend(GetAdapter())->GetBackend()->EnsureDxcCompiler());
DAWN_TRY(ToBackend(GetAdapter())->GetBackend()->EnsureDxcLibrary());
DAWN_TRY(ToBackend(GetAdapter())->GetBackend()->EnsureDxcValidator());
}
return {};
}
ComPtr<IDxcLibrary> Device::GetDxcLibrary() const {
return ToBackend(GetAdapter())->GetBackend()->GetDxcLibrary();
}
ComPtr<IDxcCompiler> Device::GetDxcCompiler() const {
return ToBackend(GetAdapter())->GetBackend()->GetDxcCompiler();
}
ComPtr<IDxcValidator> Device::GetDxcValidator() const {
return ToBackend(GetAdapter())->GetBackend()->GetDxcValidator();
}
const PlatformFunctions* Device::GetFunctions() const {
return ToBackend(GetAdapter())->GetBackend()->GetFunctions();
}
CommandAllocatorManager* Device::GetCommandAllocatorManager() const {
return mCommandAllocatorManager.get();
}
ResidencyManager* Device::GetResidencyManager() const {
return mResidencyManager.get();
}
ResultOrError<CommandRecordingContext*> Device::GetPendingCommandContext() {
// Callers of GetPendingCommandList do so to record commands. Only reserve a command
// allocator when it is needed so we don't submit empty command lists
if (!mPendingCommands.IsOpen()) {
DAWN_TRY(mPendingCommands.Open(mD3d12Device.Get(), mCommandAllocatorManager.get()));
}
return &mPendingCommands;
}
MaybeError Device::CreateZeroBuffer() {
BufferDescriptor zeroBufferDescriptor;
zeroBufferDescriptor.usage = wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst;
zeroBufferDescriptor.size = kZeroBufferSize;
zeroBufferDescriptor.label = "ZeroBuffer_Internal";
DAWN_TRY_ASSIGN(mZeroBuffer, Buffer::Create(this, &zeroBufferDescriptor));
return {};
}
MaybeError Device::ClearBufferToZero(CommandRecordingContext* commandContext,
BufferBase* destination,
uint64_t offset,
uint64_t size) {
// TODO(crbug.com/dawn/852): It would be ideal to clear the buffer in CreateZeroBuffer, but
// the allocation of the staging buffer causes various end2end tests that monitor heap usage
// to fail if it's done during device creation. Perhaps ClearUnorderedAccessView*() can be
// used to avoid that.
if (!mZeroBuffer->IsDataInitialized()) {
DynamicUploader* uploader = GetDynamicUploader();
UploadHandle uploadHandle;
DAWN_TRY_ASSIGN(uploadHandle,
uploader->Allocate(kZeroBufferSize, GetPendingCommandSerial(),
kCopyBufferToBufferOffsetAlignment));
memset(uploadHandle.mappedBuffer, 0u, kZeroBufferSize);
CopyFromStagingToBufferImpl(commandContext, uploadHandle.stagingBuffer,
uploadHandle.startOffset, mZeroBuffer.Get(), 0,
kZeroBufferSize);
mZeroBuffer->SetIsDataInitialized();
}
Buffer* dstBuffer = ToBackend(destination);
// Necessary to ensure residency of the zero buffer.
mZeroBuffer->TrackUsageAndTransitionNow(commandContext, wgpu::BufferUsage::CopySrc);
dstBuffer->TrackUsageAndTransitionNow(commandContext, wgpu::BufferUsage::CopyDst);
while (size > 0) {
uint64_t copySize = std::min(kZeroBufferSize, size);
commandContext->GetCommandList()->CopyBufferRegion(
dstBuffer->GetD3D12Resource(), offset, mZeroBuffer->GetD3D12Resource(), 0,
copySize);
offset += copySize;
size -= copySize;
}
return {};
}
MaybeError Device::TickImpl() {
// Perform cleanup operations to free unused objects
ExecutionSerial completedSerial = GetCompletedCommandSerial();
mResourceAllocatorManager->Tick(completedSerial);
DAWN_TRY(mCommandAllocatorManager->Tick(completedSerial));
mViewShaderVisibleDescriptorAllocator->Tick(completedSerial);
mSamplerShaderVisibleDescriptorAllocator->Tick(completedSerial);
mRenderTargetViewAllocator->Tick(completedSerial);
mDepthStencilViewAllocator->Tick(completedSerial);
mUsedComObjectRefs.ClearUpTo(completedSerial);
if (mPendingCommands.IsOpen()) {
DAWN_TRY(ExecutePendingCommandContext());
DAWN_TRY(NextSerial());
}
DAWN_TRY(CheckDebugLayerAndGenerateErrors());
return {};
}
MaybeError Device::NextSerial() {
IncrementLastSubmittedCommandSerial();
return CheckHRESULT(
mCommandQueue->Signal(mFence.Get(), uint64_t(GetLastSubmittedCommandSerial())),
"D3D12 command queue signal fence");
}
MaybeError Device::WaitForSerial(ExecutionSerial serial) {
DAWN_TRY(CheckPassedSerials());
if (GetCompletedCommandSerial() < serial) {
DAWN_TRY(CheckHRESULT(mFence->SetEventOnCompletion(uint64_t(serial), mFenceEvent),
"D3D12 set event on completion"));
WaitForSingleObject(mFenceEvent, INFINITE);
DAWN_TRY(CheckPassedSerials());
}
return {};
}
ResultOrError<ExecutionSerial> Device::CheckAndUpdateCompletedSerials() {
ExecutionSerial completedSerial = ExecutionSerial(mFence->GetCompletedValue());
if (DAWN_UNLIKELY(completedSerial == ExecutionSerial(UINT64_MAX))) {
// GetCompletedValue returns UINT64_MAX if the device was removed.
// Try to query the failure reason.
DAWN_TRY(CheckHRESULT(mD3d12Device->GetDeviceRemovedReason(),
"ID3D12Device::GetDeviceRemovedReason"));
// Otherwise, return a generic device lost error.
return DAWN_DEVICE_LOST_ERROR("Device lost");
}
if (completedSerial <= GetCompletedCommandSerial()) {
return ExecutionSerial(0);
}
return completedSerial;
}
void Device::ReferenceUntilUnused(ComPtr<IUnknown> object) {
mUsedComObjectRefs.Enqueue(object, GetPendingCommandSerial());
}
MaybeError Device::ExecutePendingCommandContext() {
return mPendingCommands.ExecuteCommandList(this);
}
ResultOrError<Ref<BindGroupBase>> Device::CreateBindGroupImpl(
const BindGroupDescriptor* descriptor) {
return BindGroup::Create(this, descriptor);
}
ResultOrError<Ref<BindGroupLayoutBase>> Device::CreateBindGroupLayoutImpl(
const BindGroupLayoutDescriptor* descriptor,
PipelineCompatibilityToken pipelineCompatibilityToken) {
return BindGroupLayout::Create(this, descriptor, pipelineCompatibilityToken);
}
ResultOrError<Ref<BufferBase>> Device::CreateBufferImpl(const BufferDescriptor* descriptor) {
return Buffer::Create(this, descriptor);
}
ResultOrError<Ref<CommandBufferBase>> Device::CreateCommandBuffer(
CommandEncoder* encoder,
const CommandBufferDescriptor* descriptor) {
return CommandBuffer::Create(encoder, descriptor);
}
Ref<ComputePipelineBase> Device::CreateUninitializedComputePipelineImpl(
const ComputePipelineDescriptor* descriptor) {
return ComputePipeline::CreateUninitialized(this, descriptor);
}
ResultOrError<Ref<PipelineLayoutBase>> Device::CreatePipelineLayoutImpl(
const PipelineLayoutDescriptor* descriptor) {
return PipelineLayout::Create(this, descriptor);
}
ResultOrError<Ref<QuerySetBase>> Device::CreateQuerySetImpl(
const QuerySetDescriptor* descriptor) {
return QuerySet::Create(this, descriptor);
}
Ref<RenderPipelineBase> Device::CreateUninitializedRenderPipelineImpl(
const RenderPipelineDescriptor* descriptor) {
return RenderPipeline::CreateUninitialized(this, descriptor);
}
ResultOrError<Ref<SamplerBase>> Device::CreateSamplerImpl(const SamplerDescriptor* descriptor) {
return Sampler::Create(this, descriptor);
}
ResultOrError<Ref<ShaderModuleBase>> Device::CreateShaderModuleImpl(
const ShaderModuleDescriptor* descriptor,
ShaderModuleParseResult* parseResult) {
return ShaderModule::Create(this, descriptor, parseResult);
}
ResultOrError<Ref<SwapChainBase>> Device::CreateSwapChainImpl(
const SwapChainDescriptor* descriptor) {
return OldSwapChain::Create(this, descriptor);
}
ResultOrError<Ref<NewSwapChainBase>> Device::CreateSwapChainImpl(
Surface* surface,
NewSwapChainBase* previousSwapChain,
const SwapChainDescriptor* descriptor) {
return SwapChain::Create(this, surface, previousSwapChain, descriptor);
}
ResultOrError<Ref<TextureBase>> Device::CreateTextureImpl(const TextureDescriptor* descriptor) {
return Texture::Create(this, descriptor);
}
ResultOrError<Ref<TextureViewBase>> Device::CreateTextureViewImpl(
TextureBase* texture,
const TextureViewDescriptor* descriptor) {
return TextureView::Create(texture, descriptor);
}
void Device::InitializeComputePipelineAsyncImpl(Ref<ComputePipelineBase> computePipeline,
WGPUCreateComputePipelineAsyncCallback callback,
void* userdata) {
ComputePipeline::InitializeAsync(std::move(computePipeline), callback, userdata);
}
void Device::InitializeRenderPipelineAsyncImpl(Ref<RenderPipelineBase> renderPipeline,
WGPUCreateRenderPipelineAsyncCallback callback,
void* userdata) {
RenderPipeline::InitializeAsync(std::move(renderPipeline), callback, userdata);
}
ResultOrError<std::unique_ptr<StagingBufferBase>> Device::CreateStagingBuffer(size_t size) {
std::unique_ptr<StagingBufferBase> stagingBuffer =
std::make_unique<StagingBuffer>(size, this);
DAWN_TRY(stagingBuffer->Initialize());
return std::move(stagingBuffer);
}
MaybeError Device::CopyFromStagingToBuffer(StagingBufferBase* source,
uint64_t sourceOffset,
BufferBase* destination,
uint64_t destinationOffset,
uint64_t size) {
CommandRecordingContext* commandRecordingContext;
DAWN_TRY_ASSIGN(commandRecordingContext, GetPendingCommandContext());
Buffer* dstBuffer = ToBackend(destination);
DAWN_TRY(dstBuffer->EnsureDataInitializedAsDestination(commandRecordingContext,
destinationOffset, size));
CopyFromStagingToBufferImpl(commandRecordingContext, source, sourceOffset, destination,
destinationOffset, size);
return {};
}
void Device::CopyFromStagingToBufferImpl(CommandRecordingContext* commandContext,
StagingBufferBase* source,
uint64_t sourceOffset,
BufferBase* destination,
uint64_t destinationOffset,
uint64_t size) {
ASSERT(commandContext != nullptr);
Buffer* dstBuffer = ToBackend(destination);
StagingBuffer* srcBuffer = ToBackend(source);
dstBuffer->TrackUsageAndTransitionNow(commandContext, wgpu::BufferUsage::CopyDst);
commandContext->GetCommandList()->CopyBufferRegion(
dstBuffer->GetD3D12Resource(), destinationOffset, srcBuffer->GetResource(),
sourceOffset, size);
}
MaybeError Device::CopyFromStagingToTexture(const StagingBufferBase* source,
const TextureDataLayout& src,
TextureCopy* dst,
const Extent3D& copySizePixels) {
CommandRecordingContext* commandContext;
DAWN_TRY_ASSIGN(commandContext, GetPendingCommandContext());
Texture* texture = ToBackend(dst->texture.Get());
ASSERT(texture->GetDimension() != wgpu::TextureDimension::e1D);
SubresourceRange range = GetSubresourcesAffectedByCopy(*dst, copySizePixels);
if (IsCompleteSubresourceCopiedTo(texture, copySizePixels, dst->mipLevel)) {
texture->SetIsSubresourceContentInitialized(true, range);
} else {
texture->EnsureSubresourceContentInitialized(commandContext, range);
}
texture->TrackUsageAndTransitionNow(commandContext, wgpu::TextureUsage::CopyDst, range);
RecordCopyBufferToTexture(commandContext, *dst, ToBackend(source)->GetResource(),
src.offset, src.bytesPerRow, src.rowsPerImage, copySizePixels,
texture, range.aspects);
return {};
}
void Device::DeallocateMemory(ResourceHeapAllocation& allocation) {
mResourceAllocatorManager->DeallocateMemory(allocation);
}
ResultOrError<ResourceHeapAllocation> Device::AllocateMemory(
D3D12_HEAP_TYPE heapType,
const D3D12_RESOURCE_DESC& resourceDescriptor,
D3D12_RESOURCE_STATES initialUsage) {
return mResourceAllocatorManager->AllocateMemory(heapType, resourceDescriptor,
initialUsage);
}
Ref<TextureBase> Device::CreateExternalTexture(
const TextureDescriptor* descriptor,
ComPtr<ID3D12Resource> d3d12Texture,
Ref<D3D11on12ResourceCacheEntry> d3d11on12Resource,
ExternalMutexSerial acquireMutexKey,
ExternalMutexSerial releaseMutexKey,
bool isSwapChainTexture,
bool isInitialized) {
Ref<Texture> dawnTexture;
if (ConsumedError(
Texture::CreateExternalImage(this, descriptor, std::move(d3d12Texture),
std::move(d3d11on12Resource), acquireMutexKey,
releaseMutexKey, isSwapChainTexture, isInitialized),
&dawnTexture)) {
return nullptr;
}
return {dawnTexture};
}
ComPtr<ID3D11On12Device> Device::GetOrCreateD3D11on12Device() {
if (mD3d11On12Device == nullptr) {
ComPtr<ID3D11Device> d3d11Device;
D3D_FEATURE_LEVEL d3dFeatureLevel;
IUnknown* const iUnknownQueue = mCommandQueue.Get();
if (FAILED(GetFunctions()->d3d11on12CreateDevice(mD3d12Device.Get(), 0, nullptr, 0,
&iUnknownQueue, 1, 1, &d3d11Device,
nullptr, &d3dFeatureLevel))) {
return nullptr;
}
ComPtr<ID3D11On12Device> d3d11on12Device;
HRESULT hr = d3d11Device.As(&d3d11on12Device);
ASSERT(SUCCEEDED(hr));
mD3d11On12Device = std::move(d3d11on12Device);
}
return mD3d11On12Device;
}
const D3D12DeviceInfo& Device::GetDeviceInfo() const {
return ToBackend(GetAdapter())->GetDeviceInfo();
}
void Device::InitTogglesFromDriver() {
const bool useResourceHeapTier2 = (GetDeviceInfo().resourceHeapTier >= 2);
SetToggle(Toggle::UseD3D12ResourceHeapTier2, useResourceHeapTier2);
SetToggle(Toggle::UseD3D12RenderPass, GetDeviceInfo().supportsRenderPass);
SetToggle(Toggle::UseD3D12ResidencyManagement, true);
SetToggle(Toggle::UseDXC, false);
// Disable optimizations when using FXC
// See https://crbug.com/dawn/1203
SetToggle(Toggle::FxcOptimizations, false);
// By default use the maximum shader-visible heap size allowed.
SetToggle(Toggle::UseD3D12SmallShaderVisibleHeapForTesting, false);
PCIInfo pciInfo = GetAdapter()->GetPCIInfo();
// Currently this workaround is only needed on Intel Gen9 and Gen9.5 GPUs.
// See http://crbug.com/1161355 for more information.
if (gpu_info::IsIntel(pciInfo.vendorId) &&
(gpu_info::IsSkylake(pciInfo.deviceId) || gpu_info::IsKabylake(pciInfo.deviceId) ||
gpu_info::IsCoffeelake(pciInfo.deviceId))) {
constexpr gpu_info::D3DDriverVersion kFirstDriverVersionWithFix = {30, 0, 100, 9864};
if (gpu_info::CompareD3DDriverVersion(pciInfo.vendorId,
ToBackend(GetAdapter())->GetDriverVersion(),
kFirstDriverVersionWithFix) < 0) {
SetToggle(
Toggle::UseTempBufferInSmallFormatTextureToTextureCopyFromGreaterToLessMipLevel,
true);
}
}
}
MaybeError Device::WaitForIdleForDestruction() {
// Immediately forget about all pending commands
mPendingCommands.Release();
DAWN_TRY(NextSerial());
// Wait for all in-flight commands to finish executing
DAWN_TRY(WaitForSerial(GetLastSubmittedCommandSerial()));
return {};
}
MaybeError Device::CheckDebugLayerAndGenerateErrors() {
if (!GetAdapter()->GetInstance()->IsBackendValidationEnabled()) {
return {};
}
ComPtr<ID3D12InfoQueue> infoQueue;
DAWN_TRY(CheckHRESULT(mD3d12Device.As(&infoQueue),
"D3D12 QueryInterface ID3D12Device to ID3D12InfoQueue"));
uint64_t totalErrors = infoQueue->GetNumStoredMessagesAllowedByRetrievalFilter();
// Check if any errors have occurred otherwise we would be creating an empty error. Note
// that we use GetNumStoredMessagesAllowedByRetrievalFilter instead of GetNumStoredMessages
// because we only convert WARNINGS or higher messages to dawn errors.
if (totalErrors == 0) {
return {};
}
std::ostringstream messages;
uint64_t errorsToPrint = std::min(kMaxDebugMessagesToPrint, totalErrors);
for (uint64_t i = 0; i < errorsToPrint; ++i) {
SIZE_T messageLength = 0;
HRESULT hr = infoQueue->GetMessage(i, nullptr, &messageLength);
if (FAILED(hr)) {
messages << " ID3D12InfoQueue::GetMessage failed with " << hr << '\n';
continue;
}
std::unique_ptr<uint8_t[]> messageData(new uint8_t[messageLength]);
D3D12_MESSAGE* message = reinterpret_cast<D3D12_MESSAGE*>(messageData.get());
hr = infoQueue->GetMessage(i, message, &messageLength);
if (FAILED(hr)) {
messages << " ID3D12InfoQueue::GetMessage failed with " << hr << '\n';
continue;
}
messages << message->pDescription << " (" << message->ID << ")\n";
}
if (errorsToPrint < totalErrors) {
messages << (totalErrors - errorsToPrint) << " messages silenced\n";
}
// We only print up to the first kMaxDebugMessagesToPrint errors
infoQueue->ClearStoredMessages();
return DAWN_INTERNAL_ERROR(messages.str());
}
void Device::DestroyImpl() {
ASSERT(GetState() == State::Disconnected);
// Immediately forget about all pending commands for the case where device is lost on its
// own and WaitForIdleForDestruction isn't called.
mPendingCommands.Release();
if (mFenceEvent != nullptr) {
::CloseHandle(mFenceEvent);
}
// Release recycled resource heaps.
if (mResourceAllocatorManager != nullptr) {
mResourceAllocatorManager->DestroyPool();
}
// We need to handle clearing up com object refs that were enqeued after TickImpl
mUsedComObjectRefs.ClearUpTo(std::numeric_limits<ExecutionSerial>::max());
ASSERT(mUsedComObjectRefs.Empty());
ASSERT(!mPendingCommands.IsOpen());
}
ShaderVisibleDescriptorAllocator* Device::GetViewShaderVisibleDescriptorAllocator() const {
return mViewShaderVisibleDescriptorAllocator.get();
}
ShaderVisibleDescriptorAllocator* Device::GetSamplerShaderVisibleDescriptorAllocator() const {
return mSamplerShaderVisibleDescriptorAllocator.get();
}
StagingDescriptorAllocator* Device::GetViewStagingDescriptorAllocator(
uint32_t descriptorCount) const {
ASSERT(descriptorCount <= kMaxViewDescriptorsPerBindGroup);
// This is Log2 of the next power of two, plus 1.
uint32_t allocatorIndex = descriptorCount == 0 ? 0 : Log2Ceil(descriptorCount) + 1;
return mViewAllocators[allocatorIndex].get();
}
StagingDescriptorAllocator* Device::GetSamplerStagingDescriptorAllocator(
uint32_t descriptorCount) const {
ASSERT(descriptorCount <= kMaxSamplerDescriptorsPerBindGroup);
// This is Log2 of the next power of two, plus 1.
uint32_t allocatorIndex = descriptorCount == 0 ? 0 : Log2Ceil(descriptorCount) + 1;
return mSamplerAllocators[allocatorIndex].get();
}
StagingDescriptorAllocator* Device::GetRenderTargetViewAllocator() const {
return mRenderTargetViewAllocator.get();
}
StagingDescriptorAllocator* Device::GetDepthStencilViewAllocator() const {
return mDepthStencilViewAllocator.get();
}
SamplerHeapCache* Device::GetSamplerHeapCache() {
return mSamplerHeapCache.get();
}
uint32_t Device::GetOptimalBytesPerRowAlignment() const {
return D3D12_TEXTURE_DATA_PITCH_ALIGNMENT;
}
// TODO(dawn:512): Once we optimize DynamicUploader allocation with offsets we
// should make this return D3D12_TEXTURE_DATA_PLACEMENT_ALIGNMENT = 512.
// Current implementations would try to allocate additional 511 bytes,
// so we return 1 and let ComputeTextureCopySplits take care of the alignment.
uint64_t Device::GetOptimalBufferToTextureCopyOffsetAlignment() const {
return 1;
}
float Device::GetTimestampPeriodInNS() const {
return mTimestampPeriod;
}
bool Device::ShouldDuplicateNumWorkgroupsForDispatchIndirect(
ComputePipelineBase* computePipeline) const {
return ToBackend(computePipeline)->UsesNumWorkgroups();
}
}} // namespace dawn_native::d3d12