| /// Copyright 2020 The Tint Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "src/tint/lang/hlsl/writer/ast_printer/ast_printer.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <functional> |
| #include <iomanip> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| #include "src/tint/lang/core/constant/splat.h" |
| #include "src/tint/lang/core/constant/value.h" |
| #include "src/tint/lang/core/fluent_types.h" |
| #include "src/tint/lang/core/type/array.h" |
| #include "src/tint/lang/core/type/atomic.h" |
| #include "src/tint/lang/core/type/depth_multisampled_texture.h" |
| #include "src/tint/lang/core/type/depth_texture.h" |
| #include "src/tint/lang/core/type/multisampled_texture.h" |
| #include "src/tint/lang/core/type/sampled_texture.h" |
| #include "src/tint/lang/core/type/storage_texture.h" |
| #include "src/tint/lang/core/type/texture_dimension.h" |
| #include "src/tint/lang/hlsl/writer/ast_raise/calculate_array_length.h" |
| #include "src/tint/lang/hlsl/writer/ast_raise/decompose_memory_access.h" |
| #include "src/tint/lang/hlsl/writer/ast_raise/localize_struct_array_assignment.h" |
| #include "src/tint/lang/hlsl/writer/ast_raise/num_workgroups_from_uniform.h" |
| #include "src/tint/lang/hlsl/writer/ast_raise/remove_continue_in_switch.h" |
| #include "src/tint/lang/hlsl/writer/ast_raise/truncate_interstage_variables.h" |
| #include "src/tint/lang/wgsl/ast/call_statement.h" |
| #include "src/tint/lang/wgsl/ast/id_attribute.h" |
| #include "src/tint/lang/wgsl/ast/internal_attribute.h" |
| #include "src/tint/lang/wgsl/ast/interpolate_attribute.h" |
| #include "src/tint/lang/wgsl/ast/transform/add_empty_entry_point.h" |
| #include "src/tint/lang/wgsl/ast/transform/array_length_from_uniform.h" |
| #include "src/tint/lang/wgsl/ast/transform/binding_remapper.h" |
| #include "src/tint/lang/wgsl/ast/transform/builtin_polyfill.h" |
| #include "src/tint/lang/wgsl/ast/transform/canonicalize_entry_point_io.h" |
| #include "src/tint/lang/wgsl/ast/transform/demote_to_helper.h" |
| #include "src/tint/lang/wgsl/ast/transform/direct_variable_access.h" |
| #include "src/tint/lang/wgsl/ast/transform/disable_uniformity_analysis.h" |
| #include "src/tint/lang/wgsl/ast/transform/expand_compound_assignment.h" |
| #include "src/tint/lang/wgsl/ast/transform/manager.h" |
| #include "src/tint/lang/wgsl/ast/transform/multiplanar_external_texture.h" |
| #include "src/tint/lang/wgsl/ast/transform/promote_initializers_to_let.h" |
| #include "src/tint/lang/wgsl/ast/transform/promote_side_effects_to_decl.h" |
| #include "src/tint/lang/wgsl/ast/transform/remove_phonies.h" |
| #include "src/tint/lang/wgsl/ast/transform/robustness.h" |
| #include "src/tint/lang/wgsl/ast/transform/simplify_pointers.h" |
| #include "src/tint/lang/wgsl/ast/transform/unshadow.h" |
| #include "src/tint/lang/wgsl/ast/transform/vectorize_scalar_matrix_initializers.h" |
| #include "src/tint/lang/wgsl/ast/transform/zero_init_workgroup_memory.h" |
| #include "src/tint/lang/wgsl/ast/variable_decl_statement.h" |
| #include "src/tint/lang/wgsl/helpers/append_vector.h" |
| #include "src/tint/lang/wgsl/helpers/check_supported_extensions.h" |
| #include "src/tint/lang/wgsl/sem/block_statement.h" |
| #include "src/tint/lang/wgsl/sem/call.h" |
| #include "src/tint/lang/wgsl/sem/function.h" |
| #include "src/tint/lang/wgsl/sem/member_accessor_expression.h" |
| #include "src/tint/lang/wgsl/sem/module.h" |
| #include "src/tint/lang/wgsl/sem/statement.h" |
| #include "src/tint/lang/wgsl/sem/struct.h" |
| #include "src/tint/lang/wgsl/sem/switch_statement.h" |
| #include "src/tint/lang/wgsl/sem/value_constructor.h" |
| #include "src/tint/lang/wgsl/sem/value_conversion.h" |
| #include "src/tint/lang/wgsl/sem/variable.h" |
| #include "src/tint/utils/containers/map.h" |
| #include "src/tint/utils/ice/ice.h" |
| #include "src/tint/utils/macros/compiler.h" |
| #include "src/tint/utils/macros/defer.h" |
| #include "src/tint/utils/macros/scoped_assignment.h" |
| #include "src/tint/utils/rtti/switch.h" |
| #include "src/tint/utils/strconv/float_to_string.h" |
| #include "src/tint/utils/text/string.h" |
| #include "src/tint/utils/text/string_stream.h" |
| |
| using namespace tint::core::number_suffixes; // NOLINT |
| using namespace tint::core::fluent_types; // NOLINT |
| |
| namespace tint::hlsl::writer { |
| namespace { |
| |
| const char kTempNamePrefix[] = "tint_tmp"; |
| |
| const char* image_format_to_rwtexture_type(core::TexelFormat image_format) { |
| switch (image_format) { |
| case core::TexelFormat::kBgra8Unorm: |
| case core::TexelFormat::kRgba8Unorm: |
| case core::TexelFormat::kRgba8Snorm: |
| case core::TexelFormat::kRgba16Float: |
| case core::TexelFormat::kR32Float: |
| case core::TexelFormat::kRg32Float: |
| case core::TexelFormat::kRgba32Float: |
| return "float4"; |
| case core::TexelFormat::kRgba8Uint: |
| case core::TexelFormat::kRgba16Uint: |
| case core::TexelFormat::kR32Uint: |
| case core::TexelFormat::kRg32Uint: |
| case core::TexelFormat::kRgba32Uint: |
| return "uint4"; |
| case core::TexelFormat::kRgba8Sint: |
| case core::TexelFormat::kRgba16Sint: |
| case core::TexelFormat::kR32Sint: |
| case core::TexelFormat::kRg32Sint: |
| case core::TexelFormat::kRgba32Sint: |
| return "int4"; |
| default: |
| return nullptr; |
| } |
| } |
| |
| void PrintF32(StringStream& out, float value) { |
| if (std::isinf(value)) { |
| out << "0.0f " << (value >= 0 ? "/* inf */" : "/* -inf */"); |
| } else if (std::isnan(value)) { |
| out << "0.0f /* nan */"; |
| } else { |
| out << tint::writer::FloatToString(value) << "f"; |
| } |
| } |
| |
| void PrintF16(StringStream& out, float value) { |
| if (std::isinf(value)) { |
| out << "0.0h " << (value >= 0 ? "/* inf */" : "/* -inf */"); |
| } else if (std::isnan(value)) { |
| out << "0.0h /* nan */"; |
| } else { |
| out << tint::writer::FloatToString(value) << "h"; |
| } |
| } |
| |
| // Helper for writing " : register(RX, spaceY)", where R is the register, X is |
| // the binding point binding value, and Y is the binding point group value. |
| struct RegisterAndSpace { |
| RegisterAndSpace(char r, BindingPoint bp) : reg(r), binding_point(bp) {} |
| |
| const char reg; |
| BindingPoint const binding_point; |
| }; |
| |
| StringStream& operator<<(StringStream& s, const RegisterAndSpace& rs) { |
| s << " : register(" << rs.reg << rs.binding_point.binding; |
| // Omit the space if it's 0, as it's the default. |
| // SM 5.0 doesn't support spaces, so we don't emit them if group is 0 for better compatibility. |
| if (rs.binding_point.group == 0) { |
| s << ")"; |
| } else { |
| s << ", space" << rs.binding_point.group << ")"; |
| } |
| return s; |
| } |
| |
| } // namespace |
| |
| SanitizedResult::SanitizedResult() = default; |
| SanitizedResult::~SanitizedResult() = default; |
| SanitizedResult::SanitizedResult(SanitizedResult&&) = default; |
| |
| SanitizedResult Sanitize(const Program* in, const Options& options) { |
| ast::transform::Manager manager; |
| ast::transform::DataMap data; |
| |
| manager.Add<ast::transform::DisableUniformityAnalysis>(); |
| |
| // ExpandCompoundAssignment must come before BuiltinPolyfill |
| manager.Add<ast::transform::ExpandCompoundAssignment>(); |
| |
| manager.Add<ast::transform::Unshadow>(); // Must come before DirectVariableAccess |
| |
| // LocalizeStructArrayAssignment must come after: |
| // * SimplifyPointers, because it assumes assignment to arrays in structs are |
| // done directly, not indirectly. |
| // TODO(crbug.com/tint/1340): See if we can get rid of the duplicate |
| // SimplifyPointers transform. Can't do it right now because |
| // LocalizeStructArrayAssignment introduces pointers. |
| manager.Add<ast::transform::SimplifyPointers>(); |
| manager.Add<LocalizeStructArrayAssignment>(); |
| |
| manager.Add<ast::transform::PromoteSideEffectsToDecl>(); |
| |
| if (!options.disable_robustness) { |
| // Robustness must come after PromoteSideEffectsToDecl |
| // Robustness must come before BuiltinPolyfill and CanonicalizeEntryPointIO |
| manager.Add<ast::transform::Robustness>(); |
| |
| ast::transform::Robustness::Config config = {}; |
| |
| config.bindings_ignored = std::unordered_set<BindingPoint>( |
| options.binding_points_ignored_in_robustness_transform.cbegin(), |
| options.binding_points_ignored_in_robustness_transform.cend()); |
| |
| // Direct3D guarantees to return zero for any resource that is accessed out of bounds, and |
| // according to the description of the assembly store_uav_typed, out of bounds addressing |
| // means nothing gets written to memory. |
| config.texture_action = ast::transform::Robustness::Action::kIgnore; |
| |
| data.Add<ast::transform::Robustness::Config>(config); |
| } |
| |
| // Note: it is more efficient for MultiplanarExternalTexture to come after Robustness |
| data.Add<ast::transform::MultiplanarExternalTexture::NewBindingPoints>( |
| options.external_texture_options.bindings_map); |
| manager.Add<ast::transform::MultiplanarExternalTexture>(); |
| |
| // BindingRemapper must come after MultiplanarExternalTexture |
| manager.Add<ast::transform::BindingRemapper>(); |
| data.Add<ast::transform::BindingRemapper::Remappings>( |
| options.binding_remapper_options.binding_points, |
| options.binding_remapper_options.access_controls, |
| options.binding_remapper_options.allow_collisions); |
| |
| { // Builtin polyfills |
| ast::transform::BuiltinPolyfill::Builtins polyfills; |
| polyfills.acosh = ast::transform::BuiltinPolyfill::Level::kFull; |
| polyfills.asinh = true; |
| polyfills.atanh = ast::transform::BuiltinPolyfill::Level::kFull; |
| polyfills.bitshift_modulo = true; |
| polyfills.clamp_int = true; |
| // TODO(crbug.com/tint/1449): Some of these can map to HLSL's `firstbitlow` |
| // and `firstbithigh`. |
| polyfills.conv_f32_to_iu32 = true; |
| polyfills.count_leading_zeros = true; |
| polyfills.count_trailing_zeros = true; |
| polyfills.extract_bits = ast::transform::BuiltinPolyfill::Level::kFull; |
| polyfills.first_leading_bit = true; |
| polyfills.first_trailing_bit = true; |
| polyfills.insert_bits = ast::transform::BuiltinPolyfill::Level::kFull; |
| polyfills.int_div_mod = true; |
| polyfills.precise_float_mod = true; |
| polyfills.reflect_vec2_f32 = options.polyfill_reflect_vec2_f32; |
| polyfills.texture_sample_base_clamp_to_edge_2d_f32 = true; |
| polyfills.workgroup_uniform_load = true; |
| data.Add<ast::transform::BuiltinPolyfill::Config>(polyfills); |
| manager.Add<ast::transform::BuiltinPolyfill>(); // Must come before DirectVariableAccess |
| } |
| |
| manager.Add<ast::transform::DirectVariableAccess>(); |
| |
| if (!options.disable_workgroup_init) { |
| // ZeroInitWorkgroupMemory must come before CanonicalizeEntryPointIO as |
| // ZeroInitWorkgroupMemory may inject new builtin parameters. |
| manager.Add<ast::transform::ZeroInitWorkgroupMemory>(); |
| } |
| |
| // CanonicalizeEntryPointIO must come after Robustness |
| manager.Add<ast::transform::CanonicalizeEntryPointIO>(); |
| |
| if (options.truncate_interstage_variables) { |
| // When interstage_locations is empty, it means there's no user-defined interstage variables |
| // being used in the next stage. Still, HLSL compiler register mismatch could happen, if |
| // there's builtin inputs used in the next stage. So we still run |
| // TruncateInterstageVariables transform. |
| |
| // TruncateInterstageVariables itself will skip when interstage_locations matches exactly |
| // with the current stage output. |
| |
| // Build the config for internal TruncateInterstageVariables transform. |
| TruncateInterstageVariables::Config truncate_interstage_variables_cfg; |
| truncate_interstage_variables_cfg.interstage_locations = |
| std::move(options.interstage_locations); |
| manager.Add<TruncateInterstageVariables>(); |
| data.Add<TruncateInterstageVariables::Config>(std::move(truncate_interstage_variables_cfg)); |
| } |
| |
| // NumWorkgroupsFromUniform must come after CanonicalizeEntryPointIO, as it |
| // assumes that num_workgroups builtins only appear as struct members and are |
| // only accessed directly via member accessors. |
| manager.Add<NumWorkgroupsFromUniform>(); |
| manager.Add<ast::transform::VectorizeScalarMatrixInitializers>(); |
| manager.Add<ast::transform::SimplifyPointers>(); |
| manager.Add<ast::transform::RemovePhonies>(); |
| |
| // Build the config for the internal ArrayLengthFromUniform transform. |
| auto& array_length_from_uniform = options.array_length_from_uniform; |
| ast::transform::ArrayLengthFromUniform::Config array_length_from_uniform_cfg( |
| array_length_from_uniform.ubo_binding); |
| array_length_from_uniform_cfg.bindpoint_to_size_index = |
| array_length_from_uniform.bindpoint_to_size_index; |
| |
| // DemoteToHelper must come after CanonicalizeEntryPointIO, PromoteSideEffectsToDecl, and |
| // ExpandCompoundAssignment. |
| // TODO(crbug.com/tint/1752): This is only necessary when FXC is being used. |
| manager.Add<ast::transform::DemoteToHelper>(); |
| |
| // ArrayLengthFromUniform must come after SimplifyPointers as it assumes that the form of the |
| // array length argument is &var.array. |
| manager.Add<ast::transform::ArrayLengthFromUniform>(); |
| data.Add<ast::transform::ArrayLengthFromUniform::Config>( |
| std::move(array_length_from_uniform_cfg)); |
| // DecomposeMemoryAccess must come after: |
| // * SimplifyPointers, as we cannot take the address of calls to |
| // DecomposeMemoryAccess::Intrinsic and we need to fold away the address-of and dereferences |
| // of `*(&(intrinsic_load()))` expressions. |
| // * RemovePhonies, as phonies can be assigned a pointer to a |
| // non-constructible buffer, or dynamic array, which DMA cannot cope with. |
| manager.Add<DecomposeMemoryAccess>(); |
| // CalculateArrayLength must come after DecomposeMemoryAccess, as |
| // DecomposeMemoryAccess special-cases the arrayLength() intrinsic, which |
| // will be transformed by CalculateArrayLength |
| manager.Add<CalculateArrayLength>(); |
| manager.Add<ast::transform::PromoteInitializersToLet>(); |
| |
| manager.Add<RemoveContinueInSwitch>(); |
| |
| manager.Add<ast::transform::AddEmptyEntryPoint>(); |
| |
| data.Add<ast::transform::CanonicalizeEntryPointIO::Config>( |
| ast::transform::CanonicalizeEntryPointIO::ShaderStyle::kHlsl); |
| data.Add<NumWorkgroupsFromUniform::Config>(options.root_constant_binding_point); |
| |
| SanitizedResult result; |
| ast::transform::DataMap outputs; |
| result.program = manager.Run(in, data, outputs); |
| if (auto* res = outputs.Get<ast::transform::ArrayLengthFromUniform::Result>()) { |
| result.used_array_length_from_uniform_indices = std::move(res->used_size_indices); |
| } |
| return result; |
| } |
| |
| ASTPrinter::ASTPrinter(const Program* program) : builder_(ProgramBuilder::Wrap(program)) {} |
| |
| ASTPrinter::~ASTPrinter() = default; |
| |
| bool ASTPrinter::Generate() { |
| if (!tint::writer::CheckSupportedExtensions( |
| "HLSL", builder_.AST(), diagnostics_, |
| Vector{ |
| wgsl::Extension::kChromiumDisableUniformityAnalysis, |
| wgsl::Extension::kChromiumExperimentalDp4A, |
| wgsl::Extension::kChromiumExperimentalFullPtrParameters, |
| wgsl::Extension::kChromiumExperimentalPushConstant, |
| wgsl::Extension::kChromiumExperimentalReadWriteStorageTexture, |
| wgsl::Extension::kChromiumExperimentalSubgroups, |
| wgsl::Extension::kF16, |
| wgsl::Extension::kChromiumInternalDualSourceBlending, |
| })) { |
| return false; |
| } |
| |
| const tint::TypeInfo* last_kind = nullptr; |
| size_t last_padding_line = 0; |
| |
| auto* mod = builder_.Sem().Module(); |
| for (auto* decl : mod->DependencyOrderedDeclarations()) { |
| if (decl->IsAnyOf<ast::Alias, ast::DiagnosticDirective, ast::Enable, ast::ConstAssert>()) { |
| continue; // These are not emitted. |
| } |
| |
| // Emit a new line between declarations if the type of declaration has |
| // changed, or we're about to emit a function |
| auto* kind = &decl->TypeInfo(); |
| if (current_buffer_->lines.size() != last_padding_line) { |
| if (last_kind && (last_kind != kind || decl->Is<ast::Function>())) { |
| Line(); |
| last_padding_line = current_buffer_->lines.size(); |
| } |
| } |
| last_kind = kind; |
| |
| bool ok = Switch( |
| decl, |
| [&](const ast::Variable* global) { // |
| return EmitGlobalVariable(global); |
| }, |
| [&](const ast::Struct* str) { |
| auto* ty = builder_.Sem().Get(str); |
| auto address_space_uses = ty->AddressSpaceUsage(); |
| if (address_space_uses.size() != |
| (address_space_uses.count(core::AddressSpace::kStorage) + |
| address_space_uses.count(core::AddressSpace::kUniform))) { |
| // The structure is used as something other than a storage buffer or |
| // uniform buffer, so it needs to be emitted. |
| // Storage buffer are read and written to via a ByteAddressBuffer |
| // instead of true structure. |
| // Structures used as uniform buffer are read from an array of |
| // vectors instead of true structure. |
| return EmitStructType(current_buffer_, ty); |
| } |
| return true; |
| }, |
| [&](const ast::Function* func) { |
| if (func->IsEntryPoint()) { |
| return EmitEntryPointFunction(func); |
| } |
| return EmitFunction(func); |
| }, |
| [&](Default) { |
| TINT_ICE() << "unhandled module-scope declaration: " << decl->TypeInfo().name; |
| return false; |
| }); |
| |
| if (!ok) { |
| return false; |
| } |
| } |
| |
| if (!helpers_.lines.empty()) { |
| current_buffer_->Insert(helpers_, 0, 0); |
| } |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitDynamicVectorAssignment(const ast::AssignmentStatement* stmt, |
| const core::type::Vector* vec) { |
| auto name = tint::GetOrCreate(dynamic_vector_write_, vec, [&]() -> std::string { |
| std::string fn; |
| { |
| StringStream ss; |
| if (!EmitType(ss, vec, tint::core::AddressSpace::kUndefined, core::Access::kUndefined, |
| "")) { |
| return ""; |
| } |
| fn = UniqueIdentifier("set_" + ss.str()); |
| } |
| { |
| auto out = Line(&helpers_); |
| out << "void " << fn << "(inout "; |
| if (!EmitTypeAndName(out, vec, core::AddressSpace::kUndefined, core::Access::kUndefined, |
| "vec")) { |
| return ""; |
| } |
| out << ", int idx, "; |
| if (!EmitTypeAndName(out, vec->type(), core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "val")) { |
| return ""; |
| } |
| out << ") {"; |
| } |
| { |
| ScopedIndent si(&helpers_); |
| auto out = Line(&helpers_); |
| switch (vec->Width()) { |
| case 2: |
| out << "vec = (idx.xx == int2(0, 1)) ? val.xx : vec;"; |
| break; |
| case 3: |
| out << "vec = (idx.xxx == int3(0, 1, 2)) ? val.xxx : vec;"; |
| break; |
| case 4: |
| out << "vec = (idx.xxxx == int4(0, 1, 2, 3)) ? val.xxxx : vec;"; |
| break; |
| default: |
| TINT_UNREACHABLE() << "invalid vector size " << vec->Width(); |
| break; |
| } |
| } |
| Line(&helpers_) << "}"; |
| Line(&helpers_); |
| return fn; |
| }); |
| |
| if (name.empty()) { |
| return false; |
| } |
| |
| auto* ast_access_expr = stmt->lhs->As<ast::IndexAccessorExpression>(); |
| |
| auto out = Line(); |
| out << name << "("; |
| if (!EmitExpression(out, ast_access_expr->object)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, ast_access_expr->index)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, stmt->rhs)) { |
| return false; |
| } |
| out << ");"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitDynamicMatrixVectorAssignment(const ast::AssignmentStatement* stmt, |
| const core::type::Matrix* mat) { |
| auto name = tint::GetOrCreate(dynamic_matrix_vector_write_, mat, [&]() -> std::string { |
| std::string fn; |
| { |
| StringStream ss; |
| if (!EmitType(ss, mat, tint::core::AddressSpace::kUndefined, core::Access::kUndefined, |
| "")) { |
| return ""; |
| } |
| fn = UniqueIdentifier("set_vector_" + ss.str()); |
| } |
| { |
| auto out = Line(&helpers_); |
| out << "void " << fn << "(inout "; |
| if (!EmitTypeAndName(out, mat, core::AddressSpace::kUndefined, core::Access::kUndefined, |
| "mat")) { |
| return ""; |
| } |
| out << ", int col, "; |
| if (!EmitTypeAndName(out, mat->ColumnType(), core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "val")) { |
| return ""; |
| } |
| out << ") {"; |
| } |
| { |
| ScopedIndent si(&helpers_); |
| Line(&helpers_) << "switch (col) {"; |
| { |
| ScopedIndent si2(&helpers_); |
| for (uint32_t i = 0; i < mat->columns(); ++i) { |
| Line(&helpers_) << "case " << i << ": mat[" << i << "] = val; break;"; |
| } |
| } |
| Line(&helpers_) << "}"; |
| } |
| Line(&helpers_) << "}"; |
| Line(&helpers_); |
| return fn; |
| }); |
| |
| if (name.empty()) { |
| return false; |
| } |
| |
| auto* ast_access_expr = stmt->lhs->As<ast::IndexAccessorExpression>(); |
| |
| auto out = Line(); |
| out << name << "("; |
| if (!EmitExpression(out, ast_access_expr->object)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, ast_access_expr->index)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, stmt->rhs)) { |
| return false; |
| } |
| out << ");"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitDynamicMatrixScalarAssignment(const ast::AssignmentStatement* stmt, |
| const core::type::Matrix* mat) { |
| auto* lhs_row_access = stmt->lhs->As<ast::IndexAccessorExpression>(); |
| auto* lhs_col_access = lhs_row_access->object->As<ast::IndexAccessorExpression>(); |
| |
| auto name = tint::GetOrCreate(dynamic_matrix_scalar_write_, mat, [&]() -> std::string { |
| std::string fn; |
| { |
| StringStream ss; |
| if (!EmitType(ss, mat, tint::core::AddressSpace::kUndefined, core::Access::kUndefined, |
| "")) { |
| return ""; |
| } |
| fn = UniqueIdentifier("set_scalar_" + ss.str()); |
| } |
| { |
| auto out = Line(&helpers_); |
| out << "void " << fn << "(inout "; |
| if (!EmitTypeAndName(out, mat, core::AddressSpace::kUndefined, core::Access::kUndefined, |
| "mat")) { |
| return ""; |
| } |
| out << ", int col, int row, "; |
| if (!EmitTypeAndName(out, mat->type(), core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "val")) { |
| return ""; |
| } |
| out << ") {"; |
| } |
| { |
| ScopedIndent si(&helpers_); |
| Line(&helpers_) << "switch (col) {"; |
| { |
| ScopedIndent si2(&helpers_); |
| for (uint32_t i = 0; i < mat->columns(); ++i) { |
| Line(&helpers_) << "case " << i << ":"; |
| { |
| auto vec_name = "mat[" + std::to_string(i) + "]"; |
| ScopedIndent si3(&helpers_); |
| { |
| auto out = Line(&helpers_); |
| switch (mat->rows()) { |
| case 2: |
| out << vec_name |
| << " = (row.xx == int2(0, 1)) ? val.xx : " << vec_name |
| << ";"; |
| break; |
| case 3: |
| out << vec_name |
| << " = (row.xxx == int3(0, 1, 2)) ? val.xxx : " << vec_name |
| << ";"; |
| break; |
| case 4: |
| out << vec_name |
| << " = (row.xxxx == int4(0, 1, 2, 3)) ? val.xxxx : " |
| << vec_name << ";"; |
| break; |
| default: { |
| auto* vec = TypeOf(lhs_row_access->object) |
| ->UnwrapRef() |
| ->As<core::type::Vector>(); |
| TINT_UNREACHABLE() << "invalid vector size " << vec->Width(); |
| break; |
| } |
| } |
| } |
| Line(&helpers_) << "break;"; |
| } |
| } |
| } |
| Line(&helpers_) << "}"; |
| } |
| Line(&helpers_) << "}"; |
| Line(&helpers_); |
| return fn; |
| }); |
| |
| if (name.empty()) { |
| return false; |
| } |
| |
| auto out = Line(); |
| out << name << "("; |
| if (!EmitExpression(out, lhs_col_access->object)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, lhs_col_access->index)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, lhs_row_access->index)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, stmt->rhs)) { |
| return false; |
| } |
| out << ");"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitIndexAccessor(StringStream& out, const ast::IndexAccessorExpression* expr) { |
| if (!EmitExpression(out, expr->object)) { |
| return false; |
| } |
| out << "["; |
| |
| if (!EmitExpression(out, expr->index)) { |
| return false; |
| } |
| out << "]"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitBitcast(StringStream& out, const ast::BitcastExpression* expr) { |
| auto* dst_type = TypeOf(expr)->UnwrapRef(); |
| auto* src_type = TypeOf(expr->expr)->UnwrapRef(); |
| |
| auto* src_el_type = src_type->DeepestElement(); |
| auto* dst_el_type = dst_type->DeepestElement(); |
| |
| if (!dst_el_type->is_integer_scalar() && !dst_el_type->is_float_scalar()) { |
| diagnostics_.add_error(diag::System::Writer, |
| "Unable to do bitcast to type " + dst_el_type->FriendlyName()); |
| return false; |
| } |
| |
| // Handle identity bitcast. |
| if (src_type == dst_type) { |
| return EmitExpression(out, expr->expr); |
| } |
| |
| // Handle the f16 types using polyfill functions |
| if (src_el_type->Is<core::type::F16>() || dst_el_type->Is<core::type::F16>()) { |
| auto f16_bitcast_polyfill = [&]() { |
| if (src_el_type->Is<core::type::F16>()) { |
| // Source type must be vec2<f16> or vec4<f16>, since type f16 and vec3<f16> can only |
| // have identity bitcast. |
| auto* src_vec = src_type->As<core::type::Vector>(); |
| TINT_ASSERT(src_vec); |
| TINT_ASSERT(((src_vec->Width() == 2u) || (src_vec->Width() == 4u))); |
| |
| // Bitcast f16 types to others by converting the given f16 value to f32 and call |
| // f32tof16 to get the bits. This should be safe, because the convertion is precise |
| // for finite and infinite f16 value as they are exactly representable by f32, and |
| // WGSL spec allow any result if f16 value is NaN. |
| return tint::GetOrCreate( |
| bitcast_funcs_, BinaryType{{src_type, dst_type}}, [&]() -> std::string { |
| TextBuffer b; |
| TINT_DEFER(helpers_.Append(b)); |
| |
| auto fn_name = UniqueIdentifier(std::string("tint_bitcast_from_f16")); |
| { |
| auto decl = Line(&b); |
| if (!EmitTypeAndName(decl, dst_type, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, fn_name)) { |
| return ""; |
| } |
| { |
| ScopedParen sp(decl); |
| if (!EmitTypeAndName(decl, src_type, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "src")) { |
| return ""; |
| } |
| } |
| decl << " {"; |
| } |
| { |
| ScopedIndent si(&b); |
| { |
| Line(&b) << "uint" << src_vec->Width() << " r = f32tof16(float" |
| << src_vec->Width() << "(src));"; |
| |
| { |
| auto s = Line(&b); |
| s << "return as"; |
| if (!EmitType(s, dst_el_type, core::AddressSpace::kUndefined, |
| core::Access::kReadWrite, "")) { |
| return ""; |
| } |
| s << "("; |
| switch (src_vec->Width()) { |
| case 2: { |
| s << "uint((r.x & 0xffff) | ((r.y & 0xffff) << 16))"; |
| break; |
| } |
| case 4: { |
| s << "uint2((r.x & 0xffff) | ((r.y & 0xffff) << 16), " |
| "(r.z & 0xffff) | ((r.w & 0xffff) << 16))"; |
| break; |
| } |
| } |
| s << ");"; |
| } |
| } |
| } |
| Line(&b) << "}"; |
| Line(&b); |
| return fn_name; |
| }); |
| } else { |
| // Destination type must be vec2<f16> or vec4<f16>. |
| auto* dst_vec = dst_type->As<core::type::Vector>(); |
| TINT_ASSERT((dst_vec && ((dst_vec->Width() == 2u) || (dst_vec->Width() == 4u)) && |
| dst_el_type->Is<core::type::F16>())); |
| // Source type must be f32/i32/u32 or vec2<f32/i32/u32>. |
| auto* src_vec = src_type->As<core::type::Vector>(); |
| TINT_ASSERT( |
| (src_type->IsAnyOf<core::type::I32, core::type::U32, core::type::F32>() || |
| (src_vec && src_vec->Width() == 2u && |
| src_el_type->IsAnyOf<core::type::I32, core::type::U32, core::type::F32>()))); |
| std::string src_type_suffix = (src_vec ? "2" : ""); |
| |
| // Bitcast other types to f16 types by reinterpreting their bits as f16 using |
| // f16tof32, and convert the result f32 to f16. This should be safe, because the |
| // convertion is precise for finite and infinite f16 result value as they are |
| // exactly representable by f32, and WGSL spec allow any result if f16 result value |
| // would be NaN. |
| return tint::GetOrCreate( |
| bitcast_funcs_, BinaryType{{src_type, dst_type}}, [&]() -> std::string { |
| TextBuffer b; |
| TINT_DEFER(helpers_.Append(b)); |
| |
| auto fn_name = UniqueIdentifier(std::string("tint_bitcast_to_f16")); |
| { |
| auto decl = Line(&b); |
| if (!EmitTypeAndName(decl, dst_type, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, fn_name)) { |
| return ""; |
| } |
| { |
| ScopedParen sp(decl); |
| if (!EmitTypeAndName(decl, src_type, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "src")) { |
| return ""; |
| } |
| } |
| decl << " {"; |
| } |
| { |
| ScopedIndent si(&b); |
| { |
| // Convert the source to uint for f16tof32. |
| Line(&b) << "uint" << src_type_suffix << " v = asuint(src);"; |
| // Reinterprete the low 16 bits and high 16 bits |
| Line(&b) << "float" << src_type_suffix |
| << " t_low = f16tof32(v & 0xffff);"; |
| Line(&b) << "float" << src_type_suffix |
| << " t_high = f16tof32((v >> 16) & 0xffff);"; |
| // Construct the result f16 vector |
| { |
| auto s = Line(&b); |
| s << "return "; |
| if (!EmitType(s, dst_type, core::AddressSpace::kUndefined, |
| core::Access::kReadWrite, "")) { |
| return ""; |
| } |
| s << "("; |
| switch (dst_vec->Width()) { |
| case 2: { |
| s << "t_low.x, t_high.x"; |
| break; |
| } |
| case 4: { |
| s << "t_low.x, t_high.x, t_low.y, t_high.y"; |
| break; |
| } |
| } |
| s << ");"; |
| } |
| } |
| } |
| Line(&b) << "}"; |
| Line(&b); |
| return fn_name; |
| }); |
| } |
| }; |
| |
| // Get or create the polyfill |
| auto fn = f16_bitcast_polyfill(); |
| if (fn.empty()) { |
| return false; |
| } |
| // Call the polyfill |
| out << fn; |
| { |
| ScopedParen sp(out); |
| if (!EmitExpression(out, expr->expr)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Otherwise, bitcasting between non-f16 types. |
| TINT_ASSERT((!src_el_type->Is<core::type::F16>() && !dst_el_type->Is<core::type::F16>())); |
| out << "as"; |
| if (!EmitType(out, dst_el_type, core::AddressSpace::kUndefined, core::Access::kReadWrite, "")) { |
| return false; |
| } |
| out << "("; |
| if (!EmitExpression(out, expr->expr)) { |
| return false; |
| } |
| out << ")"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitAssign(const ast::AssignmentStatement* stmt) { |
| if (auto* lhs_access = stmt->lhs->As<ast::IndexAccessorExpression>()) { |
| // BUG(crbug.com/tint/1333): work around assignment of scalar to matrices |
| // with at least one dynamic index |
| if (auto* lhs_sub_access = lhs_access->object->As<ast::IndexAccessorExpression>()) { |
| if (auto* mat = TypeOf(lhs_sub_access->object)->UnwrapRef()->As<core::type::Matrix>()) { |
| auto* rhs_row_idx_sem = builder_.Sem().GetVal(lhs_access->index); |
| auto* rhs_col_idx_sem = builder_.Sem().GetVal(lhs_sub_access->index); |
| if (!rhs_row_idx_sem->ConstantValue() || !rhs_col_idx_sem->ConstantValue()) { |
| return EmitDynamicMatrixScalarAssignment(stmt, mat); |
| } |
| } |
| } |
| // BUG(crbug.com/tint/1333): work around assignment of vector to matrices |
| // with dynamic indices |
| const auto* lhs_access_type = TypeOf(lhs_access->object)->UnwrapRef(); |
| if (auto* mat = lhs_access_type->As<core::type::Matrix>()) { |
| auto* lhs_index_sem = builder_.Sem().GetVal(lhs_access->index); |
| if (!lhs_index_sem->ConstantValue()) { |
| return EmitDynamicMatrixVectorAssignment(stmt, mat); |
| } |
| } |
| // BUG(crbug.com/tint/534): work around assignment to vectors with dynamic |
| // indices |
| if (auto* vec = lhs_access_type->As<core::type::Vector>()) { |
| auto* rhs_sem = builder_.Sem().GetVal(lhs_access->index); |
| if (!rhs_sem->ConstantValue()) { |
| return EmitDynamicVectorAssignment(stmt, vec); |
| } |
| } |
| } |
| |
| auto out = Line(); |
| if (!EmitExpression(out, stmt->lhs)) { |
| return false; |
| } |
| out << " = "; |
| if (!EmitExpression(out, stmt->rhs)) { |
| return false; |
| } |
| out << ";"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitBinary(StringStream& out, const ast::BinaryExpression* expr) { |
| if (expr->op == core::BinaryOp::kLogicalAnd || expr->op == core::BinaryOp::kLogicalOr) { |
| auto name = UniqueIdentifier(kTempNamePrefix); |
| |
| { |
| auto pre = Line(); |
| pre << "bool " << name << " = "; |
| if (!EmitExpression(pre, expr->lhs)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| if (expr->op == core::BinaryOp::kLogicalOr) { |
| Line() << "if (!" << name << ") {"; |
| } else { |
| Line() << "if (" << name << ") {"; |
| } |
| |
| { |
| ScopedIndent si(this); |
| auto pre = Line(); |
| pre << name << " = "; |
| if (!EmitExpression(pre, expr->rhs)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| Line() << "}"; |
| |
| out << "(" << name << ")"; |
| return true; |
| } |
| |
| auto* lhs_type = TypeOf(expr->lhs)->UnwrapRef(); |
| auto* rhs_type = TypeOf(expr->rhs)->UnwrapRef(); |
| // Multiplying by a matrix requires the use of `mul` in order to get the |
| // type of multiply we desire. |
| if (expr->op == core::BinaryOp::kMultiply && |
| ((lhs_type->Is<core::type::Vector>() && rhs_type->Is<core::type::Matrix>()) || |
| (lhs_type->Is<core::type::Matrix>() && rhs_type->Is<core::type::Vector>()) || |
| (lhs_type->Is<core::type::Matrix>() && rhs_type->Is<core::type::Matrix>()))) { |
| // Matrices are transposed, so swap LHS and RHS. |
| out << "mul("; |
| if (!EmitExpression(out, expr->rhs)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, expr->lhs)) { |
| return false; |
| } |
| out << ")"; |
| |
| return true; |
| } |
| |
| ScopedParen sp(out); |
| |
| if (!EmitExpression(out, expr->lhs)) { |
| return false; |
| } |
| out << " "; |
| |
| switch (expr->op) { |
| case core::BinaryOp::kAnd: |
| out << "&"; |
| break; |
| case core::BinaryOp::kOr: |
| out << "|"; |
| break; |
| case core::BinaryOp::kXor: |
| out << "^"; |
| break; |
| case core::BinaryOp::kLogicalAnd: |
| case core::BinaryOp::kLogicalOr: { |
| // These are both handled above. |
| TINT_UNREACHABLE(); |
| return false; |
| } |
| case core::BinaryOp::kEqual: |
| out << "=="; |
| break; |
| case core::BinaryOp::kNotEqual: |
| out << "!="; |
| break; |
| case core::BinaryOp::kLessThan: |
| out << "<"; |
| break; |
| case core::BinaryOp::kGreaterThan: |
| out << ">"; |
| break; |
| case core::BinaryOp::kLessThanEqual: |
| out << "<="; |
| break; |
| case core::BinaryOp::kGreaterThanEqual: |
| out << ">="; |
| break; |
| case core::BinaryOp::kShiftLeft: |
| out << "<<"; |
| break; |
| case core::BinaryOp::kShiftRight: |
| // TODO(dsinclair): MSL is based on C++14, and >> in C++14 has |
| // implementation-defined behaviour for negative LHS. We may have to |
| // generate extra code to implement WGSL-specified behaviour for negative |
| // LHS. |
| out << R"(>>)"; |
| break; |
| |
| case core::BinaryOp::kAdd: |
| out << "+"; |
| break; |
| case core::BinaryOp::kSubtract: |
| out << "-"; |
| break; |
| case core::BinaryOp::kMultiply: |
| out << "*"; |
| break; |
| case core::BinaryOp::kDivide: |
| out << "/"; |
| break; |
| case core::BinaryOp::kModulo: |
| out << "%"; |
| break; |
| } |
| out << " "; |
| |
| if (!EmitExpression(out, expr->rhs)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitStatements(VectorRef<const ast::Statement*> stmts) { |
| for (auto* s : stmts) { |
| if (!EmitStatement(s)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool ASTPrinter::EmitStatementsWithIndent(VectorRef<const ast::Statement*> stmts) { |
| ScopedIndent si(this); |
| return EmitStatements(stmts); |
| } |
| |
| bool ASTPrinter::EmitBlock(const ast::BlockStatement* stmt) { |
| Line() << "{"; |
| if (!EmitStatementsWithIndent(stmt->statements)) { |
| return false; |
| } |
| Line() << "}"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitBreak(const ast::BreakStatement*) { |
| Line() << "break;"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitBreakIf(const ast::BreakIfStatement* b) { |
| auto out = Line(); |
| out << "if ("; |
| if (!EmitExpression(out, b->condition)) { |
| return false; |
| } |
| out << ") { break; }"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitCall(StringStream& out, const ast::CallExpression* expr) { |
| auto* call = builder_.Sem().Get<sem::Call>(expr); |
| auto* target = call->Target(); |
| return Switch( |
| target, // |
| [&](const sem::Function* func) { return EmitFunctionCall(out, call, func); }, |
| [&](const sem::Builtin* builtin) { return EmitBuiltinCall(out, call, builtin); }, |
| [&](const sem::ValueConversion* conv) { return EmitValueConversion(out, call, conv); }, |
| [&](const sem::ValueConstructor* ctor) { return EmitValueConstructor(out, call, ctor); }, |
| [&](Default) { |
| TINT_ICE() << "unhandled call target: " << target->TypeInfo().name; |
| return false; |
| }); |
| } |
| |
| bool ASTPrinter::EmitFunctionCall(StringStream& out, |
| const sem::Call* call, |
| const sem::Function* func) { |
| auto* expr = call->Declaration(); |
| |
| if (ast::HasAttribute<CalculateArrayLength::BufferSizeIntrinsic>( |
| func->Declaration()->attributes)) { |
| // Special function generated by the CalculateArrayLength transform for |
| // calling X.GetDimensions(Y) |
| if (!EmitExpression(out, call->Arguments()[0]->Declaration())) { |
| return false; |
| } |
| out << ".GetDimensions("; |
| if (!EmitExpression(out, call->Arguments()[1]->Declaration())) { |
| return false; |
| } |
| out << ")"; |
| return true; |
| } |
| |
| if (auto* intrinsic = |
| ast::GetAttribute<DecomposeMemoryAccess::Intrinsic>(func->Declaration()->attributes)) { |
| switch (intrinsic->address_space) { |
| case core::AddressSpace::kUniform: |
| return EmitUniformBufferAccess(out, expr, intrinsic); |
| case core::AddressSpace::kStorage: |
| if (!intrinsic->IsAtomic()) { |
| return EmitStorageBufferAccess(out, expr, intrinsic); |
| } |
| break; |
| default: |
| TINT_UNREACHABLE() << "unsupported DecomposeMemoryAccess::Intrinsic address space:" |
| << intrinsic->address_space; |
| return false; |
| } |
| } |
| |
| if (auto* wave_intrinsic = |
| ast::GetAttribute<ast::transform::CanonicalizeEntryPointIO::HLSLWaveIntrinsic>( |
| func->Declaration()->attributes)) { |
| switch (wave_intrinsic->op) { |
| case ast::transform::CanonicalizeEntryPointIO::HLSLWaveIntrinsic::Op::kWaveGetLaneCount: |
| out << "WaveGetLaneCount()"; |
| return true; |
| case ast::transform::CanonicalizeEntryPointIO::HLSLWaveIntrinsic::Op::kWaveGetLaneIndex: |
| out << "WaveGetLaneIndex()"; |
| return true; |
| } |
| } |
| |
| out << func->Declaration()->name->symbol.Name() << "("; |
| |
| bool first = true; |
| for (auto* arg : call->Arguments()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitExpression(out, arg->Declaration())) { |
| return false; |
| } |
| } |
| |
| out << ")"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitBuiltinCall(StringStream& out, |
| const sem::Call* call, |
| const sem::Builtin* builtin) { |
| const auto type = builtin->Type(); |
| |
| auto* expr = call->Declaration(); |
| if (builtin->IsTexture()) { |
| return EmitTextureCall(out, call, builtin); |
| } |
| if (type == core::Function::kSelect) { |
| return EmitSelectCall(out, expr); |
| } |
| if (type == core::Function::kModf) { |
| return EmitModfCall(out, expr, builtin); |
| } |
| if (type == core::Function::kFrexp) { |
| return EmitFrexpCall(out, expr, builtin); |
| } |
| if (type == core::Function::kDegrees) { |
| return EmitDegreesCall(out, expr, builtin); |
| } |
| if (type == core::Function::kRadians) { |
| return EmitRadiansCall(out, expr, builtin); |
| } |
| if (type == core::Function::kSign) { |
| return EmitSignCall(out, call, builtin); |
| } |
| if (type == core::Function::kQuantizeToF16) { |
| return EmitQuantizeToF16Call(out, expr, builtin); |
| } |
| if (type == core::Function::kTrunc) { |
| return EmitTruncCall(out, expr, builtin); |
| } |
| if (builtin->IsDataPacking()) { |
| return EmitDataPackingCall(out, expr, builtin); |
| } |
| if (builtin->IsDataUnpacking()) { |
| return EmitDataUnpackingCall(out, expr, builtin); |
| } |
| if (builtin->IsBarrier()) { |
| return EmitBarrierCall(out, builtin); |
| } |
| if (builtin->IsAtomic()) { |
| return EmitWorkgroupAtomicCall(out, expr, builtin); |
| } |
| if (builtin->IsDP4a()) { |
| return EmitDP4aCall(out, expr, builtin); |
| } |
| if (builtin->IsSubgroup()) { |
| if (builtin->Type() == core::Function::kSubgroupBroadcast) { |
| // Fall through the regular path. |
| } else { |
| return EmitSubgroupCall(out, expr, builtin); |
| } |
| } |
| |
| auto name = generate_builtin_name(builtin); |
| if (name.empty()) { |
| return false; |
| } |
| |
| // Handle single argument builtins that only accept and return uint (not int overload). We need |
| // to explicitly cast the return value (we also cast the arg for good measure). See |
| // crbug.com/tint/1550 |
| if (type == core::Function::kCountOneBits || type == core::Function::kReverseBits) { |
| auto* arg = call->Arguments()[0]; |
| if (arg->Type()->UnwrapRef()->is_signed_integer_scalar_or_vector()) { |
| out << "asint(" << name << "(asuint("; |
| if (!EmitExpression(out, arg->Declaration())) { |
| return false; |
| } |
| out << ")))"; |
| return true; |
| } |
| } |
| |
| out << name << "("; |
| |
| bool first = true; |
| for (auto* arg : call->Arguments()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitExpression(out, arg->Declaration())) { |
| return false; |
| } |
| } |
| |
| out << ")"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitValueConversion(StringStream& out, |
| const sem::Call* call, |
| const sem::ValueConversion* conv) { |
| if (!EmitType(out, conv->Target(), core::AddressSpace::kUndefined, core::Access::kReadWrite, |
| "")) { |
| return false; |
| } |
| out << "("; |
| |
| if (!EmitExpression(out, call->Arguments()[0]->Declaration())) { |
| return false; |
| } |
| |
| out << ")"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitValueConstructor(StringStream& out, |
| const sem::Call* call, |
| const sem::ValueConstructor* ctor) { |
| auto* type = call->Type(); |
| |
| // If the value constructor arguments are empty then we need to construct with the zero value |
| // for all components. |
| if (call->Arguments().IsEmpty()) { |
| return EmitZeroValue(out, type); |
| } |
| |
| // Single parameter matrix initializers must be identity initializer. |
| // It could also be conversions between f16 and f32 matrix when f16 is properly supported. |
| if (type->Is<core::type::Matrix>() && call->Arguments().Length() == 1) { |
| if (!ctor->Parameters()[0]->Type()->UnwrapRef()->is_float_matrix()) { |
| TINT_UNREACHABLE() |
| << "found a single-parameter matrix initializer that is not identity initializer"; |
| return false; |
| } |
| } |
| |
| bool brackets = type->IsAnyOf<core::type::Array, core::type::Struct>(); |
| |
| // For single-value vector initializers, swizzle the scalar to the right |
| // vector dimension using .x |
| const bool is_single_value_vector_init = |
| type->is_scalar_vector() && call->Arguments().Length() == 1 && |
| ctor->Parameters()[0]->Type()->Is<core::type::Scalar>(); |
| |
| if (brackets) { |
| out << "{"; |
| } else { |
| if (!EmitType(out, type, core::AddressSpace::kUndefined, core::Access::kReadWrite, "")) { |
| return false; |
| } |
| out << "("; |
| } |
| |
| if (is_single_value_vector_init) { |
| out << "("; |
| } |
| |
| bool first = true; |
| for (auto* e : call->Arguments()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitExpression(out, e->Declaration())) { |
| return false; |
| } |
| } |
| |
| if (is_single_value_vector_init) { |
| out << ")." << std::string(type->As<core::type::Vector>()->Width(), 'x'); |
| } |
| |
| out << (brackets ? "}" : ")"); |
| return true; |
| } |
| |
| bool ASTPrinter::EmitUniformBufferAccess(StringStream& out, |
| const ast::CallExpression* expr, |
| const DecomposeMemoryAccess::Intrinsic* intrinsic) { |
| auto const buffer = intrinsic->Buffer()->identifier->symbol.Name(); |
| auto* const offset = expr->args[0]; |
| |
| // offset in bytes |
| uint32_t scalar_offset_bytes = 0; |
| // offset in uint (4 bytes) |
| uint32_t scalar_offset_index = 0; |
| // expression to calculate offset in bytes |
| std::string scalar_offset_bytes_expr; |
| // expression to calculate offset in uint, by dividing scalar_offset_bytes_expr by 4 |
| std::string scalar_offset_index_expr; |
| // expression to calculate offset in uint, independently |
| std::string scalar_offset_index_unified_expr; |
| |
| // If true, use scalar_offset_index, otherwise use scalar_offset_index_expr |
| bool scalar_offset_constant = false; |
| |
| if (auto* val = builder_.Sem().GetVal(offset)->ConstantValue()) { |
| TINT_ASSERT(val->Type()->Is<core::type::U32>()); |
| scalar_offset_bytes = static_cast<uint32_t>(val->ValueAs<AInt>()); |
| scalar_offset_index = scalar_offset_bytes / 4; // bytes -> scalar index |
| scalar_offset_constant = true; |
| } |
| |
| // If true, scalar_offset_bytes or scalar_offset_bytes_expr should be used, otherwise only use |
| // scalar_offset_index or scalar_offset_index_unified_expr. Currently only loading f16 scalar |
| // require using offset in bytes. |
| const bool need_offset_in_bytes = |
| intrinsic->type == DecomposeMemoryAccess::Intrinsic::DataType::kF16; |
| |
| if (!scalar_offset_constant) { |
| // UBO offset not compile-time known. |
| // Calculate the scalar offset into a temporary. |
| if (need_offset_in_bytes) { |
| scalar_offset_bytes_expr = UniqueIdentifier("scalar_offset_bytes"); |
| scalar_offset_index_expr = UniqueIdentifier("scalar_offset_index"); |
| { |
| auto pre = Line(); |
| pre << "const uint " << scalar_offset_bytes_expr << " = ("; |
| if (!EmitExpression(pre, offset)) { |
| return false; |
| } |
| pre << ");"; |
| } |
| Line() << "const uint " << scalar_offset_index_expr << " = " << scalar_offset_bytes_expr |
| << " / 4;"; |
| } else { |
| scalar_offset_index_unified_expr = UniqueIdentifier("scalar_offset"); |
| auto pre = Line(); |
| pre << "const uint " << scalar_offset_index_unified_expr << " = ("; |
| if (!EmitExpression(pre, offset)) { |
| return false; |
| } |
| pre << ") / 4;"; |
| } |
| } |
| |
| const char swizzle[] = {'x', 'y', 'z', 'w'}; |
| |
| using Op = DecomposeMemoryAccess::Intrinsic::Op; |
| using DataType = DecomposeMemoryAccess::Intrinsic::DataType; |
| switch (intrinsic->op) { |
| case Op::kLoad: { |
| auto cast = [&](const char* to, auto&& load) { |
| out << to << "("; |
| auto result = load(); |
| out << ")"; |
| return result; |
| }; |
| auto load_u32_to = [&](StringStream& target) { |
| target << buffer; |
| if (scalar_offset_constant) { |
| target << "[" << (scalar_offset_index / 4) << "]." |
| << swizzle[scalar_offset_index & 3]; |
| } else { |
| target << "[" << scalar_offset_index_unified_expr << " / 4][" |
| << scalar_offset_index_unified_expr << " % 4]"; |
| } |
| return true; |
| }; |
| auto load_u32 = [&] { return load_u32_to(out); }; |
| // Has a minimum alignment of 8 bytes, so is either .xy or .zw |
| auto load_vec2_u32_to = [&](StringStream& target) { |
| if (scalar_offset_constant) { |
| target << buffer << "[" << (scalar_offset_index / 4) << "]" |
| << ((scalar_offset_index & 2) == 0 ? ".xy" : ".zw"); |
| } else { |
| std::string ubo_load = UniqueIdentifier("ubo_load"); |
| { |
| auto pre = Line(); |
| pre << "uint4 " << ubo_load << " = " << buffer << "[" |
| << scalar_offset_index_unified_expr << " / 4];"; |
| } |
| target << "((" << scalar_offset_index_unified_expr << " & 2) ? " << ubo_load |
| << ".zw : " << ubo_load << ".xy)"; |
| } |
| return true; |
| }; |
| auto load_vec2_u32 = [&] { return load_vec2_u32_to(out); }; |
| // vec4 has a minimum alignment of 16 bytes, easiest case |
| auto load_vec4_u32 = [&] { |
| out << buffer; |
| if (scalar_offset_constant) { |
| out << "[" << (scalar_offset_index / 4) << "]"; |
| } else { |
| out << "[" << scalar_offset_index_unified_expr << " / 4]"; |
| } |
| return true; |
| }; |
| // vec3 has a minimum alignment of 16 bytes, so is just a .xyz swizzle |
| auto load_vec3_u32 = [&] { |
| if (!load_vec4_u32()) { |
| return false; |
| } |
| out << ".xyz"; |
| return true; |
| }; |
| auto load_scalar_f16 = [&] { |
| // offset bytes = 4k, ((buffer[index].x) & 0xFFFF) |
| // offset bytes = 4k+2, ((buffer[index].x >> 16) & 0xFFFF) |
| out << "float16_t(f16tof32(((" << buffer; |
| if (scalar_offset_constant) { |
| out << "[" << (scalar_offset_index / 4) << "]." |
| << swizzle[scalar_offset_index & 3]; |
| // WGSL spec ensure little endian memory layout. |
| if (scalar_offset_bytes % 4 == 0) { |
| out << ") & 0xFFFF)"; |
| } else { |
| out << " >> 16) & 0xFFFF)"; |
| } |
| } else { |
| out << "[" << scalar_offset_index_expr << " / 4][" << scalar_offset_index_expr |
| << " % 4] >> (" << scalar_offset_bytes_expr |
| << " % 4 == 0 ? 0 : 16)) & 0xFFFF)"; |
| } |
| out << "))"; |
| return true; |
| }; |
| auto load_vec2_f16 = [&] { |
| // vec2<f16> is aligned to 4 bytes |
| // Preclude code load the vec2<f16> data as a uint: |
| // uint ubo_load = buffer[id0][id1]; |
| // Loading code convert it to vec2<f16>: |
| // vector<float16_t, 2>(float16_t(f16tof32(ubo_load & 0xFFFF)), |
| // float16_t(f16tof32(ubo_load >> 16))) |
| std::string ubo_load = UniqueIdentifier("ubo_load"); |
| { |
| auto pre = Line(); |
| // Load the 4 bytes f16 vector as an uint |
| pre << "uint " << ubo_load << " = "; |
| if (!load_u32_to(pre)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| out << "vector<float16_t, 2>(float16_t(f16tof32(" << ubo_load |
| << " & 0xFFFF)), float16_t(f16tof32(" << ubo_load << " >> 16)))"; |
| return true; |
| }; |
| auto load_vec3_f16 = [&] { |
| // vec3<f16> is aligned to 8 bytes |
| // Preclude code load the vec3<f16> data as uint2 and convert its elements to |
| // float16_t: |
| // uint2 ubo_load = buffer[id0].xy; |
| // /* The low 8 bits of two uint are the x and z elements of vec3<f16> */ |
| // vector<float16_t> ubo_load_xz = vector<float16_t, 2>(f16tof32(ubo_load & |
| // 0xFFFF)); |
| // /* The high 8 bits of first uint is the y element of vec3<f16> */ |
| // float16_t ubo_load_y = f16tof32(ubo_load[0] >> 16); |
| // Loading code convert it to vec3<f16>: |
| // vector<float16_t, 3>(ubo_load_xz[0], ubo_load_y, ubo_load_xz[1]) |
| std::string ubo_load = UniqueIdentifier("ubo_load"); |
| std::string ubo_load_xz = UniqueIdentifier(ubo_load + "_xz"); |
| std::string ubo_load_y = UniqueIdentifier(ubo_load + "_y"); |
| { |
| auto pre = Line(); |
| // Load the 8 bytes uint2 with the f16 vector at lower 6 bytes |
| pre << "uint2 " << ubo_load << " = "; |
| if (!load_vec2_u32_to(pre)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| { |
| auto pre = Line(); |
| pre << "vector<float16_t, 2> " << ubo_load_xz |
| << " = vector<float16_t, 2>(f16tof32(" << ubo_load << " & 0xFFFF));"; |
| } |
| { |
| auto pre = Line(); |
| pre << "float16_t " << ubo_load_y << " = f16tof32(" << ubo_load |
| << "[0] >> 16);"; |
| } |
| out << "vector<float16_t, 3>(" << ubo_load_xz << "[0], " << ubo_load_y << ", " |
| << ubo_load_xz << "[1])"; |
| return true; |
| }; |
| auto load_vec4_f16 = [&] { |
| // vec4<f16> is aligned to 8 bytes |
| // Preclude code load the vec4<f16> data as uint2 and convert its elements to |
| // float16_t: |
| // uint2 ubo_load = buffer[id0].xy; |
| // /* The low 8 bits of two uint are the x and z elements of vec4<f16> */ |
| // vector<float16_t> ubo_load_xz = vector<float16_t, 2>(f16tof32(ubo_load & |
| // 0xFFFF)); |
| // /* The high 8 bits of two uint are the y and w elements of vec4<f16> */ |
| // vector<float16_t, 2> ubo_load_yw = vector<float16_t, 2>(f16tof32(ubo_load >> |
| // 16)); |
| // Loading code convert it to vec4<f16>: |
| // vector<float16_t, 4>(ubo_load_xz[0], ubo_load_yw[0], ubo_load_xz[1], |
| // ubo_load_yw[1]) |
| std::string ubo_load = UniqueIdentifier("ubo_load"); |
| std::string ubo_load_xz = UniqueIdentifier(ubo_load + "_xz"); |
| std::string ubo_load_yw = UniqueIdentifier(ubo_load + "_yw"); |
| { |
| auto pre = Line(); |
| // Load the 8 bytes f16 vector as an uint2 |
| pre << "uint2 " << ubo_load << " = "; |
| if (!load_vec2_u32_to(pre)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| { |
| auto pre = Line(); |
| pre << "vector<float16_t, 2> " << ubo_load_xz |
| << " = vector<float16_t, 2>(f16tof32(" << ubo_load << " & 0xFFFF));"; |
| } |
| { |
| auto pre = Line(); |
| pre << "vector<float16_t, 2> " << ubo_load_yw |
| << " = vector<float16_t, 2>(f16tof32(" << ubo_load << " >> 16));"; |
| } |
| out << "vector<float16_t, 4>(" << ubo_load_xz << "[0], " << ubo_load_yw << "[0], " |
| << ubo_load_xz << "[1], " << ubo_load_yw << "[1])"; |
| return true; |
| }; |
| switch (intrinsic->type) { |
| case DataType::kU32: |
| return load_u32(); |
| case DataType::kF32: |
| return cast("asfloat", load_u32); |
| case DataType::kI32: |
| return cast("asint", load_u32); |
| case DataType::kF16: |
| return load_scalar_f16(); |
| case DataType::kVec2U32: |
| return load_vec2_u32(); |
| case DataType::kVec2F32: |
| return cast("asfloat", load_vec2_u32); |
| case DataType::kVec2I32: |
| return cast("asint", load_vec2_u32); |
| case DataType::kVec2F16: |
| return load_vec2_f16(); |
| case DataType::kVec3U32: |
| return load_vec3_u32(); |
| case DataType::kVec3F32: |
| return cast("asfloat", load_vec3_u32); |
| case DataType::kVec3I32: |
| return cast("asint", load_vec3_u32); |
| case DataType::kVec3F16: |
| return load_vec3_f16(); |
| case DataType::kVec4U32: |
| return load_vec4_u32(); |
| case DataType::kVec4F32: |
| return cast("asfloat", load_vec4_u32); |
| case DataType::kVec4I32: |
| return cast("asint", load_vec4_u32); |
| case DataType::kVec4F16: |
| return load_vec4_f16(); |
| } |
| TINT_UNREACHABLE() << "unsupported DecomposeMemoryAccess::Intrinsic::DataType: " |
| << static_cast<int>(intrinsic->type); |
| return false; |
| } |
| default: |
| break; |
| } |
| TINT_UNREACHABLE() << "unsupported DecomposeMemoryAccess::Intrinsic::Op: " |
| << static_cast<int>(intrinsic->op); |
| return false; |
| } |
| |
| bool ASTPrinter::EmitStorageBufferAccess(StringStream& out, |
| const ast::CallExpression* expr, |
| const DecomposeMemoryAccess::Intrinsic* intrinsic) { |
| auto const buffer = intrinsic->Buffer()->identifier->symbol.Name(); |
| auto* const offset = expr->args[0]; |
| auto* const value = expr->args.Length() > 1 ? expr->args[1] : nullptr; |
| |
| using Op = DecomposeMemoryAccess::Intrinsic::Op; |
| using DataType = DecomposeMemoryAccess::Intrinsic::DataType; |
| switch (intrinsic->op) { |
| case Op::kLoad: { |
| auto load = [&](const char* cast, int n) { |
| if (cast) { |
| out << cast << "("; |
| } |
| out << buffer << ".Load"; |
| if (n > 1) { |
| out << n; |
| } |
| ScopedParen sp(out); |
| if (!EmitExpression(out, offset)) { |
| return false; |
| } |
| if (cast) { |
| out << ")"; |
| } |
| return true; |
| }; |
| // Templated load used for f16 types, requires SM6.2 or higher and DXC |
| // Used by loading f16 types, e.g. for f16 type, set type parameter to "float16_t" |
| // to emit `buffer.Load<float16_t>(offset)`. |
| auto templated_load = [&](const char* type) { |
| out << buffer << ".Load<" << type << ">"; // templated load |
| ScopedParen sp(out); |
| if (!EmitExpression(out, offset)) { |
| return false; |
| } |
| return true; |
| }; |
| switch (intrinsic->type) { |
| case DataType::kU32: |
| return load(nullptr, 1); |
| case DataType::kF32: |
| return load("asfloat", 1); |
| case DataType::kI32: |
| return load("asint", 1); |
| case DataType::kF16: |
| return templated_load("float16_t"); |
| case DataType::kVec2U32: |
| return load(nullptr, 2); |
| case DataType::kVec2F32: |
| return load("asfloat", 2); |
| case DataType::kVec2I32: |
| return load("asint", 2); |
| case DataType::kVec2F16: |
| return templated_load("vector<float16_t, 2> "); |
| case DataType::kVec3U32: |
| return load(nullptr, 3); |
| case DataType::kVec3F32: |
| return load("asfloat", 3); |
| case DataType::kVec3I32: |
| return load("asint", 3); |
| case DataType::kVec3F16: |
| return templated_load("vector<float16_t, 3> "); |
| case DataType::kVec4U32: |
| return load(nullptr, 4); |
| case DataType::kVec4F32: |
| return load("asfloat", 4); |
| case DataType::kVec4I32: |
| return load("asint", 4); |
| case DataType::kVec4F16: |
| return templated_load("vector<float16_t, 4> "); |
| } |
| TINT_UNREACHABLE() << "unsupported DecomposeMemoryAccess::Intrinsic::DataType: " |
| << static_cast<int>(intrinsic->type); |
| return false; |
| } |
| |
| case Op::kStore: { |
| auto store = [&](int n) { |
| out << buffer << ".Store"; |
| if (n > 1) { |
| out << n; |
| } |
| ScopedParen sp1(out); |
| if (!EmitExpression(out, offset)) { |
| return false; |
| } |
| out << ", asuint"; |
| ScopedParen sp2(out); |
| if (!EmitTextureOrStorageBufferCallArgExpression(out, value)) { |
| return false; |
| } |
| return true; |
| }; |
| // Templated stored used for f16 types, requires SM6.2 or higher and DXC |
| // Used by storing f16 types, e.g. for f16 type, set type parameter to "float16_t" |
| // to emit `buffer.Store<float16_t>(offset)`. |
| auto templated_store = [&](const char* type) { |
| out << buffer << ".Store<" << type << ">"; // templated store |
| ScopedParen sp1(out); |
| if (!EmitExpression(out, offset)) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, value)) { |
| return false; |
| } |
| return true; |
| }; |
| switch (intrinsic->type) { |
| case DataType::kU32: |
| return store(1); |
| case DataType::kF32: |
| return store(1); |
| case DataType::kI32: |
| return store(1); |
| case DataType::kF16: |
| return templated_store("float16_t"); |
| case DataType::kVec2U32: |
| return store(2); |
| case DataType::kVec2F32: |
| return store(2); |
| case DataType::kVec2I32: |
| return store(2); |
| case DataType::kVec2F16: |
| return templated_store("vector<float16_t, 2> "); |
| case DataType::kVec3U32: |
| return store(3); |
| case DataType::kVec3F32: |
| return store(3); |
| case DataType::kVec3I32: |
| return store(3); |
| case DataType::kVec3F16: |
| return templated_store("vector<float16_t, 3> "); |
| case DataType::kVec4U32: |
| return store(4); |
| case DataType::kVec4F32: |
| return store(4); |
| case DataType::kVec4I32: |
| return store(4); |
| case DataType::kVec4F16: |
| return templated_store("vector<float16_t, 4> "); |
| } |
| TINT_UNREACHABLE() << "unsupported DecomposeMemoryAccess::Intrinsic::DataType: " |
| << static_cast<int>(intrinsic->type); |
| return false; |
| } |
| default: |
| // Break out to error case below |
| // Note that atomic intrinsics are generated as functions. |
| break; |
| } |
| |
| TINT_UNREACHABLE() << "unsupported DecomposeMemoryAccess::Intrinsic::Op: " |
| << static_cast<int>(intrinsic->op); |
| return false; |
| } |
| |
| bool ASTPrinter::EmitStorageAtomicIntrinsic(const ast::Function* func, |
| const DecomposeMemoryAccess::Intrinsic* intrinsic) { |
| using Op = DecomposeMemoryAccess::Intrinsic::Op; |
| |
| const sem::Function* sem_func = builder_.Sem().Get(func); |
| auto* result_ty = sem_func->ReturnType(); |
| const auto name = func->name->symbol.Name(); |
| auto& buf = *current_buffer_; |
| |
| auto const buffer = intrinsic->Buffer()->identifier->symbol.Name(); |
| |
| auto rmw = [&](const char* hlsl) -> bool { |
| { |
| auto fn = Line(&buf); |
| if (!EmitTypeAndName(fn, result_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, name)) { |
| return false; |
| } |
| fn << "(uint offset, "; |
| if (!EmitTypeAndName(fn, result_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "value")) { |
| return false; |
| } |
| fn << ") {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| Line(&buf) << "}"; |
| Line(&buf); |
| }); |
| |
| { |
| auto l = Line(&buf); |
| if (!EmitTypeAndName(l, result_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "original_value")) { |
| return false; |
| } |
| l << " = 0;"; |
| } |
| { |
| auto l = Line(&buf); |
| l << buffer << "." << hlsl << "(offset, "; |
| if (intrinsic->op == Op::kAtomicSub) { |
| l << "-"; |
| } |
| l << "value, original_value);"; |
| } |
| Line(&buf) << "return original_value;"; |
| return true; |
| }; |
| |
| switch (intrinsic->op) { |
| case Op::kAtomicAdd: |
| return rmw("InterlockedAdd"); |
| |
| case Op::kAtomicSub: |
| // Use add with the operand negated. |
| return rmw("InterlockedAdd"); |
| |
| case Op::kAtomicMax: |
| return rmw("InterlockedMax"); |
| |
| case Op::kAtomicMin: |
| return rmw("InterlockedMin"); |
| |
| case Op::kAtomicAnd: |
| return rmw("InterlockedAnd"); |
| |
| case Op::kAtomicOr: |
| return rmw("InterlockedOr"); |
| |
| case Op::kAtomicXor: |
| return rmw("InterlockedXor"); |
| |
| case Op::kAtomicExchange: |
| return rmw("InterlockedExchange"); |
| |
| case Op::kAtomicLoad: { |
| // HLSL does not have an InterlockedLoad, so we emulate it with |
| // InterlockedOr using 0 as the OR value |
| { |
| auto fn = Line(&buf); |
| if (!EmitTypeAndName(fn, result_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, name)) { |
| return false; |
| } |
| fn << "(uint offset) {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| Line(&buf) << "}"; |
| Line(&buf); |
| }); |
| |
| { |
| auto l = Line(&buf); |
| if (!EmitTypeAndName(l, result_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "value")) { |
| return false; |
| } |
| l << " = 0;"; |
| } |
| |
| Line(&buf) << buffer << ".InterlockedOr(offset, 0, value);"; |
| Line(&buf) << "return value;"; |
| return true; |
| } |
| case Op::kAtomicStore: { |
| auto* const value_ty = sem_func->Parameters()[1]->Type()->UnwrapRef(); |
| // HLSL does not have an InterlockedStore, so we emulate it with |
| // InterlockedExchange and discard the returned value |
| { |
| auto fn = Line(&buf); |
| fn << "void " << name << "(uint offset, "; |
| if (!EmitTypeAndName(fn, value_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "value")) { |
| return false; |
| } |
| fn << ") {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| Line(&buf) << "}"; |
| Line(&buf); |
| }); |
| |
| { |
| auto l = Line(&buf); |
| if (!EmitTypeAndName(l, value_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "ignored")) { |
| return false; |
| } |
| l << ";"; |
| } |
| Line(&buf) << buffer << ".InterlockedExchange(offset, value, ignored);"; |
| return true; |
| } |
| case Op::kAtomicCompareExchangeWeak: { |
| if (!EmitStructType(&helpers_, result_ty->As<core::type::Struct>())) { |
| return false; |
| } |
| |
| auto* const value_ty = sem_func->Parameters()[1]->Type()->UnwrapRef(); |
| // NOTE: We don't need to emit the return type struct here as DecomposeMemoryAccess |
| // already added it to the AST, and it should have already been emitted by now. |
| { |
| auto fn = Line(&buf); |
| if (!EmitTypeAndName(fn, result_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, name)) { |
| return false; |
| } |
| fn << "(uint offset, "; |
| if (!EmitTypeAndName(fn, value_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "compare")) { |
| return false; |
| } |
| fn << ", "; |
| if (!EmitTypeAndName(fn, value_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "value")) { |
| return false; |
| } |
| fn << ") {"; |
| } |
| |
| buf.IncrementIndent(); |
| TINT_DEFER({ |
| buf.DecrementIndent(); |
| Line(&buf) << "}"; |
| Line(&buf); |
| }); |
| |
| { // T result = {0}; |
| auto l = Line(&buf); |
| if (!EmitTypeAndName(l, result_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "result")) { |
| return false; |
| } |
| l << "="; |
| if (!EmitZeroValue(l, result_ty)) { |
| return false; |
| } |
| l << ";"; |
| } |
| |
| Line(&buf) << buffer |
| << ".InterlockedCompareExchange(offset, compare, value, result.old_value);"; |
| Line(&buf) << "result.exchanged = result.old_value == compare;"; |
| Line(&buf) << "return result;"; |
| |
| return true; |
| } |
| default: |
| break; |
| } |
| |
| TINT_UNREACHABLE() << "unsupported atomic DecomposeMemoryAccess::Intrinsic::Op: " |
| << static_cast<int>(intrinsic->op); |
| return false; |
| } |
| |
| bool ASTPrinter::EmitWorkgroupAtomicCall(StringStream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| std::string result = UniqueIdentifier("atomic_result"); |
| |
| if (!builtin->ReturnType()->Is<core::type::Void>()) { |
| auto pre = Line(); |
| if (!EmitTypeAndName(pre, builtin->ReturnType(), core::AddressSpace::kUndefined, |
| core::Access::kUndefined, result)) { |
| return false; |
| } |
| pre << " = "; |
| if (!EmitZeroValue(pre, builtin->ReturnType())) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| auto call = [&](const char* name) { |
| auto pre = Line(); |
| pre << name; |
| |
| { |
| ScopedParen sp(pre); |
| for (size_t i = 0; i < expr->args.Length(); i++) { |
| auto* arg = expr->args[i]; |
| if (i > 0) { |
| pre << ", "; |
| } |
| if (i == 1 && builtin->Type() == core::Function::kAtomicSub) { |
| // Sub uses InterlockedAdd with the operand negated. |
| pre << "-"; |
| } |
| if (!EmitExpression(pre, arg)) { |
| return false; |
| } |
| } |
| |
| pre << ", " << result; |
| } |
| |
| pre << ";"; |
| |
| out << result; |
| return true; |
| }; |
| |
| switch (builtin->Type()) { |
| case core::Function::kAtomicLoad: { |
| // HLSL does not have an InterlockedLoad, so we emulate it with |
| // InterlockedOr using 0 as the OR value |
| auto pre = Line(); |
| pre << "InterlockedOr"; |
| { |
| ScopedParen sp(pre); |
| if (!EmitExpression(pre, expr->args[0])) { |
| return false; |
| } |
| pre << ", 0, " << result; |
| } |
| pre << ";"; |
| |
| out << result; |
| return true; |
| } |
| case core::Function::kAtomicStore: { |
| // HLSL does not have an InterlockedStore, so we emulate it with |
| // InterlockedExchange and discard the returned value |
| { // T result = 0; |
| auto pre = Line(); |
| auto* value_ty = builtin->Parameters()[1]->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(pre, value_ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, result)) { |
| return false; |
| } |
| pre << " = "; |
| if (!EmitZeroValue(pre, value_ty)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| out << "InterlockedExchange"; |
| { |
| ScopedParen sp(out); |
| if (!EmitExpression(out, expr->args[0])) { |
| return false; |
| } |
| out << ", "; |
| if (!EmitExpression(out, expr->args[1])) { |
| return false; |
| } |
| out << ", " << result; |
| } |
| return true; |
| } |
| case core::Function::kAtomicCompareExchangeWeak: { |
| if (!EmitStructType(&helpers_, builtin->ReturnType()->As<core::type::Struct>())) { |
| return false; |
| } |
| |
| auto* dest = expr->args[0]; |
| auto* compare_value = expr->args[1]; |
| auto* value = expr->args[2]; |
| |
| std::string compare = UniqueIdentifier("atomic_compare_value"); |
| |
| { // T compare_value = <compare_value>; |
| auto pre = Line(); |
| if (!EmitTypeAndName(pre, TypeOf(compare_value)->UnwrapRef(), |
| core::AddressSpace::kUndefined, core::Access::kUndefined, |
| compare)) { |
| return false; |
| } |
| pre << " = "; |
| if (!EmitExpression(pre, compare_value)) { |
| return false; |
| } |
| pre << ";"; |
| } |
| |
| { // InterlockedCompareExchange(dst, compare, value, result.old_value); |
| auto pre = Line(); |
| pre << "InterlockedCompareExchange"; |
| { |
| ScopedParen sp(pre); |
| if (!EmitExpression(pre, dest)) { |
| return false; |
| } |
| pre << ", " << compare << ", "; |
| if (!EmitExpression(pre, value)) { |
| return false; |
| } |
| pre << ", " << result << ".old_value"; |
| } |
| pre << ";"; |
| } |
| |
| // result.exchanged = result.old_value == compare; |
| Line() << result << ".exchanged = " << result << ".old_value == " << compare << ";"; |
| |
| out << result; |
| return true; |
| } |
| |
| case core::Function::kAtomicAdd: |
| case core::Function::kAtomicSub: |
| return call("InterlockedAdd"); |
| |
| case core::Function::kAtomicMax: |
| return call("InterlockedMax"); |
| |
| case core::Function::kAtomicMin: |
| return call("InterlockedMin"); |
| |
| case core::Function::kAtomicAnd: |
| return call("InterlockedAnd"); |
| |
| case core::Function::kAtomicOr: |
| return call("InterlockedOr"); |
| |
| case core::Function::kAtomicXor: |
| return call("InterlockedXor"); |
| |
| case core::Function::kAtomicExchange: |
| return call("InterlockedExchange"); |
| |
| default: |
| break; |
| } |
| |
| TINT_UNREACHABLE() << "unsupported atomic builtin: " << builtin->Type(); |
| return false; |
| } |
| |
| bool ASTPrinter::EmitSelectCall(StringStream& out, const ast::CallExpression* expr) { |
| auto* expr_false = expr->args[0]; |
| auto* expr_true = expr->args[1]; |
| auto* expr_cond = expr->args[2]; |
| ScopedParen paren(out); |
| if (!EmitExpression(out, expr_cond)) { |
| return false; |
| } |
| |
| out << " ? "; |
| |
| if (!EmitExpression(out, expr_true)) { |
| return false; |
| } |
| |
| out << " : "; |
| |
| if (!EmitExpression(out, expr_false)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitModfCall(StringStream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| auto* ty = builtin->Parameters()[0]->Type(); |
| auto in = params[0]; |
| |
| std::string width; |
| if (auto* vec = ty->As<core::type::Vector>()) { |
| width = std::to_string(vec->Width()); |
| } |
| |
| // Emit the builtin return type unique to this overload. This does not |
| // exist in the AST, so it will not be generated in Generate(). |
| if (!EmitStructType(&helpers_, builtin->ReturnType()->As<core::type::Struct>())) { |
| return false; |
| } |
| |
| { |
| auto l = Line(b); |
| if (!EmitType(l, builtin->ReturnType(), core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "")) { |
| return false; |
| } |
| l << " result;"; |
| } |
| Line(b) << "result.fract = modf(" << params[0] << ", result.whole);"; |
| Line(b) << "return result;"; |
| return true; |
| }); |
| } |
| |
| bool ASTPrinter::EmitFrexpCall(StringStream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| auto* ty = builtin->Parameters()[0]->Type(); |
| auto in = params[0]; |
| |
| std::string width; |
| if (auto* vec = ty->As<core::type::Vector>()) { |
| width = std::to_string(vec->Width()); |
| } |
| |
| // Emit the builtin return type unique to this overload. This does not |
| // exist in the AST, so it will not be generated in Generate(). |
| if (!EmitStructType(&helpers_, builtin->ReturnType()->As<core::type::Struct>())) { |
| return false; |
| } |
| |
| std::string member_type; |
| if (Is<core::type::F16>(ty->DeepestElement())) { |
| member_type = width.empty() ? "float16_t" : ("vector<float16_t, " + width + ">"); |
| } else { |
| member_type = "float" + width; |
| } |
| |
| Line(b) << member_type << " exp;"; |
| Line(b) << member_type << " fract = sign(" << in << ") * frexp(" << in << ", exp);"; |
| { |
| auto l = Line(b); |
| if (!EmitType(l, builtin->ReturnType(), core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "")) { |
| return false; |
| } |
| l << " result = {fract, int" << width << "(exp)};"; |
| } |
| Line(b) << "return result;"; |
| return true; |
| }); |
| } |
| |
| bool ASTPrinter::EmitDegreesCall(StringStream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper(out, expr, builtin, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| Line(b) << "return " << params[0] << " * " << std::setprecision(20) |
| << sem::kRadToDeg << ";"; |
| return true; |
| }); |
| } |
| |
| bool ASTPrinter::EmitRadiansCall(StringStream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper(out, expr, builtin, |
| [&](TextBuffer* b, const std::vector<std::string>& params) { |
| Line(b) << "return " << params[0] << " * " << std::setprecision(20) |
| << sem::kDegToRad << ";"; |
| return true; |
| }); |
| } |
| |
| // The HLSL `sign` method always returns an `int` result (scalar or vector). In WGSL the result is |
| // expected to be the same type as the argument. This injects a cast to the expected WGSL result |
| // type after the call to `sign`. |
| bool ASTPrinter::EmitSignCall(StringStream& out, const sem::Call* call, const sem::Builtin*) { |
| auto* arg = call->Arguments()[0]; |
| if (!EmitType(out, arg->Type(), core::AddressSpace::kUndefined, core::Access::kReadWrite, "")) { |
| return false; |
| } |
| out << "(sign("; |
| if (!EmitExpression(out, arg->Declaration())) { |
| return false; |
| } |
| out << "))"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitQuantizeToF16Call(StringStream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| // Cast to f16 and back |
| std::string width; |
| if (auto* vec = builtin->ReturnType()->As<core::type::Vector>()) { |
| width = std::to_string(vec->Width()); |
| } |
| out << "f16tof32(f32tof16" |
| << "("; |
| if (!EmitExpression(out, expr->args[0])) { |
| return false; |
| } |
| out << "))"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitTruncCall(StringStream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| // HLSL's trunc is broken for very large/small float values. |
| // See crbug.com/tint/1883 |
| return CallBuiltinHelper( // |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| // value < 0 ? ceil(value) : floor(value) |
| Line(b) << "return " << params[0] << " < 0 ? ceil(" << params[0] << ") : floor(" |
| << params[0] << ");"; |
| return true; |
| }); |
| } |
| |
| bool ASTPrinter::EmitDataPackingCall(StringStream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| uint32_t dims = 2; |
| bool is_signed = false; |
| uint32_t scale = 65535; |
| if (builtin->Type() == core::Function::kPack4X8Snorm || |
| builtin->Type() == core::Function::kPack4X8Unorm) { |
| dims = 4; |
| scale = 255; |
| } |
| if (builtin->Type() == core::Function::kPack4X8Snorm || |
| builtin->Type() == core::Function::kPack2X16Snorm) { |
| is_signed = true; |
| scale = (scale - 1) / 2; |
| } |
| switch (builtin->Type()) { |
| case core::Function::kPack4X8Snorm: |
| case core::Function::kPack4X8Unorm: |
| case core::Function::kPack2X16Snorm: |
| case core::Function::kPack2X16Unorm: { |
| { |
| auto l = Line(b); |
| l << (is_signed ? "" : "u") << "int" << dims |
| << " i = " << (is_signed ? "" : "u") << "int" << dims << "(round(clamp(" |
| << params[0] << ", " << (is_signed ? "-1.0" : "0.0") << ", 1.0) * " |
| << scale << ".0))"; |
| if (is_signed) { |
| l << " & " << (dims == 4 ? "0xff" : "0xffff"); |
| } |
| l << ";"; |
| } |
| { |
| auto l = Line(b); |
| l << "return "; |
| if (is_signed) { |
| l << "asuint"; |
| } |
| l << "(i.x | i.y << " << (32 / dims); |
| if (dims == 4) { |
| l << " | i.z << 16 | i.w << 24"; |
| } |
| l << ");"; |
| } |
| break; |
| } |
| case core::Function::kPack2X16Float: { |
| Line(b) << "uint2 i = f32tof16(" << params[0] << ");"; |
| Line(b) << "return i.x | (i.y << 16);"; |
| break; |
| } |
| default: |
| diagnostics_.add_error(diag::System::Writer, |
| "Internal error: unhandled data packing builtin"); |
| return false; |
| } |
| |
| return true; |
| }); |
| } |
| |
| bool ASTPrinter::EmitDataUnpackingCall(StringStream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| uint32_t dims = 2; |
| bool is_signed = false; |
| uint32_t scale = 65535; |
| if (builtin->Type() == core::Function::kUnpack4X8Snorm || |
| builtin->Type() == core::Function::kUnpack4X8Unorm) { |
| dims = 4; |
| scale = 255; |
| } |
| if (builtin->Type() == core::Function::kUnpack4X8Snorm || |
| builtin->Type() == core::Function::kUnpack2X16Snorm) { |
| is_signed = true; |
| scale = (scale - 1) / 2; |
| } |
| switch (builtin->Type()) { |
| case core::Function::kUnpack4X8Snorm: |
| case core::Function::kUnpack2X16Snorm: { |
| Line(b) << "int j = int(" << params[0] << ");"; |
| { // Perform sign extension on the converted values. |
| auto l = Line(b); |
| l << "int" << dims << " i = int" << dims << "("; |
| if (dims == 2) { |
| l << "j << 16, j) >> 16"; |
| } else { |
| l << "j << 24, j << 16, j << 8, j) >> 24"; |
| } |
| l << ";"; |
| } |
| Line(b) << "return clamp(float" << dims << "(i) / " << scale << ".0, " |
| << (is_signed ? "-1.0" : "0.0") << ", 1.0);"; |
| break; |
| } |
| case core::Function::kUnpack4X8Unorm: |
| case core::Function::kUnpack2X16Unorm: { |
| Line(b) << "uint j = " << params[0] << ";"; |
| { |
| auto l = Line(b); |
| l << "uint" << dims << " i = uint" << dims << "("; |
| l << "j & " << (dims == 2 ? "0xffff" : "0xff") << ", "; |
| if (dims == 4) { |
| l << "(j >> " << (32 / dims) << ") & 0xff, (j >> 16) & 0xff, j >> 24"; |
| } else { |
| l << "j >> " << (32 / dims); |
| } |
| l << ");"; |
| } |
| Line(b) << "return float" << dims << "(i) / " << scale << ".0;"; |
| break; |
| } |
| case core::Function::kUnpack2X16Float: |
| Line(b) << "uint i = " << params[0] << ";"; |
| Line(b) << "return f16tof32(uint2(i & 0xffff, i >> 16));"; |
| break; |
| default: |
| diagnostics_.add_error(diag::System::Writer, |
| "Internal error: unhandled data packing builtin"); |
| return false; |
| } |
| |
| return true; |
| }); |
| } |
| |
| bool ASTPrinter::EmitDP4aCall(StringStream& out, |
| const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| // TODO(crbug.com/tint/1497): support the polyfill version of DP4a functions. |
| return CallBuiltinHelper( |
| out, expr, builtin, [&](TextBuffer* b, const std::vector<std::string>& params) { |
| std::string functionName; |
| switch (builtin->Type()) { |
| case core::Function::kDot4I8Packed: |
| Line(b) << "int accumulator = 0;"; |
| functionName = "dot4add_i8packed"; |
| break; |
| case core::Function::kDot4U8Packed: |
| Line(b) << "uint accumulator = 0u;"; |
| functionName = "dot4add_u8packed"; |
| break; |
| default: |
| diagnostics_.add_error(diag::System::Writer, |
| "Internal error: unhandled DP4a builtin"); |
| return false; |
| } |
| Line(b) << "return " << functionName << "(" << params[0] << ", " << params[1] |
| << ", accumulator);"; |
| |
| return true; |
| }); |
| } |
| |
| bool ASTPrinter::EmitBarrierCall(StringStream& out, const sem::Builtin* builtin) { |
| // TODO(crbug.com/tint/661): Combine sequential barriers to a single |
| // instruction. |
| if (builtin->Type() == core::Function::kWorkgroupBarrier) { |
| out << "GroupMemoryBarrierWithGroupSync()"; |
| } else if (builtin->Type() == core::Function::kStorageBarrier) { |
| out << "DeviceMemoryBarrierWithGroupSync()"; |
| } else if (builtin->Type() == core::Function::kTextureBarrier) { |
| out << "DeviceMemoryBarrierWithGroupSync()"; |
| } else { |
| TINT_UNREACHABLE() << "unexpected barrier builtin type " << core::str(builtin->Type()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool ASTPrinter::EmitSubgroupCall(StringStream& out, |
| [[maybe_unused]] const ast::CallExpression* expr, |
| const sem::Builtin* builtin) { |
| if (builtin->Type() == core::Function::kSubgroupBallot) { |
| out << "WaveActiveBallot(true)"; |
| } else { |
| // subgroupBroadcast is already handled in the regular builtin flow. |
| TINT_UNREACHABLE() << "unexpected subgroup builtin type " << core::str(builtin->Type()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool ASTPrinter::EmitTextureOrStorageBufferCallArgExpression(StringStream& out, |
| const ast::Expression* expr) { |
| // TODO(crbug.com/tint/1976): Workaround DXC bug that fails to compile texture/storage function |
| // calls with signed integer splatted constants. DXC fails to convert the coord arg, for e.g. |
| // `0.xxx`, from a vector of 64-bit ints to a vector of 32-bit ints to match the texture load |
| // parameter type. We work around this for now by explicitly casting the splatted constant to |
| // the right type, for e.g. `int3(0.xxx)`. |
| bool emitted_cast = false; |
| if (auto* sem = builder_.Sem().GetVal(expr)) { |
| if (auto* constant = sem->ConstantValue()) { |
| if (auto* splat = constant->As<core::constant::Splat>()) { |
| if (splat->Type()->is_signed_integer_vector()) { |
| if (!EmitType(out, constant->Type(), core::AddressSpace::kUndefined, |
| core::Access::kUndefined, "")) { |
| return false; |
| } |
| out << "("; |
| emitted_cast = true; |
| } |
| } |
| } |
| } |
| if (!EmitExpression(out, expr)) { |
| return false; |
| } |
| if (emitted_cast) { |
| out << ")"; |
| } |
| return true; |
| } |
| |
| bool ASTPrinter::EmitTextureCall(StringStream& out, |
| const sem::Call* call, |
| const sem::Builtin* builtin) { |
| using Usage = core::ParameterUsage; |
| |
| auto& signature = builtin->Signature(); |
| auto* expr = call->Declaration(); |
| auto arguments = expr->args; |
| |
| // Returns the argument with the given usage |
| auto arg = [&](Usage usage) { |
| int idx = signature.IndexOf(usage); |
| return (idx >= 0) ? arguments[static_cast<size_t>(idx)] : nullptr; |
| }; |
| |
| auto* texture = arg(Usage::kTexture); |
| if (TINT_UNLIKELY(!texture)) { |
| TINT_ICE() << "missing texture argument"; |
| return false; |
| } |
| |
| auto* texture_type = TypeOf(texture)->UnwrapRef()->As<core::type::Texture>(); |
| |
| switch (builtin->Type()) { |
| case core::Function::kTextureDimensions: |
| case core::Function::kTextureNumLayers: |
| case core::Function::kTextureNumLevels: |
| case core::Function::kTextureNumSamples: { |
| // All of these builtins use the GetDimensions() method on the texture |
| bool is_ms = texture_type->IsAnyOf<core::type::MultisampledTexture, |
| core::type::DepthMultisampledTexture>(); |
| int num_dimensions = 0; |
| std::string swizzle; |
| |
| switch (builtin->Type()) { |
| case core::Function::kTextureDimensions: |
| switch (texture_type->dim()) { |
| case core::type::TextureDimension::kNone: |
| TINT_ICE() << "texture dimension is kNone"; |
| return false; |
| case core::type::TextureDimension::k1d: |
| num_dimensions = 1; |
| break; |
| case core::type::TextureDimension::k2d: |
| num_dimensions = is_ms ? 3 : 2; |
| swizzle = is_ms ? ".xy" : ""; |
| break; |
| case core::type::TextureDimension::k2dArray: |
| num_dimensions = is_ms ? 4 : 3; |
| swizzle = ".xy"; |
| break; |
| case core::type::TextureDimension::k3d: |
| num_dimensions = 3; |
| break; |
| case core::type::TextureDimension::kCube: |
| num_dimensions = 2; |
| break; |
| case core::type::TextureDimension::kCubeArray: |
| num_dimensions = 3; |
| swizzle = ".xy"; |
| break; |
| } |
| break; |
| case core::Function::kTextureNumLayers: |
| switch (texture_type->dim()) { |
| default: |
| TINT_ICE() << "texture dimension is not arrayed"; |
| return false; |
| case core::type::TextureDimension::k2dArray: |
| num_dimensions = is_ms ? 4 : 3; |
| swizzle = ".z"; |
| break; |
| case core::type::TextureDimension::kCubeArray: |
| num_dimensions = 3; |
| swizzle = ".z"; |
| break; |
| } |
| break; |
| case core::Function::kTextureNumLevels: |
| switch (texture_type->dim()) { |
| default: |
| TINT_ICE() << "texture dimension does not support mips"; |
| return false; |
| case core::type::TextureDimension::k1d: |
| num_dimensions = 2; |
| swizzle = ".y"; |
| break; |
| case core::type::TextureDimension::k2d: |
| case core::type::TextureDimension::kCube: |
| num_dimensions = 3; |
| swizzle = ".z"; |
| break; |
| case core::type::TextureDimension::k2dArray: |
| case core::type::TextureDimension::k3d: |
| case core::type::TextureDimension::kCubeArray: |
| num_dimensions = 4; |
| swizzle = ".w"; |
| break; |
| } |
| break; |
| case core::Function::kTextureNumSamples: |
| switch (texture_type->dim()) { |
| default: |
| TINT_ICE() << "texture dimension does not support multisampling"; |
| return false; |
| case core::type::TextureDimension::k2d: |
| num_dimensions = 3; |
| swizzle = ".z"; |
| break; |
| case core::type::TextureDimension::k2dArray: |
| num_dimensions = 4; |
| swizzle = ".w"; |
| break; |
| } |
| break; |
| default: |
| TINT_ICE() << "unexpected builtin"; |
| return false; |
| } |
| |
| auto* level_arg = arg(Usage::kLevel); |
| |
| if (level_arg) { |
| // `NumberOfLevels` is a non-optional argument if `MipLevel` was passed. |
| // Increment the number of dimensions for the temporary vector to |
| // accommodate this. |
| num_dimensions++; |
| |
| // If the swizzle was empty, the expression will evaluate to the whole |
| // vector. As we've grown the vector by one element, we now need to |
| // swizzle to keep the result expression equivalent. |
| if (swizzle.empty()) { |
| static constexpr const char* swizzles[] = {"", ".x", ".xy", ".xyz"}; |
| swizzle = swizzles[num_dimensions - 1]; |
| } |
| } |
| |
| if (TINT_UNLIKELY(num_dimensions > 4)) { |
| TINT_ICE() << "Texture query builtin temporary vector has " << num_dimensions |
| << " dimensions"; |
| return false; |
| } |
| |
| // Declare a variable to hold the queried texture info |
| auto dims = UniqueIdentifier(kTempNamePrefix); |
| if (num_dimensions == 1) { |
| Line() << "uint " << dims << ";"; |
| } else { |
| Line() << "uint" << num_dimensions << " " << dims << ";"; |
| } |
| |
| { // texture.GetDimensions(...) |
| auto pre = Line(); |
| if (!EmitExpression(pre, texture)) { |
| return false; |
| } |
| pre << ".GetDimensions("; |
| |
| if (level_arg) { |
| if (!EmitExpression(pre, level_arg)) { |
| return false; |
| } |
| pre << ", "; |
| } else if (builtin->Type() == core::Function::kTextureNumLevels) { |
| pre << "0, "; |
| } |
| |
| if (num_dimensions == 1) { |
| pre << dims; |
| } else { |
| static constexpr char xyzw[] = {'x', 'y', 'z', 'w'}; |
| if (TINT_UNLIKELY(num_dimensions < 0 || num_dimensions > 4)) { |
| TINT_ICE() << "vector dimensions are " << num_dimensions; |
| return false; |
| } |
| for (int i = 0; i < num_dimensions; i++) { |
| if (i > 0) { |
| pre << ", "; |
| } |
| pre << dims << "." << xyzw[i]; |
| } |
| } |
| |
| pre << ");"; |
| } |
| |
| // The out parameters of the GetDimensions() call is now in temporary |
| // `dims` variable. This may be packed with other data, so the final |
| // expression may require a swizzle. |
| out << dims << swizzle; |
| return true; |
| } |
| default: |
| break; |
| } |
| |
| if (!EmitExpression(out, texture)) { |
| return false; |
| } |
| |
| // If pack_level_in_coords is true, then the mip level will be appended as the |
| // last value of the coordinates argument. If the WGSL builtin overload does |
| // not have a level parameter and pack_level_in_coords is true, then a zero |
| // mip level will be inserted. |
| bool pack_level_in_coords = false; |
| |
| uint32_t hlsl_ret_width = 4u; |
| |
| switch (builtin->Type()) { |
| case core::Function::kTextureSample: |
| out << ".Sample("; |
| break; |
| case core::Function::kTextureSampleBias: |
| out << ".SampleBias("; |
| break; |
| case core::Function::kTextureSampleLevel: |
| out << ".SampleLevel("; |
| break; |
| case core::Function::kTextureSampleGrad: |
| out << ".SampleGrad("; |
| break; |
| case core::Function::kTextureSampleCompare: |
| out << ".SampleCmp("; |
| hlsl_ret_width = 1; |
| break; |
| case core::Function::kTextureSampleCompareLevel: |
| out << ".SampleCmpLevelZero("; |
| hlsl_ret_width = 1; |
| break; |
| case core::Function::kTextureLoad: |
| out << ".Load("; |
| // Multisampled textures do not support mip-levels. |
| if (!texture_type->Is<core::type::MultisampledTexture>()) { |
| pack_level_in_coords = true; |
| } |
| break; |
| case core::Function::kTextureGather: |
| out << ".Gather"; |
| if (builtin->Parameters()[0]->Usage() == core::ParameterUsage::kComponent) { |
| switch (call->Arguments()[0]->ConstantValue()->ValueAs<AInt>()) { |
| case 0: |
| out << "Red"; |
| break; |
| case 1: |
| out << "Green"; |
| break; |
| case 2: |
| out << "Blue"; |
| break; |
| case 3: |
| out << "Alpha"; |
| break; |
| } |
| } |
| out << "("; |
| break; |
| case core::Function::kTextureGatherCompare: |
| out << ".GatherCmp("; |
| break; |
| case core::Function::kTextureStore: |
| out << "["; |
| break; |
| default: |
| diagnostics_.add_error(diag::System::Writer, |
| "Internal compiler error: Unhandled texture builtin '" + |
| std::string(builtin->str()) + "'"); |
| return false; |
| } |
| |
| if (auto* sampler = arg(Usage::kSampler)) { |
| if (!EmitExpression(out, sampler)) { |
| return false; |
| } |
| out << ", "; |
| } |
| |
| auto* param_coords = arg(Usage::kCoords); |
| if (TINT_UNLIKELY(!param_coords)) { |
| TINT_ICE() << "missing coords argument"; |
| return false; |
| } |
| |
| auto emit_vector_appended_with_i32_zero = [&](const ast::Expression* vector) { |
| auto* i32 = builder_.create<core::type::I32>(); |
| auto* zero = builder_.Expr(0_i); |
| auto* stmt = builder_.Sem().Get(vector)->Stmt(); |
| builder_.Sem().Add(zero, builder_.create<sem::ValueExpression>( |
| zero, i32, core::EvaluationStage::kRuntime, stmt, |
| /* constant_value */ nullptr, |
| /* has_side_effects */ false)); |
| auto* packed = tint::writer::AppendVector(&builder_, vector, zero); |
| return EmitExpression(out, packed->Declaration()); |
| }; |
| |
| auto emit_vector_appended_with_level = [&](const ast::Expression* vector) { |
| if (auto* level = arg(Usage::kLevel)) { |
| auto* packed = tint::writer::AppendVector(&builder_, vector, level); |
| return EmitExpression(out, packed->Declaration()); |
| } |
| return emit_vector_appended_with_i32_zero(vector); |
| }; |
| |
| if (auto* array_index = arg(Usage::kArrayIndex)) { |
| // Array index needs to be appended to the coordinates. |
| auto* packed = tint::writer::AppendVector(&builder_, param_coords, array_index); |
| if (pack_level_in_coords) { |
| // Then mip level needs to be appended to the coordinates. |
| if (!emit_vector_appended_with_level(packed->Declaration())) { |
| return false; |
| } |
| } else { |
| if (!EmitExpression(out, packed->Declaration())) { |
| return false; |
| } |
| } |
| } else if (pack_level_in_coords) { |
| // Mip level needs to be appended to the coordinates. |
| if (!emit_vector_appended_with_level(param_coords)) { |
| return false; |
| } |
| } else if (builtin->Type() == core::Function::kTextureStore) { |
| // param_coords is an index expression, not a function arg |
| if (!EmitExpression(out, param_coords)) { |
| return false; |
| } |
| } else if (!EmitTextureOrStorageBufferCallArgExpression(out, param_coords)) { |
| return false; |
| } |
| |
| for (auto usage : {Usage::kDepthRef, Usage::kBias, Usage::kLevel, Usage::kDdx, Usage::kDdy, |
| Usage::kSampleIndex, Usage::kOffset}) { |
| if (usage == Usage::kLevel && pack_level_in_coords) { |
| continue; // mip level already packed in coordinates. |
| } |
| if (auto* e = arg(usage)) { |
| out << ", "; |
| if (!EmitTextureOrStorageBufferCallArgExpression(out, e)) { |
| return false; |
| } |
| } |
| } |
| |
| if (builtin->Type() == core::Function::kTextureStore) { |
| out << "] = "; |
| if (!EmitExpression(out, arg(Usage::kValue))) { |
| return false; |
| } |
| } else { |
| out << ")"; |
| |
| // If the builtin return type does not match the number of elements of the |
| // HLSL builtin, we need to swizzle the expression to generate the correct |
| // number of components. |
| uint32_t wgsl_ret_width = 1; |
| if (auto* vec = builtin->ReturnType()->As<core::type::Vector>()) { |
| wgsl_ret_width = vec->Width(); |
| } |
| if (wgsl_ret_width < hlsl_ret_width) { |
| out << "."; |
| for (uint32_t i = 0; i < wgsl_ret_width; i++) { |
| out << "xyz"[i]; |
| } |
| } |
| if (TINT_UNLIKELY(wgsl_ret_width > hlsl_ret_width)) { |
| TINT_ICE() << "WGSL return width (" << wgsl_ret_width |
| << ") is wider than HLSL return width (" << hlsl_ret_width << ") for " |
| << builtin->Type(); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| std::string ASTPrinter::generate_builtin_name(const sem::Builtin* builtin) { |
| switch (builtin->Type()) { |
| case core::Function::kAbs: |
| case core::Function::kAcos: |
| case core::Function::kAll: |
| case core::Function::kAny: |
| case core::Function::kAsin: |
| case core::Function::kAtan: |
| case core::Function::kAtan2: |
| case core::Function::kCeil: |
| case core::Function::kClamp: |
| case core::Function::kCos: |
| case core::Function::kCosh: |
| case core::Function::kCross: |
| case core::Function::kDeterminant: |
| case core::Function::kDistance: |
| case core::Function::kDot: |
| case core::Function::kExp: |
| case core::Function::kExp2: |
| case core::Function::kFloor: |
| case core::Function::kFrexp: |
| case core::Function::kLdexp: |
| case core::Function::kLength: |
| case core::Function::kLog: |
| case core::Function::kLog2: |
| case core::Function::kMax: |
| case core::Function::kMin: |
| case core::Function::kModf: |
| case core::Function::kNormalize: |
| case core::Function::kPow: |
| case core::Function::kReflect: |
| case core::Function::kRefract: |
| case core::Function::kRound: |
| case core::Function::kSaturate: |
| case core::Function::kSin: |
| case core::Function::kSinh: |
| case core::Function::kSqrt: |
| case core::Function::kStep: |
| case core::Function::kTan: |
| case core::Function::kTanh: |
| case core::Function::kTranspose: |
| return builtin->str(); |
| case core::Function::kCountOneBits: // uint |
| return "countbits"; |
| case core::Function::kDpdx: |
| return "ddx"; |
| case core::Function::kDpdxCoarse: |
| return "ddx_coarse"; |
| case core::Function::kDpdxFine: |
| return "ddx_fine"; |
| case core::Function::kDpdy: |
| return "ddy"; |
| case core::Function::kDpdyCoarse: |
| return "ddy_coarse"; |
| case core::Function::kDpdyFine: |
| return "ddy_fine"; |
| case core::Function::kFaceForward: |
| return "faceforward"; |
| case core::Function::kFract: |
| return "frac"; |
| case core::Function::kFma: |
| return "mad"; |
| case core::Function::kFwidth: |
| case core::Function::kFwidthCoarse: |
| case core::Function::kFwidthFine: |
| return "fwidth"; |
| case core::Function::kInverseSqrt: |
| return "rsqrt"; |
| case core::Function::kMix: |
| return "lerp"; |
| case core::Function::kReverseBits: // uint |
| return "reversebits"; |
| case core::Function::kSmoothstep: |
| return "smoothstep"; |
| case core::Function::kSubgroupBroadcast: |
| return "WaveReadLaneAt"; |
| default: |
| diagnostics_.add_error(diag::System::Writer, |
| "Unknown builtin method: " + std::string(builtin->str())); |
| } |
| |
| return ""; |
| } |
| |
| bool ASTPrinter::EmitCase(const ast::SwitchStatement* s, size_t case_idx) { |
| auto* stmt = s->body[case_idx]; |
| auto* sem = builder_.Sem().Get<sem::CaseStatement>(stmt); |
| for (auto* selector : sem->Selectors()) { |
| auto out = Line(); |
| if (selector->IsDefault()) { |
| out << "default"; |
| } else { |
| out << "case "; |
| if (!EmitConstant(out, selector->Value(), /* is_variable_initializer */ false)) { |
| return false; |
| } |
| } |
| out << ":"; |
| if (selector == sem->Selectors().back()) { |
| out << " {"; |
| } |
| } |
| |
| IncrementIndent(); |
| TINT_DEFER({ |
| DecrementIndent(); |
| Line() << "}"; |
| }); |
| |
| // Emit the case statement |
| if (!EmitStatements(stmt->body->statements)) { |
| return false; |
| } |
| |
| if (!tint::IsAnyOf<ast::BreakStatement>(stmt->body->Last())) { |
| Line() << "break;"; |
| } |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitContinue(const ast::ContinueStatement*) { |
| if (!emit_continuing_ || !emit_continuing_()) { |
| return false; |
| } |
| Line() << "continue;"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitDiscard(const ast::DiscardStatement*) { |
| // TODO(dsinclair): Verify this is correct when the discard semantics are |
| // defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361) |
| Line() << "discard;"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitExpression(StringStream& out, const ast::Expression* expr) { |
| if (auto* sem = builder_.Sem().GetVal(expr)) { |
| if (auto* constant = sem->ConstantValue()) { |
| bool is_variable_initializer = false; |
| if (auto* stmt = sem->Stmt()) { |
| if (auto* decl = As<ast::VariableDeclStatement>(stmt->Declaration())) { |
| is_variable_initializer = decl->variable->initializer == expr; |
| } |
| } |
| return EmitConstant(out, constant, is_variable_initializer); |
| } |
| } |
| return Switch( |
| expr, // |
| [&](const ast::IndexAccessorExpression* a) { return EmitIndexAccessor(out, a); }, |
| [&](const ast::BinaryExpression* b) { return EmitBinary(out, b); }, |
| [&](const ast::BitcastExpression* b) { return EmitBitcast(out, b); }, |
| [&](const ast::CallExpression* c) { return EmitCall(out, c); }, |
| [&](const ast::IdentifierExpression* i) { return EmitIdentifier(out, i); }, |
| [&](const ast::LiteralExpression* l) { return EmitLiteral(out, l); }, |
| [&](const ast::MemberAccessorExpression* m) { return EmitMemberAccessor(out, m); }, |
| [&](const ast::UnaryOpExpression* u) { return EmitUnaryOp(out, u); }, |
| [&](Default) { |
| diagnostics_.add_error(diag::System::Writer, "unknown expression type: " + |
| std::string(expr->TypeInfo().name)); |
| return false; |
| }); |
| } |
| |
| bool ASTPrinter::EmitIdentifier(StringStream& out, const ast::IdentifierExpression* expr) { |
| out << expr->identifier->symbol.Name(); |
| return true; |
| } |
| |
| bool ASTPrinter::EmitIf(const ast::IfStatement* stmt) { |
| { |
| auto out = Line(); |
| out << "if ("; |
| if (!EmitExpression(out, stmt->condition)) { |
| return false; |
| } |
| out << ") {"; |
| } |
| |
| if (!EmitStatementsWithIndent(stmt->body->statements)) { |
| return false; |
| } |
| |
| if (stmt->else_statement) { |
| Line() << "} else {"; |
| if (auto* block = stmt->else_statement->As<ast::BlockStatement>()) { |
| if (!EmitStatementsWithIndent(block->statements)) { |
| return false; |
| } |
| } else { |
| if (!EmitStatementsWithIndent(Vector{stmt->else_statement})) { |
| return false; |
| } |
| } |
| } |
| Line() << "}"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitFunction(const ast::Function* func) { |
| auto* sem = builder_.Sem().Get(func); |
| |
| // Emit storage atomic helpers |
| if (auto* intrinsic = ast::GetAttribute<DecomposeMemoryAccess::Intrinsic>(func->attributes)) { |
| if (intrinsic->address_space == core::AddressSpace::kStorage && intrinsic->IsAtomic()) { |
| if (!EmitStorageAtomicIntrinsic(func, intrinsic)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| if (ast::HasAttribute<ast::InternalAttribute>(func->attributes)) { |
| // An internal function. Do not emit. |
| return true; |
| } |
| |
| { |
| auto out = Line(); |
| auto name = func->name->symbol.Name(); |
| // If the function returns an array, then we need to declare a typedef for |
| // this. |
| if (sem->ReturnType()->Is<core::type::Array>()) { |
| auto typedef_name = UniqueIdentifier(name + "_ret"); |
| auto pre = Line(); |
| pre << "typedef "; |
| if (!EmitTypeAndName(pre, sem->ReturnType(), core::AddressSpace::kUndefined, |
| core::Access::kReadWrite, typedef_name)) { |
| return false; |
| } |
| pre << ";"; |
| out << typedef_name; |
| } else { |
| if (!EmitType(out, sem->ReturnType(), core::AddressSpace::kUndefined, |
| core::Access::kReadWrite, "")) { |
| return false; |
| } |
| } |
| |
| out << " " << name << "("; |
| |
| bool first = true; |
| |
| for (auto* v : sem->Parameters()) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| auto const* type = v->Type(); |
| auto address_space = core::AddressSpace::kUndefined; |
| auto access = core::Access::kUndefined; |
| |
| if (auto* ptr = type->As<core::type::Pointer>()) { |
| type = ptr->StoreType(); |
| switch (ptr->AddressSpace()) { |
| case core::AddressSpace::kStorage: |
| case core::AddressSpace::kUniform: |
| // Not allowed by WGSL, but is used by certain transforms (e.g. DMA) to pass |
| // storage buffers and uniform buffers down into transform-generated |
| // functions. In this situation we want to generate the parameter without an |
| // 'inout', using the address space and access from the pointer. |
| address_space = ptr->AddressSpace(); |
| access = ptr->Access(); |
| break; |
| default: |
| // Transform regular WGSL pointer parameters in to `inout` parameters. |
| out << "inout "; |
| } |
| } |
| |
| // Note: WGSL only allows for AddressSpace::kUndefined on parameters, however |
| // the sanitizer transforms generates load / store functions for storage |
| // or uniform buffers. These functions have a buffer parameter with |
| // AddressSpace::kStorage or AddressSpace::kUniform. This is required to |
| // correctly translate the parameter to a [RW]ByteAddressBuffer for |
| // storage buffers and a uint4[N] for uniform buffers. |
| if (!EmitTypeAndName(out, type, address_space, access, |
| v->Declaration()->name->symbol.Name())) { |
| return false; |
| } |
| } |
| out << ") {"; |
| } |
| |
| if (sem->DiscardStatement() && !sem->ReturnType()->Is<core::type::Void>()) { |
| // BUG(crbug.com/tint/1081): work around non-void functions with discard |
| // failing compilation sometimes |
| if (!EmitFunctionBodyWithDiscard(func)) { |
| return false; |
| } |
| } else { |
| if (!EmitStatementsWithIndent(func->body->statements)) { |
| return false; |
| } |
| } |
| |
| Line() << "}"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitFunctionBodyWithDiscard(const ast::Function* func) { |
| // FXC sometimes fails to compile functions that discard with 'Not all control |
| // paths return a value'. We work around this by wrapping the function body |
| // within an "if (true) { <body> } return <default return type obj>;" so that |
| // there is always an (unused) return statement. |
| |
| auto* sem = builder_.Sem().Get(func); |
| TINT_ASSERT(sem->DiscardStatement() && !sem->ReturnType()->Is<core::type::Void>()); |
| |
| ScopedIndent si(this); |
| Line() << "if (true) {"; |
| |
| if (!EmitStatementsWithIndent(func->body->statements)) { |
| return false; |
| } |
| |
| Line() << "}"; |
| |
| // Return an unused result that matches the type of the return value |
| auto name = builder_.Symbols().New("unused").Name(); |
| { |
| auto out = Line(); |
| if (!EmitTypeAndName(out, sem->ReturnType(), core::AddressSpace::kUndefined, |
| core::Access::kReadWrite, name)) { |
| return false; |
| } |
| out << ";"; |
| } |
| Line() << "return " << name << ";"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitGlobalVariable(const ast::Variable* global) { |
| return Switch( |
| global, // |
| [&](const ast::Var* var) { |
| auto* sem = builder_.Sem().Get(global); |
| switch (sem->AddressSpace()) { |
| case core::AddressSpace::kUniform: |
| return EmitUniformVariable(var, sem); |
| case core::AddressSpace::kStorage: |
| return EmitStorageVariable(var, sem); |
| case core::AddressSpace::kHandle: |
| return EmitHandleVariable(var, sem); |
| case core::AddressSpace::kPrivate: |
| return EmitPrivateVariable(sem); |
| case core::AddressSpace::kWorkgroup: |
| return EmitWorkgroupVariable(sem); |
| case core::AddressSpace::kPushConstant: |
| diagnostics_.add_error( |
| diag::System::Writer, |
| "unhandled address space " + tint::ToString(sem->AddressSpace())); |
| return false; |
| default: { |
| TINT_ICE() << "unhandled address space " << sem->AddressSpace(); |
| return false; |
| } |
| } |
| }, |
| [&](const ast::Override*) { |
| // Override is removed with SubstituteOverride |
| diagnostics_.add_error(diag::System::Writer, |
| "override-expressions should have been removed with the " |
| "SubstituteOverride transform"); |
| return false; |
| }, |
| [&](const ast::Const*) { |
| return true; // Constants are embedded at their use |
| }, |
| [&](Default) { |
| TINT_ICE() << "unhandled global variable type " << global->TypeInfo().name; |
| |
| return false; |
| }); |
| } |
| |
| bool ASTPrinter::EmitUniformVariable(const ast::Var* var, const sem::Variable* sem) { |
| auto binding_point = *sem->As<sem::GlobalVariable>()->BindingPoint(); |
| auto* type = sem->Type()->UnwrapRef(); |
| auto name = var->name->symbol.Name(); |
| Line() << "cbuffer cbuffer_" << name << RegisterAndSpace('b', binding_point) << " {"; |
| |
| { |
| ScopedIndent si(this); |
| auto out = Line(); |
| if (!EmitTypeAndName(out, type, core::AddressSpace::kUniform, sem->Access(), name)) { |
| return false; |
| } |
| out << ";"; |
| } |
| |
| Line() << "};"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitStorageVariable(const ast::Var* var, const sem::Variable* sem) { |
| auto* type = sem->Type()->UnwrapRef(); |
| auto out = Line(); |
| if (!EmitTypeAndName(out, type, core::AddressSpace::kStorage, sem->Access(), |
| var->name->symbol.Name())) { |
| return false; |
| } |
| |
| auto* global_sem = sem->As<sem::GlobalVariable>(); |
| out << RegisterAndSpace(sem->Access() == core::Access::kRead ? 't' : 'u', |
| *global_sem->BindingPoint()) |
| << ";"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitHandleVariable(const ast::Var* var, const sem::Variable* sem) { |
| auto* unwrapped_type = sem->Type()->UnwrapRef(); |
| auto out = Line(); |
| |
| auto name = var->name->symbol.Name(); |
| auto* type = sem->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(out, type, sem->AddressSpace(), sem->Access(), name)) { |
| return false; |
| } |
| |
| const char* register_space = nullptr; |
| |
| if (unwrapped_type->Is<core::type::Texture>()) { |
| register_space = "t"; |
| if (auto* st = unwrapped_type->As<core::type::StorageTexture>(); |
| st && st->access() != core::Access::kRead) { |
| register_space = "u"; |
| } |
| } else if (unwrapped_type->Is<core::type::Sampler>()) { |
| register_space = "s"; |
| } |
| |
| if (register_space) { |
| auto bp = sem->As<sem::GlobalVariable>()->BindingPoint(); |
| out << " : register(" << register_space << bp->binding; |
| // Omit the space if it's 0, as it's the default. |
| // SM 5.0 doesn't support spaces, so we don't emit them if group is 0 for better |
| // compatibility. |
| if (bp->group == 0) { |
| out << ")"; |
| } else { |
| out << ", space" << bp->group << ")"; |
| } |
| } |
| |
| out << ";"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitPrivateVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto out = Line(); |
| |
| out << "static "; |
| |
| auto name = decl->name->symbol.Name(); |
| auto* type = var->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(out, type, var->AddressSpace(), var->Access(), name)) { |
| return false; |
| } |
| |
| out << " = "; |
| if (auto* initializer = decl->initializer) { |
| if (!EmitExpression(out, initializer)) { |
| return false; |
| } |
| } else { |
| if (!EmitZeroValue(out, var->Type()->UnwrapRef())) { |
| return false; |
| } |
| } |
| |
| out << ";"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitWorkgroupVariable(const sem::Variable* var) { |
| auto* decl = var->Declaration(); |
| auto out = Line(); |
| |
| out << "groupshared "; |
| |
| auto name = decl->name->symbol.Name(); |
| auto* type = var->Type()->UnwrapRef(); |
| if (!EmitTypeAndName(out, type, var->AddressSpace(), var->Access(), name)) { |
| return false; |
| } |
| |
| if (auto* initializer = decl->initializer) { |
| out << " = "; |
| if (!EmitExpression(out, initializer)) { |
| return false; |
| } |
| } |
| |
| out << ";"; |
| return true; |
| } |
| |
| std::string ASTPrinter::builtin_to_attribute(core::BuiltinValue builtin) const { |
| switch (builtin) { |
| case core::BuiltinValue::kPosition: |
| return "SV_Position"; |
| case core::BuiltinValue::kVertexIndex: |
| return "SV_VertexID"; |
| case core::BuiltinValue::kInstanceIndex: |
| return "SV_InstanceID"; |
| case core::BuiltinValue::kFrontFacing: |
| return "SV_IsFrontFace"; |
| case core::BuiltinValue::kFragDepth: |
| return "SV_Depth"; |
| case core::BuiltinValue::kLocalInvocationId: |
| return "SV_GroupThreadID"; |
| case core::BuiltinValue::kLocalInvocationIndex: |
| return "SV_GroupIndex"; |
| case core::BuiltinValue::kGlobalInvocationId: |
| return "SV_DispatchThreadID"; |
| case core::BuiltinValue::kWorkgroupId: |
| return "SV_GroupID"; |
| case core::BuiltinValue::kSampleIndex: |
| return "SV_SampleIndex"; |
| case core::BuiltinValue::kSampleMask: |
| return "SV_Coverage"; |
| default: |
| break; |
| } |
| return ""; |
| } |
| |
| std::string ASTPrinter::interpolation_to_modifiers(core::InterpolationType type, |
| core::InterpolationSampling sampling) const { |
| std::string modifiers; |
| switch (type) { |
| case core::InterpolationType::kPerspective: |
| modifiers += "linear "; |
| break; |
| case core::InterpolationType::kLinear: |
| modifiers += "noperspective "; |
| break; |
| case core::InterpolationType::kFlat: |
| modifiers += "nointerpolation "; |
| break; |
| case core::InterpolationType::kUndefined: |
| break; |
| } |
| switch (sampling) { |
| case core::InterpolationSampling::kCentroid: |
| modifiers += "centroid "; |
| break; |
| case core::InterpolationSampling::kSample: |
| modifiers += "sample "; |
| break; |
| case core::InterpolationSampling::kCenter: |
| case core::InterpolationSampling::kUndefined: |
| break; |
| } |
| return modifiers; |
| } |
| |
| bool ASTPrinter::EmitEntryPointFunction(const ast::Function* func) { |
| auto* func_sem = builder_.Sem().Get(func); |
| |
| { |
| auto out = Line(); |
| if (func->PipelineStage() == ast::PipelineStage::kCompute) { |
| // Emit the workgroup_size attribute. |
| auto wgsize = func_sem->WorkgroupSize(); |
| out << "[numthreads("; |
| for (size_t i = 0; i < 3; i++) { |
| if (i > 0) { |
| out << ", "; |
| } |
| if (!wgsize[i].has_value()) { |
| diagnostics_.add_error( |
| diag::System::Writer, |
| "override-expressions should have been removed with the SubstituteOverride " |
| "transform"); |
| return false; |
| } |
| out << std::to_string(wgsize[i].value()); |
| } |
| out << ")]" << std::endl; |
| } |
| |
| if (!EmitTypeAndName(out, func_sem->ReturnType(), core::AddressSpace::kUndefined, |
| core::Access::kUndefined, func->name->symbol.Name())) { |
| return false; |
| } |
| out << "("; |
| |
| bool first = true; |
| |
| // Emit entry point parameters. |
| for (auto* var : func->params) { |
| auto* sem = builder_.Sem().Get(var); |
| auto* type = sem->Type(); |
| if (TINT_UNLIKELY(!type->Is<core::type::Struct>())) { |
| // ICE likely indicates that the CanonicalizeEntryPointIO transform was |
| // not run, or a builtin parameter was added after it was run. |
| TINT_ICE() << "Unsupported non-struct entry point parameter"; |
| } |
| |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| |
| if (!EmitTypeAndName(out, type, sem->AddressSpace(), sem->Access(), |
| var->name->symbol.Name())) { |
| return false; |
| } |
| } |
| |
| out << ") {"; |
| } |
| |
| { |
| ScopedIndent si(this); |
| |
| if (!EmitStatements(func->body->statements)) { |
| return false; |
| } |
| |
| if (!Is<ast::ReturnStatement>(func->body->Last())) { |
| ast::ReturnStatement ret(GenerationID(), ast::NodeID{}, Source{}); |
| if (!EmitStatement(&ret)) { |
| return false; |
| } |
| } |
| } |
| |
| Line() << "}"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitConstant(StringStream& out, |
| const core::constant::Value* constant, |
| bool is_variable_initializer) { |
| return Switch( |
| constant->Type(), // |
| [&](const core::type::Bool*) { |
| out << (constant->ValueAs<AInt>() ? "true" : "false"); |
| return true; |
| }, |
| [&](const core::type::F32*) { |
| PrintF32(out, constant->ValueAs<f32>()); |
| return true; |
| }, |
| [&](const core::type::F16*) { |
| // emit a f16 scalar with explicit float16_t type declaration. |
| out << "float16_t("; |
| PrintF16(out, constant->ValueAs<f16>()); |
| out << ")"; |
| return true; |
| }, |
| [&](const core::type::I32*) { |
| out << constant->ValueAs<AInt>(); |
| return true; |
| }, |
| [&](const core::type::U32*) { |
| out << constant->ValueAs<AInt>() << "u"; |
| return true; |
| }, |
| [&](const core::type::Vector* v) { |
| if (auto* splat = constant->As<core::constant::Splat>()) { |
| { |
| ScopedParen sp(out); |
| if (!EmitConstant(out, splat->el, is_variable_initializer)) { |
| return false; |
| } |
| } |
| out << "."; |
| for (size_t i = 0; i < v->Width(); i++) { |
| out << "x"; |
| } |
| return true; |
| } |
| |
| if (!EmitType(out, v, core::AddressSpace::kUndefined, core::Access::kUndefined, "")) { |
| return false; |
| } |
| |
| ScopedParen sp(out); |
| |
| for (size_t i = 0; i < v->Width(); i++) { |
| if (i > 0) { |
| out << ", "; |
| } |
| if (!EmitConstant(out, constant->Index(i), is_variable_initializer)) { |
| return false; |
| } |
| } |
| return true; |
| }, |
| [&](const core::type::Matrix* m) { |
| if (!EmitType(out, m, core::AddressSpace::kUndefined, core::Access::kUndefined, "")) { |
| return false; |
| } |
| |
| ScopedParen sp(out); |
| |
| for (size_t i = 0; i < m->columns(); i++) { |
| if (i > 0) { |
| out << ", "; |
| } |
| if (!EmitConstant(out, constant->Index(i), is_variable_initializer)) { |
| return false; |
| } |
| } |
| return true; |
| }, |
| [&](const core::type::Array* a) { |
| if (constant->AllZero()) { |
| out << "("; |
| if (!EmitType(out, a, core::AddressSpace::kUndefined, core::Access::kUndefined, |
| "")) { |
| return false; |
| } |
| out << ")0"; |
| return true; |
| } |
| |
| out << "{"; |
| TINT_DEFER(out << "}"); |
| |
| auto count = a->ConstantCount(); |
| if (!count) { |
| diagnostics_.add_error(diag::System::Writer, |
| core::type::Array::kErrExpectedConstantCount); |
| return false; |
| } |
| |
| for (size_t i = 0; i < count; i++) { |
| if (i > 0) { |
| out << ", "; |
| } |
| if (!EmitConstant(out, constant->Index(i), is_variable_initializer)) { |
| return false; |
| } |
| } |
| |
| return true; |
| }, |
| [&](const core::type::Struct* s) { |
| if (!EmitStructType(&helpers_, s)) { |
| return false; |
| } |
| |
| if (constant->AllZero()) { |
| out << "(" << StructName(s) << ")0"; |
| return true; |
| } |
| |
| auto emit_member_values = [&](StringStream& o) { |
| o << "{"; |
| for (size_t i = 0; i < s->Members().Length(); i++) { |
| if (i > 0) { |
| o << ", "; |
| } |
| if (!EmitConstant(o, constant->Index(i), is_variable_initializer)) { |
| return false; |
| } |
| } |
| o << "}"; |
| return true; |
| }; |
| |
| if (is_variable_initializer) { |
| if (!emit_member_values(out)) { |
| return false; |
| } |
| } else { |
| // HLSL requires structure initializers to be assigned directly to a variable. |
| auto name = UniqueIdentifier("c"); |
| { |
| auto decl = Line(); |
| decl << "const " << StructName(s) << " " << name << " = "; |
| if (!emit_member_values(decl)) { |
| return false; |
| } |
| decl << ";"; |
| } |
| out << name; |
| } |
| |
| return true; |
| }, |
| [&](Default) { |
| diagnostics_.add_error(diag::System::Writer, |
| "unhandled constant type: " + constant->Type()->FriendlyName()); |
| return false; |
| }); |
| } |
| |
| bool ASTPrinter::EmitLiteral(StringStream& out, const ast::LiteralExpression* lit) { |
| return Switch( |
| lit, |
| [&](const ast::BoolLiteralExpression* l) { |
| out << (l->value ? "true" : "false"); |
| return true; |
| }, |
| [&](const ast::FloatLiteralExpression* l) { |
| if (l->suffix == ast::FloatLiteralExpression::Suffix::kH) { |
| // Emit f16 literal with explicit float16_t type declaration. |
| out << "float16_t("; |
| PrintF16(out, static_cast<float>(l->value)); |
| out << ")"; |
| } |
| PrintF32(out, static_cast<float>(l->value)); |
| return true; |
| }, |
| [&](const ast::IntLiteralExpression* i) { |
| out << i->value; |
| switch (i->suffix) { |
| case ast::IntLiteralExpression::Suffix::kNone: |
| case ast::IntLiteralExpression::Suffix::kI: |
| return true; |
| case ast::IntLiteralExpression::Suffix::kU: |
| out << "u"; |
| return true; |
| } |
| diagnostics_.add_error(diag::System::Writer, "unknown integer literal suffix type"); |
| return false; |
| }, |
| [&](Default) { |
| diagnostics_.add_error(diag::System::Writer, "unknown literal type"); |
| return false; |
| }); |
| } |
| |
| bool ASTPrinter::EmitValue(StringStream& out, const core::type::Type* type, int value) { |
| return Switch( |
| type, |
| [&](const core::type::Bool*) { |
| out << (value == 0 ? "false" : "true"); |
| return true; |
| }, |
| [&](const core::type::F32*) { |
| out << value << ".0f"; |
| return true; |
| }, |
| [&](const core::type::F16*) { |
| out << "float16_t(" << value << ".0h)"; |
| return true; |
| }, |
| [&](const core::type::I32*) { |
| out << value; |
| return true; |
| }, |
| [&](const core::type::U32*) { |
| out << value << "u"; |
| return true; |
| }, |
| [&](const core::type::Vector* vec) { |
| if (!EmitType(out, type, core::AddressSpace::kUndefined, core::Access::kReadWrite, |
| "")) { |
| return false; |
| } |
| ScopedParen sp(out); |
| for (uint32_t i = 0; i < vec->Width(); i++) { |
| if (i != 0) { |
| out << ", "; |
| } |
| if (!EmitValue(out, vec->type(), value)) { |
| return false; |
| } |
| } |
| return true; |
| }, |
| [&](const core::type::Matrix* mat) { |
| if (!EmitType(out, type, core::AddressSpace::kUndefined, core::Access::kReadWrite, |
| "")) { |
| return false; |
| } |
| ScopedParen sp(out); |
| for (uint32_t i = 0; i < (mat->rows() * mat->columns()); i++) { |
| if (i != 0) { |
| out << ", "; |
| } |
| if (!EmitValue(out, mat->type(), value)) { |
| return false; |
| } |
| } |
| return true; |
| }, |
| [&](const core::type::Struct*) { |
| out << "("; |
| TINT_DEFER(out << ")" << value); |
| return EmitType(out, type, core::AddressSpace::kUndefined, core::Access::kUndefined, |
| ""); |
| }, |
| [&](const core::type::Array*) { |
| out << "("; |
| TINT_DEFER(out << ")" << value); |
| return EmitType(out, type, core::AddressSpace::kUndefined, core::Access::kUndefined, |
| ""); |
| }, |
| [&](Default) { |
| diagnostics_.add_error(diag::System::Writer, |
| "Invalid type for value emission: " + type->FriendlyName()); |
| return false; |
| }); |
| } |
| |
| bool ASTPrinter::EmitZeroValue(StringStream& out, const core::type::Type* type) { |
| return EmitValue(out, type, 0); |
| } |
| |
| bool ASTPrinter::EmitLoop(const ast::LoopStatement* stmt) { |
| auto emit_continuing = [this, stmt] { |
| if (stmt->continuing && !stmt->continuing->Empty()) { |
| if (!EmitBlock(stmt->continuing)) { |
| return false; |
| } |
| } |
| return true; |
| }; |
| |
| TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); |
| Line() << "while (true) {"; |
| { |
| ScopedIndent si(this); |
| if (!EmitStatements(stmt->body->statements)) { |
| return false; |
| } |
| if (!emit_continuing_()) { |
| return false; |
| } |
| } |
| Line() << "}"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitForLoop(const ast::ForLoopStatement* stmt) { |
| // Nest a for loop with a new block. In HLSL the initializer scope is not |
| // nested by the for-loop, so we may get variable redefinitions. |
| Line() << "{"; |
| IncrementIndent(); |
| TINT_DEFER({ |
| DecrementIndent(); |
| Line() << "}"; |
| }); |
| |
| TextBuffer init_buf; |
| if (auto* init = stmt->initializer) { |
| TINT_SCOPED_ASSIGNMENT(current_buffer_, &init_buf); |
| if (!EmitStatement(init)) { |
| return false; |
| } |
| } |
| |
| TextBuffer cond_pre; |
| StringStream cond_buf; |
| if (auto* cond = stmt->condition) { |
| TINT_SCOPED_ASSIGNMENT(current_buffer_, &cond_pre); |
| if (!EmitExpression(cond_buf, cond)) { |
| return false; |
| } |
| } |
| |
| TextBuffer cont_buf; |
| if (auto* cont = stmt->continuing) { |
| TINT_SCOPED_ASSIGNMENT(current_buffer_, &cont_buf); |
| if (!EmitStatement(cont)) { |
| return false; |
| } |
| } |
| |
| // If the for-loop has a multi-statement conditional and / or continuing, then |
| // we cannot emit this as a regular for-loop in HLSL. Instead we need to |
| // generate a `while(true)` loop. |
| bool emit_as_loop = cond_pre.lines.size() > 0 || cont_buf.lines.size() > 1; |
| |
| // If the for-loop has multi-statement initializer, or is going to be emitted |
| // as a `while(true)` loop, then declare the initializer statement(s) before |
| // the loop. |
| if (init_buf.lines.size() > 1 || (stmt->initializer && emit_as_loop)) { |
| current_buffer_->Append(init_buf); |
| init_buf.lines.clear(); // Don't emit the initializer again in the 'for' |
| } |
| |
| if (emit_as_loop) { |
| auto emit_continuing = [&] { |
| current_buffer_->Append(cont_buf); |
| return true; |
| }; |
| |
| TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); |
| Line() << "while (true) {"; |
| IncrementIndent(); |
| TINT_DEFER({ |
| DecrementIndent(); |
| Line() << "}"; |
| }); |
| |
| if (stmt->condition) { |
| current_buffer_->Append(cond_pre); |
| Line() << "if (!(" << cond_buf.str() << ")) { break; }"; |
| } |
| |
| if (!EmitStatements(stmt->body->statements)) { |
| return false; |
| } |
| |
| if (!emit_continuing_()) { |
| return false; |
| } |
| } else { |
| // For-loop can be generated. |
| { |
| auto out = Line(); |
| out << "for"; |
| { |
| ScopedParen sp(out); |
| |
| if (!init_buf.lines.empty()) { |
| out << init_buf.lines[0].content << " "; |
| } else { |
| out << "; "; |
| } |
| |
| out << cond_buf.str() << "; "; |
| |
| if (!cont_buf.lines.empty()) { |
| out << tint::TrimSuffix(cont_buf.lines[0].content, ";"); |
| } |
| } |
| out << " {"; |
| } |
| { |
| auto emit_continuing = [] { return true; }; |
| TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); |
| if (!EmitStatementsWithIndent(stmt->body->statements)) { |
| return false; |
| } |
| } |
| Line() << "}"; |
| } |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitWhile(const ast::WhileStatement* stmt) { |
| TextBuffer cond_pre; |
| StringStream cond_buf; |
| { |
| auto* cond = stmt->condition; |
| TINT_SCOPED_ASSIGNMENT(current_buffer_, &cond_pre); |
| if (!EmitExpression(cond_buf, cond)) { |
| return false; |
| } |
| } |
| |
| auto emit_continuing = [&] { return true; }; |
| TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing); |
| |
| // If the while has a multi-statement conditional, then we cannot emit this |
| // as a regular while in HLSL. Instead we need to generate a `while(true)` loop. |
| bool emit_as_loop = cond_pre.lines.size() > 0; |
| if (emit_as_loop) { |
| Line() << "while (true) {"; |
| IncrementIndent(); |
| TINT_DEFER({ |
| DecrementIndent(); |
| Line() << "}"; |
| }); |
| |
| current_buffer_->Append(cond_pre); |
| Line() << "if (!(" << cond_buf.str() << ")) { break; }"; |
| if (!EmitStatements(stmt->body->statements)) { |
| return false; |
| } |
| } else { |
| // While can be generated. |
| { |
| auto out = Line(); |
| out << "while"; |
| { |
| ScopedParen sp(out); |
| out << cond_buf.str(); |
| } |
| out << " {"; |
| } |
| if (!EmitStatementsWithIndent(stmt->body->statements)) { |
| return false; |
| } |
| Line() << "}"; |
| } |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitMemberAccessor(StringStream& out, const ast::MemberAccessorExpression* expr) { |
| if (!EmitExpression(out, expr->object)) { |
| return false; |
| } |
| out << "."; |
| |
| auto* sem = builder_.Sem().Get(expr)->UnwrapLoad(); |
| |
| return Switch( |
| sem, |
| [&](const sem::Swizzle*) { |
| // Swizzles output the name directly |
| out << expr->member->symbol.Name(); |
| return true; |
| }, |
| [&](const sem::StructMemberAccess* member_access) { |
| out << member_access->Member()->Name().Name(); |
| return true; |
| }, |
| [&](Default) { |
| TINT_ICE() << "unknown member access type: " << sem->TypeInfo().name; |
| return false; |
| }); |
| } |
| |
| bool ASTPrinter::EmitReturn(const ast::ReturnStatement* stmt) { |
| if (stmt->value) { |
| auto out = Line(); |
| out << "return "; |
| if (!EmitExpression(out, stmt->value)) { |
| return false; |
| } |
| out << ";"; |
| } else { |
| Line() << "return;"; |
| } |
| return true; |
| } |
| |
| bool ASTPrinter::EmitStatement(const ast::Statement* stmt) { |
| return Switch( |
| stmt, |
| [&](const ast::AssignmentStatement* a) { // |
| return EmitAssign(a); |
| }, |
| [&](const ast::BlockStatement* b) { // |
| return EmitBlock(b); |
| }, |
| [&](const ast::BreakStatement* b) { // |
| return EmitBreak(b); |
| }, |
| [&](const ast::BreakIfStatement* b) { // |
| return EmitBreakIf(b); |
| }, |
| [&](const ast::CallStatement* c) { // |
| auto out = Line(); |
| if (!EmitCall(out, c->expr)) { |
| return false; |
| } |
| out << ";"; |
| return true; |
| }, |
| [&](const ast::ContinueStatement* c) { // |
| return EmitContinue(c); |
| }, |
| [&](const ast::DiscardStatement* d) { // |
| return EmitDiscard(d); |
| }, |
| [&](const ast::IfStatement* i) { // |
| return EmitIf(i); |
| }, |
| [&](const ast::LoopStatement* l) { // |
| return EmitLoop(l); |
| }, |
| [&](const ast::ForLoopStatement* l) { // |
| return EmitForLoop(l); |
| }, |
| [&](const ast::WhileStatement* l) { // |
| return EmitWhile(l); |
| }, |
| [&](const ast::ReturnStatement* r) { // |
| return EmitReturn(r); |
| }, |
| [&](const ast::SwitchStatement* s) { // |
| return EmitSwitch(s); |
| }, |
| [&](const ast::VariableDeclStatement* v) { // |
| return Switch( |
| v->variable, // |
| [&](const ast::Var* var) { return EmitVar(var); }, |
| [&](const ast::Let* let) { return EmitLet(let); }, |
| [&](const ast::Const*) { |
| return true; // Constants are embedded at their use |
| }, |
| [&](Default) { // |
| TINT_ICE() << "unknown variable type: " << v->variable->TypeInfo().name; |
| return false; |
| }); |
| }, |
| [&](const ast::ConstAssert*) { |
| return true; // Not emitted |
| }, |
| [&](Default) { // |
| diagnostics_.add_error(diag::System::Writer, |
| "unknown statement type: " + std::string(stmt->TypeInfo().name)); |
| return false; |
| }); |
| } |
| |
| bool ASTPrinter::EmitDefaultOnlySwitch(const ast::SwitchStatement* stmt) { |
| TINT_ASSERT(stmt->body.Length() == 1 && stmt->body[0]->ContainsDefault()); |
| |
| // FXC fails to compile a switch with just a default case, ignoring the |
| // default case body. We work around this here by emitting the default case |
| // without the switch. |
| |
| // Emit the switch condition as-is if it has side-effects (e.g. |
| // function call). Note that we can ignore the result of the expression (if any). |
| if (auto* sem_cond = builder_.Sem().GetVal(stmt->condition); sem_cond->HasSideEffects()) { |
| auto out = Line(); |
| if (!EmitExpression(out, stmt->condition)) { |
| return false; |
| } |
| out << ";"; |
| } |
| |
| // Emit "do { <default case body> } while(false);". We use a 'do' loop so |
| // that break statements work as expected, and make it 'while (false)' in |
| // case there isn't a break statement. |
| Line() << "do {"; |
| { |
| ScopedIndent si(this); |
| if (!EmitStatements(stmt->body[0]->body->statements)) { |
| return false; |
| } |
| } |
| Line() << "} while (false);"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitSwitch(const ast::SwitchStatement* stmt) { |
| // BUG(crbug.com/tint/1188): work around default-only switches |
| if (stmt->body.Length() == 1 && stmt->body[0]->selectors.Length() == 1 && |
| stmt->body[0]->ContainsDefault()) { |
| return EmitDefaultOnlySwitch(stmt); |
| } |
| |
| { // switch(expr) { |
| auto out = Line(); |
| out << "switch("; |
| if (!EmitExpression(out, stmt->condition)) { |
| return false; |
| } |
| out << ") {"; |
| } |
| |
| { |
| ScopedIndent si(this); |
| for (size_t i = 0; i < stmt->body.Length(); i++) { |
| if (!EmitCase(stmt, i)) { |
| return false; |
| } |
| } |
| } |
| |
| Line() << "}"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitType(StringStream& out, |
| const core::type::Type* type, |
| core::AddressSpace address_space, |
| core::Access access, |
| const std::string& name, |
| bool* name_printed /* = nullptr */) { |
| if (name_printed) { |
| *name_printed = false; |
| } |
| switch (address_space) { |
| case core::AddressSpace::kStorage: |
| if (access != core::Access::kRead) { |
| out << "RW"; |
| } |
| out << "ByteAddressBuffer"; |
| return true; |
| case core::AddressSpace::kUniform: { |
| auto array_length = (type->Size() + 15) / 16; |
| out << "uint4 " << name << "[" << array_length << "]"; |
| if (name_printed) { |
| *name_printed = true; |
| } |
| return true; |
| } |
| default: |
| break; |
| } |
| |
| return Switch( |
| type, |
| [&](const core::type::Array* ary) { |
| const core::type::Type* base_type = ary; |
| std::vector<uint32_t> sizes; |
| while (auto* arr = base_type->As<core::type::Array>()) { |
| if (TINT_UNLIKELY(arr->Count()->Is<core::type::RuntimeArrayCount>())) { |
| TINT_ICE() |
| << "runtime arrays may only exist in storage buffers, which should have " |
| "been transformed into a ByteAddressBuffer"; |
| return false; |
| } |
| const auto count = arr->ConstantCount(); |
| if (!count) { |
| diagnostics_.add_error(diag::System::Writer, |
| core::type::Array::kErrExpectedConstantCount); |
| return false; |
| } |
| |
| sizes.push_back(count.value()); |
| base_type = arr->ElemType(); |
| } |
| if (!EmitType(out, base_type, address_space, access, "")) { |
| return false; |
| } |
| if (!name.empty()) { |
| out << " " << name; |
| if (name_printed) { |
| *name_printed = true; |
| } |
| } |
| for (uint32_t size : sizes) { |
| out << "[" << size << "]"; |
| } |
| return true; |
| }, |
| [&](const core::type::Bool*) { |
| out << "bool"; |
| return true; |
| }, |
| [&](const core::type::F32*) { |
| out << "float"; |
| return true; |
| }, |
| [&](const core::type::F16*) { |
| out << "float16_t"; |
| return true; |
| }, |
| [&](const core::type::I32*) { |
| out << "int"; |
| return true; |
| }, |
| [&](const core::type::Matrix* mat) { |
| if (mat->type()->Is<core::type::F16>()) { |
| // Use matrix<type, N, M> for f16 matrix |
| out << "matrix<"; |
| if (!EmitType(out, mat->type(), address_space, access, "")) { |
| return false; |
| } |
| out << ", " << mat->columns() << ", " << mat->rows() << ">"; |
| return true; |
| } |
| if (!EmitType(out, mat->type(), address_space, access, "")) { |
| return false; |
| } |
| // Note: HLSL's matrices are declared as <type>NxM, where N is the |
| // number of rows and M is the number of columns. Despite HLSL's |
| // matrices being column-major by default, the index operator and |
| // initializers actually operate on row-vectors, where as WGSL operates |
| // on column vectors. To simplify everything we use the transpose of the |
| // matrices. See: |
| // https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-per-component-math#matrix-ordering |
| out << mat->columns() << "x" << mat->rows(); |
| return true; |
| }, |
| [&](const core::type::Pointer*) { |
| TINT_ICE() << "Attempting to emit pointer type. These should have " |
| "been removed with the SimplifyPointers transform"; |
| return false; |
| }, |
| [&](const core::type::Sampler* sampler) { |
| out << "Sampler"; |
| if (sampler->IsComparison()) { |
| out << "Comparison"; |
| } |
| out << "State"; |
| return true; |
| }, |
| [&](const core::type::Struct* str) { |
| out << StructName(str); |
| return true; |
| }, |
| [&](const core::type::Texture* tex) { |
| if (TINT_UNLIKELY(tex->Is<core::type::ExternalTexture>())) { |
| TINT_ICE() << "Multiplanar external texture transform was not run."; |
| return false; |
| } |
| |
| auto* storage = tex->As<core::type::StorageTexture>(); |
| auto* ms = tex->As<core::type::MultisampledTexture>(); |
| auto* depth_ms = tex->As<core::type::DepthMultisampledTexture>(); |
| auto* sampled = tex->As<core::type::SampledTexture>(); |
| |
| if (storage && storage->access() != core::Access::kRead) { |
| out << "RW"; |
| } |
| out << "Texture"; |
| |
| switch (tex->dim()) { |
| case core::type::TextureDimension::k1d: |
| out << "1D"; |
| break; |
| case core::type::TextureDimension::k2d: |
| out << ((ms || depth_ms) ? "2DMS" : "2D"); |
| break; |
| case core::type::TextureDimension::k2dArray: |
| out << ((ms || depth_ms) ? "2DMSArray" : "2DArray"); |
| break; |
| case core::type::TextureDimension::k3d: |
| out << "3D"; |
| break; |
| case core::type::TextureDimension::kCube: |
| out << "Cube"; |
| break; |
| case core::type::TextureDimension::kCubeArray: |
| out << "CubeArray"; |
| break; |
| default: |
| TINT_UNREACHABLE() << "unexpected TextureDimension " << tex->dim(); |
| return false; |
| } |
| |
| if (storage) { |
| auto* component = image_format_to_rwtexture_type(storage->texel_format()); |
| if (TINT_UNLIKELY(!component)) { |
| TINT_ICE() << "Unsupported StorageTexture TexelFormat: " |
| << static_cast<int>(storage->texel_format()); |
| return false; |
| } |
| out << "<" << component << ">"; |
| } else if (depth_ms) { |
| out << "<float4>"; |
| } else if (sampled || ms) { |
| auto* subtype = sampled ? sampled->type() : ms->type(); |
| out << "<"; |
| if (subtype->Is<core::type::F32>()) { |
| out << "float4"; |
| } else if (subtype->Is<core::type::I32>()) { |
| out << "int4"; |
| } else if (TINT_LIKELY(subtype->Is<core::type::U32>())) { |
| out << "uint4"; |
| } else { |
| TINT_ICE() << "Unsupported multisampled texture type"; |
| return false; |
| } |
| out << ">"; |
| } |
| return true; |
| }, |
| [&](const core::type::U32*) { |
| out << "uint"; |
| return true; |
| }, |
| [&](const core::type::Vector* vec) { |
| auto width = vec->Width(); |
| if (vec->type()->Is<core::type::F32>() && width >= 1 && width <= 4) { |
| out << "float" << width; |
| } else if (vec->type()->Is<core::type::I32>() && width >= 1 && width <= 4) { |
| out << "int" << width; |
| } else if (vec->type()->Is<core::type::U32>() && width >= 1 && width <= 4) { |
| out << "uint" << width; |
| } else if (vec->type()->Is<core::type::Bool>() && width >= 1 && width <= 4) { |
| out << "bool" << width; |
| } else { |
| // For example, use "vector<float16_t, N>" for f16 vector. |
| out << "vector<"; |
| if (!EmitType(out, vec->type(), address_space, access, "")) { |
| return false; |
| } |
| out << ", " << width << ">"; |
| } |
| return true; |
| }, |
| [&](const core::type::Atomic* atomic) { |
| return EmitType(out, atomic->Type(), address_space, access, name); |
| }, |
| [&](const core::type::Void*) { |
| out << "void"; |
| return true; |
| }, |
| [&](Default) { |
| diagnostics_.add_error(diag::System::Writer, "unknown type in EmitType"); |
| return false; |
| }); |
| } |
| |
| bool ASTPrinter::EmitTypeAndName(StringStream& out, |
| const core::type::Type* type, |
| core::AddressSpace address_space, |
| core::Access access, |
| const std::string& name) { |
| bool name_printed = false; |
| if (!EmitType(out, type, address_space, access, name, &name_printed)) { |
| return false; |
| } |
| if (!name.empty() && !name_printed) { |
| out << " " << name; |
| } |
| return true; |
| } |
| |
| bool ASTPrinter::EmitStructType(TextBuffer* b, const core::type::Struct* str) { |
| auto it = emitted_structs_.emplace(str); |
| if (!it.second) { |
| return true; |
| } |
| |
| Line(b) << "struct " << StructName(str) << " {"; |
| { |
| ScopedIndent si(b); |
| for (auto* mem : str->Members()) { |
| auto mem_name = mem->Name().Name(); |
| auto* ty = mem->Type(); |
| auto out = Line(b); |
| std::string pre, post; |
| |
| auto& attributes = mem->Attributes(); |
| |
| if (auto location = attributes.location) { |
| auto& pipeline_stage_uses = str->PipelineStageUses(); |
| if (TINT_UNLIKELY(pipeline_stage_uses.size() != 1)) { |
| TINT_ICE() << "invalid entry point IO struct uses"; |
| } |
| if (pipeline_stage_uses.count(core::type::PipelineStageUsage::kVertexInput)) { |
| post += " : TEXCOORD" + std::to_string(location.value()); |
| } else if (pipeline_stage_uses.count( |
| core::type::PipelineStageUsage::kVertexOutput)) { |
| post += " : TEXCOORD" + std::to_string(location.value()); |
| } else if (pipeline_stage_uses.count( |
| core::type::PipelineStageUsage::kFragmentInput)) { |
| post += " : TEXCOORD" + std::to_string(location.value()); |
| } else if (TINT_LIKELY(pipeline_stage_uses.count( |
| core::type::PipelineStageUsage::kFragmentOutput))) { |
| if (auto index = attributes.index) { |
| post += " : SV_Target" + std::to_string(location.value() + index.value()); |
| } else { |
| post += " : SV_Target" + std::to_string(location.value()); |
| } |
| |
| } else { |
| TINT_ICE() << "invalid use of location attribute"; |
| } |
| } |
| if (auto builtin = attributes.builtin) { |
| auto name = builtin_to_attribute(builtin.value()); |
| if (name.empty()) { |
| diagnostics_.add_error(diag::System::Writer, "unsupported builtin"); |
| return false; |
| } |
| post += " : " + name; |
| } |
| if (auto interpolation = attributes.interpolation) { |
| auto mod = interpolation_to_modifiers(interpolation->type, interpolation->sampling); |
| if (mod.empty()) { |
| diagnostics_.add_error(diag::System::Writer, "unsupported interpolation"); |
| return false; |
| } |
| pre += mod; |
| } |
| if (attributes.invariant) { |
| // Note: `precise` is not exactly the same as `invariant`, but is |
| // stricter and therefore provides the necessary guarantees. |
| // See discussion here: https://github.com/gpuweb/gpuweb/issues/893 |
| pre += "precise "; |
| } |
| |
| out << pre; |
| if (!EmitTypeAndName(out, ty, core::AddressSpace::kUndefined, core::Access::kReadWrite, |
| mem_name)) { |
| return false; |
| } |
| out << post << ";"; |
| } |
| } |
| |
| Line(b) << "};"; |
| return true; |
| } |
| |
| bool ASTPrinter::EmitUnaryOp(StringStream& out, const ast::UnaryOpExpression* expr) { |
| switch (expr->op) { |
| case core::UnaryOp::kIndirection: |
| case core::UnaryOp::kAddressOf: |
| return EmitExpression(out, expr->expr); |
| case core::UnaryOp::kComplement: |
| out << "~"; |
| break; |
| case core::UnaryOp::kNot: |
| out << "!"; |
| break; |
| case core::UnaryOp::kNegation: |
| out << "-"; |
| break; |
| } |
| out << "("; |
| |
| if (!EmitExpression(out, expr->expr)) { |
| return false; |
| } |
| |
| out << ")"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitVar(const ast::Var* var) { |
| auto* sem = builder_.Sem().Get(var); |
| auto* type = sem->Type()->UnwrapRef(); |
| |
| auto out = Line(); |
| if (!EmitTypeAndName(out, type, sem->AddressSpace(), sem->Access(), var->name->symbol.Name())) { |
| return false; |
| } |
| |
| out << " = "; |
| |
| if (var->initializer) { |
| if (!EmitExpression(out, var->initializer)) { |
| return false; |
| } |
| } else { |
| if (!EmitZeroValue(out, type)) { |
| return false; |
| } |
| } |
| out << ";"; |
| |
| return true; |
| } |
| |
| bool ASTPrinter::EmitLet(const ast::Let* let) { |
| auto* sem = builder_.Sem().Get(let); |
| auto* type = sem->Type()->UnwrapRef(); |
| |
| auto out = Line(); |
| out << "const "; |
| if (!EmitTypeAndName(out, type, core::AddressSpace::kUndefined, core::Access::kUndefined, |
| let->name->symbol.Name())) { |
| return false; |
| } |
| out << " = "; |
| if (!EmitExpression(out, let->initializer)) { |
| return false; |
| } |
| out << ";"; |
| |
| return true; |
| } |
| |
| template <typename F> |
| bool ASTPrinter::CallBuiltinHelper(StringStream& out, |
| const ast::CallExpression* call, |
| const sem::Builtin* builtin, |
| F&& build) { |
| // Generate the helper function if it hasn't been created already |
| auto fn = tint::GetOrCreate(builtins_, builtin, [&]() -> std::string { |
| TextBuffer b; |
| TINT_DEFER(helpers_.Append(b)); |
| |
| auto fn_name = UniqueIdentifier(std::string("tint_") + core::str(builtin->Type())); |
| std::vector<std::string> parameter_names; |
| { |
| auto decl = Line(&b); |
| if (!EmitTypeAndName(decl, builtin->ReturnType(), core::AddressSpace::kUndefined, |
| core::Access::kUndefined, fn_name)) { |
| return ""; |
| } |
| { |
| ScopedParen sp(decl); |
| for (auto* param : builtin->Parameters()) { |
| if (!parameter_names.empty()) { |
| decl << ", "; |
| } |
| auto param_name = "param_" + std::to_string(parameter_names.size()); |
| const auto* ty = param->Type(); |
| if (auto* ptr = ty->As<core::type::Pointer>()) { |
| decl << "inout "; |
| ty = ptr->StoreType(); |
| } |
| if (!EmitTypeAndName(decl, ty, core::AddressSpace::kUndefined, |
| core::Access::kUndefined, param_name)) { |
| return ""; |
| } |
| parameter_names.emplace_back(std::move(param_name)); |
| } |
| } |
| decl << " {"; |
| } |
| { |
| ScopedIndent si(&b); |
| if (!build(&b, parameter_names)) { |
| return ""; |
| } |
| } |
| Line(&b) << "}"; |
| Line(&b); |
| return fn_name; |
| }); |
| |
| if (fn.empty()) { |
| return false; |
| } |
| |
| // Call the helper |
| out << fn; |
| { |
| ScopedParen sp(out); |
| bool first = true; |
| for (auto* arg : call->args) { |
| if (!first) { |
| out << ", "; |
| } |
| first = false; |
| if (!EmitExpression(out, arg)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| std::string ASTPrinter::StructName(const core::type::Struct* s) { |
| auto name = s->Name().Name(); |
| if (HasPrefix(name, "__")) { |
| name = tint::GetOrCreate(builtin_struct_names_, s, |
| [&] { return UniqueIdentifier(name.substr(2)); }); |
| } |
| return name; |
| } |
| |
| std::string ASTPrinter::UniqueIdentifier(const std::string& prefix /* = "" */) { |
| return builder_.Symbols().New(prefix).Name(); |
| } |
| |
| } // namespace tint::hlsl::writer |