blob: ee93a6dba77a7870d5c3863ca9ae9f7a76879cab [file] [log] [blame]
// Copyright 2024 The Dawn & Tint Authors
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/tint/lang/hlsl/writer/printer/printer.h"
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "src/tint/lang/core/access.h"
#include "src/tint/lang/core/address_space.h"
#include "src/tint/lang/core/builtin_value.h"
#include "src/tint/lang/core/constant/splat.h"
#include "src/tint/lang/core/constant/value.h"
#include "src/tint/lang/core/fluent_types.h"
#include "src/tint/lang/core/interpolation_sampling.h"
#include "src/tint/lang/core/interpolation_type.h"
#include "src/tint/lang/core/ir/access.h"
#include "src/tint/lang/core/ir/bitcast.h"
#include "src/tint/lang/core/ir/block.h"
#include "src/tint/lang/core/ir/break_if.h"
#include "src/tint/lang/core/ir/call.h"
#include "src/tint/lang/core/ir/constant.h"
#include "src/tint/lang/core/ir/construct.h"
#include "src/tint/lang/core/ir/continue.h"
#include "src/tint/lang/core/ir/convert.h"
#include "src/tint/lang/core/ir/core_binary.h"
#include "src/tint/lang/core/ir/core_builtin_call.h"
#include "src/tint/lang/core/ir/core_unary.h"
#include "src/tint/lang/core/ir/discard.h"
#include "src/tint/lang/core/ir/exit_if.h"
#include "src/tint/lang/core/ir/exit_loop.h"
#include "src/tint/lang/core/ir/exit_switch.h"
#include "src/tint/lang/core/ir/if.h"
#include "src/tint/lang/core/ir/instruction_result.h"
#include "src/tint/lang/core/ir/let.h"
#include "src/tint/lang/core/ir/load.h"
#include "src/tint/lang/core/ir/load_vector_element.h"
#include "src/tint/lang/core/ir/loop.h"
#include "src/tint/lang/core/ir/module.h"
#include "src/tint/lang/core/ir/multi_in_block.h" // IWYU pragma: export
#include "src/tint/lang/core/ir/next_iteration.h"
#include "src/tint/lang/core/ir/return.h"
#include "src/tint/lang/core/ir/store.h"
#include "src/tint/lang/core/ir/store_vector_element.h"
#include "src/tint/lang/core/ir/switch.h"
#include "src/tint/lang/core/ir/swizzle.h"
#include "src/tint/lang/core/ir/terminate_invocation.h"
#include "src/tint/lang/core/ir/unreachable.h"
#include "src/tint/lang/core/ir/user_call.h"
#include "src/tint/lang/core/ir/validator.h"
#include "src/tint/lang/core/ir/value.h"
#include "src/tint/lang/core/ir/var.h"
#include "src/tint/lang/core/texel_format.h"
#include "src/tint/lang/core/type/array.h"
#include "src/tint/lang/core/type/array_count.h"
#include "src/tint/lang/core/type/atomic.h"
#include "src/tint/lang/core/type/bool.h"
#include "src/tint/lang/core/type/depth_multisampled_texture.h"
#include "src/tint/lang/core/type/external_texture.h"
#include "src/tint/lang/core/type/f16.h"
#include "src/tint/lang/core/type/f32.h"
#include "src/tint/lang/core/type/i32.h"
#include "src/tint/lang/core/type/matrix.h"
#include "src/tint/lang/core/type/multisampled_texture.h"
#include "src/tint/lang/core/type/pointer.h"
#include "src/tint/lang/core/type/sampled_texture.h"
#include "src/tint/lang/core/type/sampler.h"
#include "src/tint/lang/core/type/storage_texture.h"
#include "src/tint/lang/core/type/struct.h"
#include "src/tint/lang/core/type/texture.h"
#include "src/tint/lang/core/type/texture_dimension.h"
#include "src/tint/lang/core/type/type.h"
#include "src/tint/lang/core/type/u32.h"
#include "src/tint/lang/core/type/vector.h"
#include "src/tint/lang/core/type/void.h"
#include "src/tint/lang/hlsl/ir/builtin_call.h"
#include "src/tint/lang/hlsl/ir/member_builtin_call.h"
#include "src/tint/lang/hlsl/ir/ternary.h"
#include "src/tint/lang/hlsl/type/byte_address_buffer.h"
#include "src/tint/lang/hlsl/type/int8_t4_packed.h"
#include "src/tint/lang/hlsl/type/uint8_t4_packed.h"
#include "src/tint/utils/containers/hashmap.h"
#include "src/tint/utils/containers/map.h"
#include "src/tint/utils/generator/text_generator.h"
#include "src/tint/utils/ice/ice.h"
#include "src/tint/utils/macros/compiler.h"
#include "src/tint/utils/macros/scoped_assignment.h"
#include "src/tint/utils/rtti/switch.h"
#include "src/tint/utils/strconv/float_to_string.h"
#include "src/tint/utils/text/string.h"
#include "src/tint/utils/text/string_stream.h"
using namespace tint::core::fluent_types; // NOLINT
namespace tint::hlsl::writer {
namespace {
// Helper for writing " : register(RX, spaceY)", where R is the register, X is
// the binding point binding value, and Y is the binding point group value.
struct RegisterAndSpace {
RegisterAndSpace(char r, BindingPoint bp) : reg(r), binding_point(bp) {}
const char reg;
BindingPoint const binding_point;
};
StringStream& operator<<(StringStream& s, const RegisterAndSpace& rs) {
s << " : register(" << rs.reg << rs.binding_point.binding;
// Omit the space if it's 0, as it's the default.
// SM 5.0 doesn't support spaces, so we don't emit them if group is 0 for better
// compatibility.
if (rs.binding_point.group == 0) {
s << ")";
} else {
s << ", space" << rs.binding_point.group << ")";
}
return s;
}
/// PIMPL class for the HLSL generator
class Printer : public tint::TextGenerator {
public:
/// Constructor
/// @param module the IR module to generate
explicit Printer(core::ir::Module& module) : ir_(module) {}
/// @returns the generated HLSL shader
tint::Result<PrintResult> Generate() {
core::ir::Capabilities capabilities{
core::ir::Capability::kAllowModuleScopeLets,
core::ir::Capability::kAllowVectorElementPointer,
};
auto valid = core::ir::ValidateAndDumpIfNeeded(ir_, "HLSL writer", capabilities);
if (valid != Success) {
return std::move(valid.Failure());
}
// Emit module-scope declarations.
EmitRootBlock(ir_.root_block);
// Emit functions.
for (auto* func : ir_.DependencyOrderedFunctions()) {
EmitFunction(func);
}
StringStream ss;
ss << preamble_buffer_.String() << "\n" << main_buffer_.String();
result_.hlsl = ss.str();
return std::move(result_);
}
private:
/// The result of printing the module.
PrintResult result_;
core::ir::Module& ir_;
/// The buffer holding preamble text
TextBuffer preamble_buffer_;
/// A hashmap of value to name
Hashmap<const core::ir::Value*, std::string, 32> names_;
/// Map of builtin structure to unique generated name
std::unordered_map<const core::type::Struct*, std::string> builtin_struct_names_;
/// Set of structs which have been emitted already
std::unordered_set<const core::type::Struct*> emitted_structs_;
/// The current function being emitted
const core::ir::Function* current_function_ = nullptr;
/// The current block being emitted
const core::ir::Block* current_block_ = nullptr;
/// Block to emit for a continuing
std::function<void()> emit_continuing_;
enum LetType : uint8_t {
kFunction,
kModuleScope,
};
/// Emit the root block.
/// @param root_block the root block to emit
void EmitRootBlock(core::ir::Block* root_block) {
for (auto* inst : *root_block) {
Switch(
inst, //
[&](core::ir::Var* v) { EmitGlobalVar(v); }, //
[&](core::ir::Let* l) { EmitLet(l, LetType::kModuleScope); }, //
[&](core::ir::Construct*) { /* inlined */ }, //
TINT_ICE_ON_NO_MATCH);
}
}
void EmitFunction(const core::ir::Function* func) {
TINT_SCOPED_ASSIGNMENT(current_function_, func);
{
if (func->Stage() == core::ir::Function::PipelineStage::kCompute) {
auto wg_opt = func->WorkgroupSize();
TINT_ASSERT(wg_opt.has_value());
auto& wg = wg_opt.value();
Line() << "[numthreads(" << wg[0] << ", " << wg[1] << ", " << wg[2] << ")]";
}
auto out = Line();
auto func_name = NameOf(func);
if (func->ReturnType()->Is<core::type::Array>()) {
EmitTypedefedType(out, func->ReturnType());
} else {
EmitType(out, func->ReturnType());
}
out << " " << func_name << "(";
bool is_ep = func->Stage() != core::ir::Function::PipelineStage::kUndefined;
size_t i = 0;
for (auto* param : func->Params()) {
if (i > 0) {
out << ", ";
}
++i;
auto ptr = param->Type()->As<core::type::Pointer>();
if (is_ep && !param->Type()->Is<core::type::Struct>()) {
// ICE likely indicates that the ShaderIO transform was not run, or a builtin
// parameter was added after it was run.
TINT_ICE() << "Unsupported non-struct entry point parameter";
} else if (!is_ep && ptr) {
switch (ptr->AddressSpace()) {
case core::AddressSpace::kStorage:
case core::AddressSpace::kUniform: {
TINT_UNREACHABLE();
}
default:
// Transform regular pointer parameters in to `inout` parameters.
out << "inout ";
}
}
EmitTypeAndName(out, param->Type(), NameOf(param));
}
out << ") {";
}
{
const ScopedIndent si(current_buffer_);
EmitBlock(func->Block());
}
Line() << "}";
Line();
}
void EmitTypedefedType(StringStream& out, const core::type::Type* ty) {
auto name = UniqueIdentifier("ary_ret");
out << "typedef ";
EmitTypeAndName(out, ty, name);
out << ";\n" << name;
}
void EmitBlock(const core::ir::Block* block) {
TINT_SCOPED_ASSIGNMENT(current_block_, block);
for (auto* inst : *block) {
Switch(
inst,
// Discard and TerminateInvocation must come before Call.
[&](const core::ir::Discard*) { EmitDiscard(); }, //
[&](const core::ir::TerminateInvocation*) { EmitDiscard(); }, //
[&](const core::ir::BreakIf* i) { EmitBreakIf(i); }, //
[&](const core::ir::Call* i) { EmitCallStmt(i); }, //
[&](const core::ir::Continue*) { EmitContinue(); }, //
[&](const core::ir::ExitLoop*) { EmitExitLoop(); }, //
[&](const core::ir::ExitSwitch*) { EmitExitSwitch(); }, //
[&](const core::ir::If* i) { EmitIf(i); }, //
[&](const core::ir::Let* i) { EmitLet(i, LetType::kFunction); }, //
[&](const core::ir::StoreVectorElement* s) { EmitStoreVectorElement(s); }, //
[&](const core::ir::Loop* l) { EmitLoop(l); }, //
[&](const core::ir::Return* i) { EmitReturn(i); }, //
[&](const core::ir::Store* i) { EmitStore(i); }, //
[&](const core::ir::Switch* i) { EmitSwitch(i); }, //
[&](const core::ir::Unreachable*) { EmitUnreachable(); }, //
[&](const core::ir::Var* v) { EmitVar(Line(), v); }, //
//
[&](const core::ir::NextIteration*) { /* do nothing */ }, //
[&](const core::ir::ExitIf*) { /* do nothing handled by transform */ }, //
//
[&](const core::ir::Access*) { /* inlined */ }, //
[&](const core::ir::Bitcast*) { /* inlined */ }, //
[&](const core::ir::Construct*) { /* inlined */ }, //
[&](const core::ir::CoreBinary*) { /* inlined */ }, //
[&](const core::ir::CoreUnary*) { /* inlined */ }, //
[&](const core::ir::Load*) { /* inlined */ }, //
[&](const core::ir::LoadVectorElement*) { /* inlined */ }, //
[&](const core::ir::Swizzle*) { /* inlined */ }, //
TINT_ICE_ON_NO_MATCH);
}
}
void EmitDiscard() { Line() << "discard;"; }
void EmitStoreVectorElement(const core::ir::StoreVectorElement* l) {
auto out = Line();
EmitValue(out, l->To());
out << "[";
EmitValue(out, l->Index());
out << "] = ";
EmitValue(out, l->Value());
out << ";";
}
void EmitLoadVectorElement(StringStream& out, const core::ir::LoadVectorElement* l) {
EmitValue(out, l->From());
if (auto* cnst = l->Index()->As<core::ir::Constant>()) {
out << ".";
switch (cnst->Value()->ValueAs<uint32_t>()) {
case 0:
out << "x";
break;
case 1:
out << "y";
break;
case 2:
out << "z";
break;
case 3:
out << "w";
break;
default:
TINT_UNREACHABLE();
}
} else {
out << "[";
EmitValue(out, l->Index());
out << "]";
}
}
void EmitExitSwitch() { Line() << "break;"; }
void EmitSwitch(const core::ir::Switch* s) {
{
auto out = Line();
out << "switch(";
EmitValue(out, s->Condition());
out << ") {";
}
{
const ScopedIndent blk(current_buffer_);
for (auto& case_ : s->Cases()) {
for (auto& sel : case_.selectors) {
if (sel.IsDefault()) {
Line() << "default:";
} else {
auto out = Line();
out << "case ";
EmitValue(out, sel.val);
out << ":";
}
}
Line() << "{";
{
const ScopedIndent ci(current_buffer_);
EmitBlock(case_.block);
}
Line() << "}";
}
}
Line() << "}";
}
/// Emit an if instruction
/// @param if_ the if instruction
void EmitIf(const core::ir::If* if_) {
{
auto out = Line();
out << "if (";
EmitValue(out, if_->Condition());
out << ") {";
}
{
const ScopedIndent si(current_buffer_);
EmitBlock(if_->True());
}
if (if_->False() && !if_->False()->IsEmpty()) {
Line() << "} else {";
const ScopedIndent si(current_buffer_);
EmitBlock(if_->False());
}
Line() << "}";
}
/// Emit an unreachable instruction
void EmitUnreachable() { Line() << "/* unreachable */"; }
void EmitContinue() {
if (emit_continuing_) {
emit_continuing_();
}
Line() << "continue;";
}
void EmitExitLoop() { Line() << "break;"; }
void EmitBreakIf(const core::ir::BreakIf* b) {
auto out = Line();
out << "if (";
EmitValue(out, b->Condition());
out << ") { break; }";
}
void EmitLoop(const core::ir::Loop* l) {
// Note, we can't just emit the continuing inside a conditional at the top of the loop
// because any variable declared in the block must be visible to the continuing.
//
// loop {
// var a = 3;
// continue {
// let y = a;
// }
// }
auto emit_continuing = [&] {
Line() << "{";
{
const ScopedIndent si(current_buffer_);
EmitBlock(l->Continuing());
}
Line() << "}";
};
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
Line() << "{";
{
const ScopedIndent init(current_buffer_);
EmitBlock(l->Initializer());
Line() << "while(true) {";
{
const ScopedIndent si(current_buffer_);
EmitBlock(l->Body());
}
Line() << "}";
}
Line() << "}";
}
void EmitCallStmt(const core::ir::Call* c) {
if (!c->Result(0)->IsUsed()) {
auto out = Line();
EmitValue(out, c->Result(0));
out << ";";
}
}
void EmitGlobalVar(const core::ir::Var* var) {
Switch(
var->Result(0)->Type(), //
[&](const hlsl::type::ByteAddressBuffer* buf) { EmitStorageVariable(var, buf); },
[&](const core::type::Pointer* ptr) {
auto space = ptr->AddressSpace();
switch (space) {
case core::AddressSpace::kUniform:
EmitUniformVariable(var);
break;
case core::AddressSpace::kHandle:
EmitHandleVariable(var);
break;
case core::AddressSpace::kPrivate: {
auto out = Line();
out << "static ";
EmitVar(out, var);
break;
}
case core::AddressSpace::kWorkgroup: {
auto out = Line();
out << "groupshared ";
EmitVar(out, var);
break;
}
case core::AddressSpace::kPushConstant:
default: {
TINT_ICE() << "unhandled address space " << space;
}
}
},
TINT_ICE_ON_NO_MATCH);
}
void EmitUniformVariable(const core::ir::Var* var) {
auto* ptr = var->Result(0)->Type()->As<core::type::Pointer>();
TINT_ASSERT(ptr);
auto bp = var->BindingPoint();
TINT_ASSERT(bp.has_value());
Line() << "cbuffer cbuffer_" << NameOf(var->Result(0)) << RegisterAndSpace('b', bp.value())
<< " {";
{
const ScopedIndent si(this);
auto out = Line();
EmitTypeAndName(out, var->Result(0)->Type(), NameOf(var->Result(0)));
out << ";";
}
Line() << "};";
}
void EmitStorageVariable(const core::ir::Var* var, const hlsl::type::ByteAddressBuffer* buf) {
auto out = Line();
EmitTypeAndName(out, var->Result(0)->Type(), NameOf(var->Result(0)));
auto bp = var->BindingPoint();
TINT_ASSERT(bp.has_value());
out << RegisterAndSpace(buf->Access() == core::Access::kRead ? 't' : 'u', bp.value())
<< ";";
}
void EmitHandleVariable(const core::ir::Var* var) {
auto* ptr = var->Result(0)->Type()->As<core::type::Pointer>();
TINT_ASSERT(ptr);
char register_space = ' ';
if (ptr->StoreType()->Is<core::type::Texture>()) {
register_space = 't';
auto* st = ptr->StoreType()->As<core::type::StorageTexture>();
if (st && st->Access() != core::Access::kRead) {
register_space = 'u';
}
} else if (ptr->StoreType()->Is<core::type::Sampler>()) {
register_space = 's';
}
TINT_ASSERT(register_space != ' ');
auto bp = var->BindingPoint();
TINT_ASSERT(bp.has_value());
// TODO(dsinclair): Handle PixelLocal::RasterizerOrderedView attribute
auto out = Line();
EmitTypeAndName(out, var->Result(0)->Type(), NameOf(var->Result(0)));
out << RegisterAndSpace(register_space, bp.value()) << ";";
}
void EmitVar(StringStream& out, const core::ir::Var* var) {
auto* ptr = var->Result(0)->Type()->As<core::type::Pointer>();
TINT_ASSERT(ptr);
auto space = ptr->AddressSpace();
EmitTypeAndName(out, var->Result(0)->Type(), NameOf(var->Result(0)));
if (var->Initializer()) {
out << " = ";
EmitValue(out, var->Initializer());
} else if (space == core::AddressSpace::kPrivate ||
space == core::AddressSpace::kFunction ||
space == core::AddressSpace::kUndefined) {
out << " = ";
EmitZeroValue(out, ptr->UnwrapPtr());
}
out << ";";
}
/// Emits the zero value for the given type
/// @param out the stream to emit too
/// @param ty the type
void EmitZeroValue(StringStream& out, const core::type::Type* ty) {
EmitConstant(out, ir_.constant_values.Zero(ty));
}
void EmitLet(const core::ir::Let* l, LetType type) {
auto out = Line();
if (type == LetType::kModuleScope) {
out << "static const ";
}
// TODO(dsinclair): Investigate using `const` here as well, the AST printer doesn't emit
// const with a let, but we should be able to.
EmitTypeAndName(out, l->Result(0)->Type(), NameOf(l->Result(0)));
out << " = ";
EmitValue(out, l->Value());
out << ";";
}
void EmitReturn(const core::ir::Return* r) {
// If this return has no arguments and the current block is for the function which is
// being returned, skip the return.
if (current_block_ == current_function_->Block() && r->Args().IsEmpty()) {
return;
}
auto out = Line();
out << "return";
if (!r->Args().IsEmpty()) {
out << " ";
EmitValue(out, r->Args().Front());
}
out << ";";
}
void EmitValue(StringStream& out, const core::ir::Value* v) {
Switch(
v, //
[&](const core::ir::Constant* c) { EmitConstant(out, c); }, //
[&](const core::ir::InstructionResult* r) {
Switch(
r->Instruction(), //
[&](const core::ir::Access* a) { EmitAccess(out, a); }, //
[&](const core::ir::Construct* c) { EmitConstruct(out, c); }, //
[&](const core::ir::Convert* c) { EmitConvert(out, c); }, //
[&](const core::ir::CoreBinary* b) { EmitBinary(out, b); }, //
[&](const core::ir::CoreBuiltinCall* c) { EmitCoreBuiltinCall(out, c); }, //
[&](const core::ir::CoreUnary* u) { EmitUnary(out, u); }, //
[&](const core::ir::Let* l) { out << NameOf(l->Result(0)); }, //
[&](const core::ir::Load* l) { EmitLoad(out, l); }, //
[&](const core::ir::LoadVectorElement* l) {
EmitLoadVectorElement(out, l);
}, //
[&](const core::ir::UserCall* c) { EmitUserCall(out, c); }, //
[&](const core::ir::Swizzle* s) { EmitSwizzle(out, s); }, //
[&](const core::ir::Var* var) { out << NameOf(var->Result(0)); }, //
[&](const hlsl::ir::BuiltinCall* c) { EmitHlslBuiltinCall(out, c); }, //
[&](const hlsl::ir::Ternary* t) { EmitTernary(out, t); },
[&](const hlsl::ir::MemberBuiltinCall* mbc) {
EmitHlslMemberBuiltinCall(out, mbc);
},
TINT_ICE_ON_NO_MATCH);
},
[&](const core::ir::FunctionParam* p) { out << NameOf(p); }, //
TINT_ICE_ON_NO_MATCH);
}
void EmitHlslMemberBuiltinCall(StringStream& out, const hlsl::ir::MemberBuiltinCall* c) {
BuiltinFn fn = c->Func();
std::string suffix = "";
if (fn == BuiltinFn::kLoadF16 || fn == BuiltinFn::kStoreF16) {
suffix = "<float16_t>";
} else if (fn == BuiltinFn::kLoad2F16 || fn == BuiltinFn::kStore2F16) {
// Note space between '> >' is required for DXC
suffix = "<vector<float16_t, 2> >";
} else if (fn == BuiltinFn::kLoad3F16 || fn == BuiltinFn::kStore3F16) {
// Note space between '> >' is required for DXC
suffix = "<vector<float16_t, 3> >";
} else if (fn == BuiltinFn::kLoad4F16 || fn == BuiltinFn::kStore4F16) {
// Note space between '> >' is required for DXC
suffix = "<vector<float16_t, 4> >";
}
if (fn == BuiltinFn::kLoadF16 || fn == BuiltinFn::kLoad2F16 || fn == BuiltinFn::kLoad3F16 ||
fn == BuiltinFn::kLoad4F16) {
fn = BuiltinFn::kLoad;
} else if (fn == BuiltinFn::kStoreF16 || fn == BuiltinFn::kStore2F16 ||
fn == BuiltinFn::kStore3F16 || fn == BuiltinFn::kStore4F16) {
fn = BuiltinFn::kStore;
}
EmitValue(out, c->Object());
out << "." << fn << suffix << "(";
bool needs_comma = false;
for (const auto* arg : c->Args()) {
if (needs_comma) {
out << ", ";
}
EmitValue(out, arg);
needs_comma = true;
}
out << ")";
}
void EmitTernary(StringStream& out, const hlsl::ir::Ternary* t) {
out << "((";
EmitValue(out, t->Cmp());
out << ") ? (";
EmitValue(out, t->True());
out << ") : (";
EmitValue(out, t->False());
out << "))";
return;
}
void EmitHlslBuiltinCall(StringStream& out, const hlsl::ir::BuiltinCall* c) {
if (c->Func() == hlsl::BuiltinFn::kTextureStore) {
EmitTextureStore(out, c);
return;
}
out << c->Func() << "(";
bool needs_comma = false;
for (const auto* arg : c->Args()) {
if (needs_comma) {
out << ", ";
}
EmitValue(out, arg);
needs_comma = true;
}
out << ")";
}
void EmitTextureStore(StringStream& out, const hlsl::ir::BuiltinCall* c) {
auto args = c->Args();
EmitValue(out, args[0]);
out << "[";
EmitValue(out, args[1]);
out << "] = ";
EmitValue(out, args[2]);
}
/// Emit a convert instruction
void EmitConvert(StringStream& out, const core::ir::Convert* c) {
EmitType(out, c->Result(0)->Type());
out << "(";
EmitValue(out, c->Operand(0));
out << ")";
}
/// Emit a constructor
void EmitConstruct(StringStream& out, const core::ir::Construct* c) {
auto emit_args = [&]() {
size_t i = 0;
for (auto* arg : c->Args()) {
if (i > 0) {
out << ", ";
}
EmitValue(out, arg);
i++;
}
};
Switch(
c->Result(0)->Type(),
[&](const core::type::Array*) {
// The PromoteInitializers transform will inject splat arrays as composites of one
// element. These need to convert to `(type)0` in HLSL otherwise DXC will complain
// about missing values.
if (c->Args().Length() == 1) {
out << "(";
EmitType(out, c->Result(0)->Type());
out << ")0";
} else {
out << "{";
emit_args();
out << "}";
}
},
[&](const core::type::Struct*) {
out << "{";
emit_args();
out << "}";
},
[&](const core::type::Vector* vec) {
EmitType(out, c->Result(0)->Type());
out << "("; // For the type constructor
// We swizzle a single value, in order to do so, wrap it in it more brackets.
if (c->Args().Length() == 1) {
out << "(";
}
emit_args();
// Swizzle a single value constructor
if (c->Args().Length() == 1) {
out << ")." << std::string(vec->Width(), 'x');
}
out << ")";
},
[&](Default) {
EmitType(out, c->Result(0)->Type());
out << "(";
emit_args();
out << ")";
});
}
void EmitUnary(StringStream& out, const core::ir::CoreUnary* u) {
switch (u->Op()) {
case core::UnaryOp::kNegation:
out << "-";
break;
case core::UnaryOp::kComplement:
out << "~";
break;
case core::UnaryOp::kNot:
out << "!";
break;
default:
TINT_UNIMPLEMENTED() << u->Op();
}
out << "(";
EmitValue(out, u->Val());
out << ")";
}
void EmitSwizzle(StringStream& out, const core::ir::Swizzle* swizzle) {
EmitValue(out, swizzle->Object());
out << ".";
for (const auto i : swizzle->Indices()) {
switch (i) {
case 0:
out << "x";
break;
case 1:
out << "y";
break;
case 2:
out << "z";
break;
case 3:
out << "w";
break;
default:
TINT_UNREACHABLE();
}
}
}
/// Emit an access instruction
void EmitAccess(StringStream& out, const core::ir::Access* a) {
EmitValue(out, a->Object());
auto* current_type = a->Object()->Type();
for (auto* index : a->Indices()) {
TINT_ASSERT(current_type);
current_type = current_type->UnwrapPtr();
Switch(
current_type, //
[&](const core::type::Struct* s) {
auto* c = index->As<core::ir::Constant>();
auto* member = s->Members()[c->Value()->ValueAs<uint32_t>()];
out << "." << member->Name().Name();
current_type = member->Type();
},
[&](Default) {
out << "[";
EmitValue(out, index);
out << "]";
current_type = current_type->Element(0);
});
}
}
void EmitCoreBuiltinCall(StringStream& out, const core::ir::CoreBuiltinCall* c) {
EmitCoreBuiltinName(out, c->Func());
ScopedParen sp(out);
size_t i = 0;
for (const auto* arg : c->Args()) {
if (i > 0) {
out << ", ";
}
++i;
EmitValue(out, arg);
}
}
void EmitCoreBuiltinName(StringStream& out, core::BuiltinFn func) {
switch (func) {
case core::BuiltinFn::kAbs:
case core::BuiltinFn::kAcos:
case core::BuiltinFn::kAll:
case core::BuiltinFn::kAny:
case core::BuiltinFn::kAsin:
case core::BuiltinFn::kAtan:
case core::BuiltinFn::kAtan2:
case core::BuiltinFn::kCeil:
case core::BuiltinFn::kClamp:
case core::BuiltinFn::kCos:
case core::BuiltinFn::kCosh:
case core::BuiltinFn::kCross:
case core::BuiltinFn::kDeterminant:
case core::BuiltinFn::kDistance:
case core::BuiltinFn::kDot:
case core::BuiltinFn::kExp:
case core::BuiltinFn::kExp2:
case core::BuiltinFn::kFloor:
case core::BuiltinFn::kFrexp:
case core::BuiltinFn::kLdexp:
case core::BuiltinFn::kLength:
case core::BuiltinFn::kLog:
case core::BuiltinFn::kLog2:
case core::BuiltinFn::kMax:
case core::BuiltinFn::kMin:
case core::BuiltinFn::kModf:
case core::BuiltinFn::kNormalize:
case core::BuiltinFn::kPow:
case core::BuiltinFn::kReflect:
case core::BuiltinFn::kRefract:
case core::BuiltinFn::kRound:
case core::BuiltinFn::kSaturate:
case core::BuiltinFn::kSin:
case core::BuiltinFn::kSinh:
case core::BuiltinFn::kSmoothstep:
case core::BuiltinFn::kSqrt:
case core::BuiltinFn::kStep:
case core::BuiltinFn::kTan:
case core::BuiltinFn::kTanh:
case core::BuiltinFn::kTranspose:
out << func;
break;
case core::BuiltinFn::kCountOneBits: // uint
out << "countbits";
break;
case core::BuiltinFn::kDpdx:
out << "ddx";
break;
case core::BuiltinFn::kDpdxCoarse:
out << "ddx_coarse";
break;
case core::BuiltinFn::kDpdxFine:
out << "ddx_fine";
break;
case core::BuiltinFn::kDpdy:
out << "ddy";
break;
case core::BuiltinFn::kDpdyCoarse:
out << "ddy_coarse";
break;
case core::BuiltinFn::kDpdyFine:
out << "ddy_fine";
break;
case core::BuiltinFn::kFaceForward:
out << "faceforward";
break;
case core::BuiltinFn::kFract:
out << "frac";
break;
case core::BuiltinFn::kFma:
out << "mad";
break;
case core::BuiltinFn::kFwidth:
case core::BuiltinFn::kFwidthCoarse:
case core::BuiltinFn::kFwidthFine:
out << "fwidth";
break;
case core::BuiltinFn::kInverseSqrt:
out << "rsqrt";
break;
case core::BuiltinFn::kMix:
out << "lerp";
break;
case core::BuiltinFn::kReverseBits: // uint
out << "reversebits";
break;
case core::BuiltinFn::kSubgroupBallot:
out << "WaveActiveBallot";
break;
case core::BuiltinFn::kSubgroupElect:
out << "WaveIsFirstLane";
break;
case core::BuiltinFn::kSubgroupBroadcast:
out << "WaveReadLaneAt";
break;
case core::BuiltinFn::kSubgroupBroadcastFirst:
out << "WaveReadLaneFirst";
break;
case core::BuiltinFn::kSubgroupShuffle:
out << "WaveReadLaneAt";
break;
case core::BuiltinFn::kWorkgroupBarrier:
out << "GroupMemoryBarrierWithGroupSync";
break;
case core::BuiltinFn::kStorageBarrier:
out << "DeviceMemoryBarrierWithGroupSync";
break;
case core::BuiltinFn::kTextureBarrier:
out << "DeviceMemoryBarrierWithGroupSync";
break;
case core::BuiltinFn::kSubgroupAdd:
out << "WaveActiveSum";
break;
case core::BuiltinFn::kSubgroupExclusiveAdd:
out << "WavePrefixSum";
break;
case core::BuiltinFn::kSubgroupMul:
out << "WaveActiveProduct";
break;
case core::BuiltinFn::kSubgroupExclusiveMul:
out << "WavePrefixProduct";
break;
case core::BuiltinFn::kSubgroupAnd:
out << "WaveActiveBitAnd";
break;
case core::BuiltinFn::kSubgroupOr:
out << "WaveActiveBitOr";
break;
case core::BuiltinFn::kSubgroupXor:
out << "WaveActiveBitXor";
break;
case core::BuiltinFn::kSubgroupMin:
out << "WaveActiveMin";
break;
case core::BuiltinFn::kSubgroupMax:
out << "WaveActiveMax";
break;
case core::BuiltinFn::kSubgroupAll:
out << "WaveActiveAllTrue";
break;
case core::BuiltinFn::kSubgroupAny:
out << "WaveActiveAnyTrue";
break;
case core::BuiltinFn::kQuadBroadcast:
out << "QuadReadLaneAt";
break;
case core::BuiltinFn::kQuadSwapX:
out << "QuadReadAcrossX";
break;
case core::BuiltinFn::kQuadSwapY:
out << "QuadReadAcrossY";
break;
case core::BuiltinFn::kQuadSwapDiagonal:
out << "QuadReadAcrossDiagonal";
break;
default:
TINT_UNREACHABLE() << "unhandled: " << func;
}
}
/// Emit Load
/// @param out the output stream to write to
/// @param load the load
void EmitLoad(StringStream& out, const core::ir::Load* load) { EmitValue(out, load->From()); }
/// Emit a store
void EmitStore(const core::ir::Store* s) {
auto out = Line();
EmitValue(out, s->To());
out << " = ";
EmitValue(out, s->From());
out << ";";
}
/// Emit a binary instruction
/// @param b the binary instruction
void EmitBinary(StringStream& out, const core::ir::CoreBinary* b) {
// TODO(dsinclair): Short circuring transform
// TODO(dsinclair): Transform matrix multiplication into a `mul` instruction
auto kind = [&] {
switch (b->Op()) {
case core::BinaryOp::kAdd:
return "+";
case core::BinaryOp::kSubtract:
return "-";
case core::BinaryOp::kMultiply:
return "*";
case core::BinaryOp::kDivide:
return "/";
case core::BinaryOp::kModulo:
return "%";
case core::BinaryOp::kAnd:
return "&";
case core::BinaryOp::kOr:
return "|";
case core::BinaryOp::kXor:
return "^";
case core::BinaryOp::kEqual:
return "==";
case core::BinaryOp::kNotEqual:
return "!=";
case core::BinaryOp::kLessThan:
return "<";
case core::BinaryOp::kGreaterThan:
return ">";
case core::BinaryOp::kLessThanEqual:
return "<=";
case core::BinaryOp::kGreaterThanEqual:
return ">=";
case core::BinaryOp::kShiftLeft:
return "<<";
case core::BinaryOp::kShiftRight:
return ">>";
case core::BinaryOp::kLogicalAnd:
case core::BinaryOp::kLogicalOr:
// These should have been replaced by if statments as HLSL is not
// short-circuting.
TINT_UNREACHABLE() << "logical and/or should not be present";
}
return "<error>";
};
ScopedParen sp(out);
EmitValue(out, b->LHS());
out << " " << kind() << " ";
EmitValue(out, b->RHS());
}
/// Emits a user call instruction
void EmitUserCall(StringStream& out, const core::ir::UserCall* c) {
out << NameOf(c->Target()) << "(";
size_t i = 0;
for (const auto* arg : c->Args()) {
if (i > 0) {
out << ", ";
}
++i;
EmitValue(out, arg);
}
out << ")";
}
void EmitConstant(StringStream& out, const core::ir::Constant* c) {
EmitConstant(out, c->Value());
}
void EmitConstant(StringStream& out, const core::constant::Value* c) {
Switch(
c->Type(), //
[&](const core::type::Bool*) { out << (c->ValueAs<AInt>() ? "true" : "false"); },
[&](const core::type::F16*) { EmitConstantF16(out, c); },
[&](const core::type::F32*) { PrintF32(out, c->ValueAs<f32>()); },
[&](const core::type::I32*) { out << c->ValueAs<i32>(); },
[&](const core::type::U32*) { out << c->ValueAs<AInt>() << "u"; },
[&](const core::type::Array* a) { EmitConstantArray(out, c, a); },
[&](const core::type::Vector* v) { EmitConstantVector(out, c, v); },
[&](const core::type::Matrix* m) { EmitConstantMatrix(out, c, m); },
[&](const core::type::Struct* s) { EmitConstantStruct(out, c, s); }, //
TINT_ICE_ON_NO_MATCH);
}
void EmitConstantF16(StringStream& out, const core::constant::Value* c) {
// Emit a f16 scalar with explicit float16_t type declaration.
out << "float16_t";
const ScopedParen sp(out);
PrintF16(out, c->ValueAs<f16>());
}
void EmitConstantArray(StringStream& out,
const core::constant::Value* c,
const core::type::Array* a) {
if (c->AllZero()) {
out << "(";
EmitType(out, a);
out << ")0";
return;
}
out << "{";
auto count = a->ConstantCount();
TINT_ASSERT(count.has_value() && count.value() > 0);
for (size_t i = 0; i < count; i++) {
if (i > 0) {
out << ", ";
}
EmitConstant(out, c->Index(i));
}
out << "}";
}
void EmitConstantVector(StringStream& out,
const core::constant::Value* c,
const core::type::Vector* v) {
if (auto* splat = c->As<core::constant::Splat>()) {
{
const ScopedParen sp(out);
EmitConstant(out, splat->el);
}
out << ".";
for (size_t i = 0; i < v->Width(); i++) {
out << "x";
}
return;
}
EmitType(out, v);
const ScopedParen sp(out);
for (size_t i = 0; i < v->Width(); i++) {
if (i > 0) {
out << ", ";
}
EmitConstant(out, c->Index(i));
}
}
void EmitConstantMatrix(StringStream& out,
const core::constant::Value* c,
const core::type::Matrix* m) {
EmitType(out, m);
const ScopedParen sp(out);
for (size_t i = 0; i < m->Columns(); i++) {
if (i > 0) {
out << ", ";
}
EmitConstant(out, c->Index(i));
}
}
void EmitConstantStruct(StringStream& out,
const core::constant::Value* c,
const core::type::Struct* s) {
EmitStructType(s);
if (c->AllZero()) {
out << "(" << StructName(s) << ")0";
return;
}
out << "{";
for (size_t i = 0; i < s->Members().Length(); i++) {
if (i > 0) {
out << ", ";
}
EmitConstant(out, c->Index(i));
}
out << "}";
}
void EmitTypeAndName(StringStream& out, const core::type::Type* type, const std::string& name) {
bool name_printed = false;
EmitType(out, type, name, &name_printed);
if (!name.empty() && !name_printed) {
out << " " << name;
}
}
void EmitType(StringStream& out,
const core::type::Type* ty,
const std::string& name = "",
bool* name_printed = nullptr) {
if (name_printed) {
*name_printed = false;
}
Switch(
ty,
[&](const hlsl::type::ByteAddressBuffer* buf) {
if (buf->Access() != core::Access::kRead) {
out << "RW";
}
out << "ByteAddressBuffer";
},
[&](const hlsl::type::Int8T4Packed*) { out << "int8_t4_packed"; },
[&](const hlsl::type::Uint8T4Packed*) { out << "uint8_t4_packed"; },
[&](const core::type::Bool*) { out << "bool"; }, //
[&](const core::type::F16*) { out << "float16_t"; }, //
[&](const core::type::F32*) { out << "float"; }, //
[&](const core::type::I32*) { out << "int"; }, //
[&](const core::type::U32*) { out << "uint"; }, //
[&](const core::type::Void*) { out << "void"; }, //
[&](const core::type::Atomic* atomic) { EmitType(out, atomic->Type(), name); },
[&](const core::type::Array* ary) { EmitArrayType(out, ary, name, name_printed); },
[&](const core::type::Vector* vec) { EmitVectorType(out, vec); },
[&](const core::type::Matrix* mat) { EmitMatrixType(out, mat); },
[&](const core::type::Struct* str) {
out << StructName(str);
EmitStructType(str);
},
[&](const core::type::Pointer* p) {
EmitType(out, p->StoreType(), name, name_printed);
},
[&](const core::type::Sampler* sampler) { EmitSamplerType(out, sampler); },
[&](const core::type::Texture* tex) { EmitTextureType(out, tex); },
TINT_ICE_ON_NO_MATCH);
}
void EmitArrayType(StringStream& out,
const core::type::Array* ary,
const std::string& name,
bool* name_printed) {
const core::type::Type* base_type = ary;
std::vector<uint32_t> sizes;
while (auto* arr = base_type->As<core::type::Array>()) {
if (TINT_UNLIKELY(arr->Count()->Is<core::type::RuntimeArrayCount>())) {
TINT_ICE() << "runtime arrays may only exist in storage buffers, which "
"should have "
"been transformed into a ByteAddressBuffer";
}
const auto count = arr->ConstantCount();
TINT_ASSERT(count.has_value() && count.value() > 0);
sizes.push_back(count.value());
base_type = arr->ElemType();
}
EmitType(out, base_type);
if (!name.empty()) {
out << " " << name;
if (name_printed) {
*name_printed = true;
}
}
for (const uint32_t size : sizes) {
out << "[" << size << "]";
}
}
void EmitVectorType(StringStream& out, const core::type::Vector* vec) {
auto width = vec->Width();
if (vec->Type()->Is<core::type::F32>()) {
out << "float" << width;
} else if (vec->Type()->Is<core::type::I32>()) {
out << "int" << width;
} else if (vec->Type()->Is<core::type::U32>()) {
out << "uint" << width;
} else if (vec->Type()->Is<core::type::Bool>()) {
out << "bool" << width;
} else {
// For example, use "vector<float16_t, N>" for f16 vector.
out << "vector<";
EmitType(out, vec->Type());
out << ", " << width << ">";
}
}
void EmitMatrixType(StringStream& out, const core::type::Matrix* mat) {
if (mat->Type()->Is<core::type::F16>()) {
// Use matrix<type, N, M> for f16 matrix
out << "matrix<";
EmitType(out, mat->Type());
out << ", " << mat->Columns() << ", " << mat->Rows() << ">";
return;
}
EmitType(out, mat->Type());
// Note: HLSL's matrices are declared as <type>NxM, where N is the
// number of rows and M is the number of columns. Despite HLSL's
// matrices being column-major by default, the index operator and
// initializers actually operate on row-vectors, where as WGSL operates
// on column vectors. To simplify everything we use the transpose of the
// matrices. See:
// https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-per-component-math#matrix-ordering
out << mat->Columns() << "x" << mat->Rows();
}
void EmitTextureType(StringStream& out, const core::type::Texture* tex) {
if (TINT_UNLIKELY(tex->Is<core::type::ExternalTexture>())) {
TINT_ICE() << "Multiplanar external texture transform was not run.";
}
auto* storage = tex->As<core::type::StorageTexture>();
auto* ms = tex->As<core::type::MultisampledTexture>();
auto* depth_ms = tex->As<core::type::DepthMultisampledTexture>();
auto* sampled = tex->As<core::type::SampledTexture>();
if (storage && storage->Access() != core::Access::kRead) {
out << "RW";
}
out << "Texture";
switch (tex->Dim()) {
case core::type::TextureDimension::k1d:
out << "1D";
break;
case core::type::TextureDimension::k2d:
out << ((ms || depth_ms) ? "2DMS" : "2D");
break;
case core::type::TextureDimension::k2dArray:
out << ((ms || depth_ms) ? "2DMSArray" : "2DArray");
break;
case core::type::TextureDimension::k3d:
out << "3D";
break;
case core::type::TextureDimension::kCube:
out << "Cube";
break;
case core::type::TextureDimension::kCubeArray:
out << "CubeArray";
break;
default:
TINT_UNREACHABLE() << "unexpected TextureDimension " << tex->Dim();
}
if (storage) {
auto* component = ImageFormatToRWtextureType(storage->TexelFormat());
if (TINT_UNLIKELY(!component)) {
TINT_ICE() << "Unsupported StorageTexture TexelFormat: "
<< static_cast<int>(storage->TexelFormat());
}
out << "<" << component << ">";
} else if (depth_ms) {
out << "<float4>";
} else if (sampled || ms) {
auto* subtype = sampled ? sampled->Type() : ms->Type();
out << "<";
if (subtype->Is<core::type::F32>()) {
out << "float4";
} else if (subtype->Is<core::type::I32>()) {
out << "int4";
} else if (TINT_LIKELY(subtype->Is<core::type::U32>())) {
out << "uint4";
} else {
TINT_ICE() << "Unsupported multisampled texture type";
}
out << ">";
}
}
void EmitSamplerType(StringStream& out, const core::type::Sampler* sampler) {
out << "Sampler";
if (sampler->IsComparison()) {
out << "Comparison";
}
out << "State";
}
void EmitStructType(const core::type::Struct* str) {
auto it = emitted_structs_.emplace(str);
if (!it.second) {
return;
}
TextBuffer str_buf;
Line(&str_buf) << "struct " << StructName(str) << " {";
{
const ScopedIndent si(&str_buf);
for (auto* mem : str->Members()) {
auto mem_name = mem->Name().Name();
auto* ty = mem->Type();
auto out = Line(&str_buf);
auto& attributes = mem->Attributes();
std::string pre;
std::string post;
if (auto location = attributes.location) {
auto& pipeline_stage_uses = str->PipelineStageUses();
if (TINT_UNLIKELY(pipeline_stage_uses.Count() != 1)) {
TINT_ICE() << "invalid entry point IO struct uses";
}
if (pipeline_stage_uses.Contains(
core::type::PipelineStageUsage::kVertexInput)) {
post += " : TEXCOORD" + std::to_string(location.value());
} else if (pipeline_stage_uses.Contains(
core::type::PipelineStageUsage::kVertexOutput)) {
post += " : TEXCOORD" + std::to_string(location.value());
} else if (pipeline_stage_uses.Contains(
core::type::PipelineStageUsage::kFragmentInput)) {
post += " : TEXCOORD" + std::to_string(location.value());
} else if (TINT_LIKELY(pipeline_stage_uses.Contains(
core::type::PipelineStageUsage::kFragmentOutput))) {
if (auto blend_src = attributes.blend_src) {
post += " : SV_Target" +
std::to_string(location.value() + blend_src.value());
} else {
post += " : SV_Target" + std::to_string(location.value());
}
} else {
TINT_ICE() << "invalid use of location attribute";
}
}
if (auto builtin = attributes.builtin) {
auto name = builtin_to_attribute(builtin.value());
TINT_ASSERT(!name.empty());
post += " : " + name;
}
if (auto interpolation = attributes.interpolation) {
auto mod =
interpolation_to_modifiers(interpolation->type, interpolation->sampling);
TINT_ASSERT(!mod.empty());
pre += mod;
}
if (attributes.invariant) {
// Note: `precise` is not exactly the same as `invariant`, but is
// stricter and therefore provides the necessary guarantees.
// See discussion here: https://github.com/gpuweb/gpuweb/issues/893
pre += "precise ";
}
out << pre;
EmitTypeAndName(out, ty, mem_name);
out << post << ";";
}
}
Line(&str_buf) << "};";
Line(&str_buf) << "";
preamble_buffer_.Append(str_buf);
}
std::string builtin_to_attribute(core::BuiltinValue builtin) const {
switch (builtin) {
case core::BuiltinValue::kPosition:
return "SV_Position";
case core::BuiltinValue::kVertexIndex:
return "SV_VertexID";
case core::BuiltinValue::kInstanceIndex:
return "SV_InstanceID";
case core::BuiltinValue::kFrontFacing:
return "SV_IsFrontFace";
case core::BuiltinValue::kFragDepth:
return "SV_Depth";
case core::BuiltinValue::kLocalInvocationId:
return "SV_GroupThreadID";
case core::BuiltinValue::kLocalInvocationIndex:
return "SV_GroupIndex";
case core::BuiltinValue::kGlobalInvocationId:
return "SV_DispatchThreadID";
case core::BuiltinValue::kWorkgroupId:
return "SV_GroupID";
case core::BuiltinValue::kSampleIndex:
return "SV_SampleIndex";
case core::BuiltinValue::kSampleMask:
return "SV_Coverage";
default:
break;
}
return "";
}
std::string interpolation_to_modifiers(core::InterpolationType type,
core::InterpolationSampling sampling) const {
std::string modifiers;
switch (type) {
case core::InterpolationType::kPerspective:
modifiers += "linear ";
break;
case core::InterpolationType::kLinear:
modifiers += "noperspective ";
break;
case core::InterpolationType::kFlat:
modifiers += "nointerpolation ";
break;
case core::InterpolationType::kUndefined:
break;
}
switch (sampling) {
case core::InterpolationSampling::kCentroid:
modifiers += "centroid ";
break;
case core::InterpolationSampling::kSample:
modifiers += "sample ";
break;
case core::InterpolationSampling::kCenter:
case core::InterpolationSampling::kFirst:
case core::InterpolationSampling::kEither:
case core::InterpolationSampling::kUndefined:
break;
}
return modifiers;
}
/// @returns the name of the given value, creating a new unique name if the value is unnamed in
/// the module.
std::string NameOf(const core::ir::Value* value) {
return names_.GetOrAdd(value, [&] {
auto sym = ir_.NameOf(value);
return sym.IsValid() ? sym.Name() : UniqueIdentifier("v");
});
}
/// @return a new, unique identifier with the given prefix.
/// @param prefix optional prefix to apply to the generated identifier. If empty
/// "tint_symbol" will be used.
std::string UniqueIdentifier(const std::string& prefix /* = "" */) {
return ir_.symbols.New(prefix).Name();
}
std::string StructName(const core::type::Struct* s) {
auto name = s->Name().Name();
if (HasPrefix(name, "__")) {
name = tint::GetOrAdd(builtin_struct_names_, s,
[&] { return UniqueIdentifier(name.substr(2)); });
}
return name;
}
void PrintF32(StringStream& out, float value) {
if (std::isinf(value)) {
out << "0.0f " << (value >= 0 ? "/* inf */" : "/* -inf */");
} else if (std::isnan(value)) {
out << "0.0f /* nan */";
} else {
out << tint::strconv::FloatToString(value) << "f";
}
}
void PrintF16(StringStream& out, float value) {
if (std::isinf(value)) {
out << "0.0h " << (value >= 0 ? "/* inf */" : "/* -inf */");
} else if (std::isnan(value)) {
out << "0.0h /* nan */";
} else {
out << tint::strconv::FloatToString(value) << "h";
}
}
const char* ImageFormatToRWtextureType(core::TexelFormat image_format) {
switch (image_format) {
case core::TexelFormat::kR8Unorm:
case core::TexelFormat::kBgra8Unorm:
case core::TexelFormat::kRgba8Unorm:
case core::TexelFormat::kRgba8Snorm:
case core::TexelFormat::kRgba16Float:
case core::TexelFormat::kR32Float:
case core::TexelFormat::kRg32Float:
case core::TexelFormat::kRgba32Float:
return "float4";
case core::TexelFormat::kRgba8Uint:
case core::TexelFormat::kRgba16Uint:
case core::TexelFormat::kR32Uint:
case core::TexelFormat::kRg32Uint:
case core::TexelFormat::kRgba32Uint:
return "uint4";
case core::TexelFormat::kRgba8Sint:
case core::TexelFormat::kRgba16Sint:
case core::TexelFormat::kR32Sint:
case core::TexelFormat::kRg32Sint:
case core::TexelFormat::kRgba32Sint:
return "int4";
default:
return nullptr;
}
}
};
} // namespace
Result<PrintResult> Print(core::ir::Module& module) {
return Printer{module}.Generate();
}
PrintResult::PrintResult() = default;
PrintResult::~PrintResult() = default;
PrintResult::PrintResult(const PrintResult&) = default;
PrintResult& PrintResult::operator=(const PrintResult&) = default;
} // namespace tint::hlsl::writer